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Abstract—Since today’s weather forecasts only cover large
regions every few hours, their use in severe weather is limited. In
this paper, we present CloudCast, an application that provides
short-term weather forecasts depending on users current location.
Since severe weather is rare, CloudCast leverages pay-as-you-
go cloud platforms to eliminate dedicated computing infras-
tructure. CloudCast has two components: 1) an architecture
linking weather radars to cloud resources, and 2) a Nowcasting
algorithm for generating accurate short-term weather forecasts.
We study CloudCast’s design space, which requires significant
data staging to the cloud. Our results indicate that serial transfers
achieve tolerable throughput, while parallel transfers represent
a bottleneck for real-time mobile Nowcasting. We also analyze
forecast accuracy and show high accuracy for ten minutes in the
future. Finally, we execute CloudCast live using an on-campus
radar, and show that it delivers a 15-minute Nowcast to a mobile
client in less than 2 minutes after data sampling started.

I. INTRODUCTION

The emergence of smart phones has led to the proliferation
of a variety of innovative data-driven mobile applications or
“apps”.1 One useful application is mobile weather forecasting,
which provides hour-to-hour forecasts on a coarse-grained
geographical scale. While today’s forecasting apps (e.g., my-
cast [8], The Weather Channel App [15], AccuWeather [1])
are useful for long-term weather prediction, they do not
provide the type of precise, small-scale, short-term predictions
necessary for reacting to fast-changing severe weather. For
instance, informing mobile users 10-15 minutes in advance of
a tornado hitting their exact location would be a major step
forward for emergency management systems.

In this paper, we present CloudCast, a new mobile ap-
plication for short-term, location-based weather prediction.
CloudCast is a mobile application that generates short-term
forecasts based on a user’s specific location. If severe weather
is approaching the user’s location, CloudCast automatically
sends personalized notifications. To enable this functionality
CloudCast combines two major components. The first com-
ponent is an algorithm that produces fine-grained short-term
weather forecasts (up to 15 minutes in the future) for areas
as small as 100m2, called Nowcasting [36], [35]. Nowcasting
has the potential to personalize severe weather alerts by pro-
grammatically transmitting highly targeted, location-specific
warnings to mobile devices based on their GPS coordinates.
For example, rather than displaying an hourly forecast for a
whole region, a personalized Nowcast is capable of issuing
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specific close-term predictions, such as whether or not it will
rain in a few minutes, for a mobile device’s specific location.

The second component is a new architecture that al-
lows the execution of Nowcasting on cloud platforms, such
as Amazon’s Elastic Compute Cloud (EC2). Nowcasting is
compute-intensive, requiring high-memory systems for execu-
tion. Hence, we use cloud services to execute Nowcasting al-
gorithm for our CloudCast application. Cloud computing plat-
forms lower the cost of computation by leveraging economies-
of-scale. Generating Nowcasts on dedicated infrastructure is
economically infeasible due to its enormous computational
demands, which scale quadratically with spatial resolution.
For instance, a 4x increase in resolution results in (roughly)
a 16x increase in computation. As a result, a service that
generates Nowcasts, similar to the National Weather Service
(NWS) that generates coarse-grained forecasts for every three
hours in the future up to three days, requires massive upfront
capital costs for servers. Yet, since severe weather is rare,
dedicating significant infrastructure to Nowcasting “wastes”
server capacity most of the time. Weather services, such as
MetService in New Zealand and the U.S. NWS, already invest
millions of dollars in server capacity for today’s coarse-grained
atmospheric modeling and forecasting [3], [7], [11].

The primary reason weather services cite for not leveraging
the cloud is data staging costs. We evaluate these costs for the
extreme case of Nowcasting, which requires rapid real-time
radar data uploads to predict conditions tens of minutes in
the future. Compared to most cloud applications, CloudCast’s
Nowcasting algorithm has stricter real-time constraints. Timely
execution of the algorithm is critical since the Nowcast data
has to be made available to end users before it becomes
obsolete. For example, in a severe weather scenario Nowcast
information can be used to warn the public, as well as guide
spotters and other emergency management personnel. Since
Nowcasting predicts weather only in the very near-term future
(on the order of minutes), it is important that the algorithm
produce results fast. For instance, if it takes 12 minutes to
generate and disseminate a 15-minute Nowcast, that leaves
just 3 minutes for the users to take action.

Our hypothesis is that the connectivity and diversity of
current cloud platforms mitigate the impact of staging data and
computation latency for Nowcasting, enabling them to perform
atmospheric modeling and personalized weather forecasting
that CloudCast requires. In evaluating our hypothesis, this
paper makes the following contributions.



• We propose CloudCast, an architecture that links weather
radars to cloud instances, allowing the components in
the architecture to request computational and storage
resources required to generate forecasts based on real-
time radar data feeds as requested from mobile clients.

• We emulate a radar network using PlanetLab sites and
conduct extensive bandwidth measurements between each
site and cloud instances. We quantify average bandwidth
and its variability to determine if the public Internet and
today’s clouds are sufficient for real-time Nowcasting.

• We analyze the computation time and cost of Nowcasting
in the cloud for various instance types offered by the
cloud services, to quantify the trade off between faster
execution of the Nowcast algorithm and higher cost that
arise from renting more powerful cloud instances.

• We use statistical metrics to analyze Nowcast prediction
accuracy for various aggregation levels to ensure accurate
results given changing Internet conditions. We show that
our system is able to achieve high accuracy using existing
networks and clouds for up to 10 minute Nowcasts.

• Finally, we demonstrate CloudCast live using a deployed
prototype radar as a proof-of-concept.

In Section II, we provide background on cloud services
considered in our analysis, while Section III presents an
overview of our CloudCast architecture. Section IV evaluates
the network efficacy of cloud services for Nowcasting using
an extensive measurement study on PlanetLab. Section V then
presents a cost and computation analysis of Nowcasting on
the cloud using cloud services and quantifies the effect of
data compression on Nowcasting accuracy. Section VI presents
the results of live radar-to-cloud network measurements, while
Section VII discusses related work and Section VIII concludes.

II. CLOUD SERVICES

In this paper we have chosen four cloud services to an-
alyze the compute feasibility of cloud services for our real-
time application of short-term weather forecasting. We have
considered two commercial cloud services—Amazon’s EC2
and Rackspace Cloud Hosting—as well as two research cloud
testbeds—GENICloud and ExoGENI cloud.

Commercial clouds use the pay-as-you-use model where the
users are charged for resource usage on an hourly basis. In
contrast, research clouds like GENICloud [41], [16] and the
ExoGENI cloud [4] provide free resources for the research
community. Apart from the fact that the usage of these cloud
platforms is free for the research community, they bear the
following additional advantages. First of all, researchers can
use them to develop prototypes of scientific cloud applications.
Large-scale implementation of these applications will still have
to happen in commercial clouds since the research clouds
provide only a limited number of resources (e.g., available
compute nodes or overall storage space). Second, research
clouds such as the ExoGENI (with its NEuca extensions [9])
allow for dynamic configuration of the network topology
within the cloud, a feature that is not provided by commercial
clouds. Third, specific research clouds are connected via

next-generation research networks (NLR FrameNet [10] or
Internet2 ION [5]) that allow the provisioning of dedicated,
isolated network resources. The latter will help researchers to
better understand how distributed applications that run in the
cloud can benefit from new network technologies. This will,
e.g., allow us to investigate how a dedicated layer 2 connection
between the source and the receiving instance in the cloud
will impact the overall performance of the application. In this
section, we give a brief description of these cloud services
before explaining our application architecture in Section III.

A. Elastic Compute Cloud (EC2)

Amazon’s Elastic Compute Cloud (EC2) [2] is a cloud
service which provides resizable compute capacity to execute
applications on demand. Amazon EC2 provides a variety
of services including cloud servers, storage, Virtual Private
Cloud, and CloudWatch. Amazon provides an easy-to-use web
service interface which allows users to obtain and configure
cloud resources at any of Amazon’s AWS data centers. It
provides users with complete control over their computing
resources and lets users run applications on Amazon’s com-
puting environment. Amazon EC2 reduces the time required
to obtain and boot new server instances to minutes, allowing
users to quickly scale capacity, both up and down, as their
computing requirements change.

EC2 provides on-demand resources with pricing depending
on the type of resources used and the duration of the usage.
The cost of using commercial cloud services also depends on
additional factors such as the amount of I/O performed and the
amount of storage used, both of which can incur significant
costs for researchers using cloud resources. Wang et. al [38]
provide a list of example applications that can be executed on
Amazon’s Elastic Compute Cloud (EC2).

B. Rackspace Cloud

Rackspace Cloud [13] is one of Amzon’s competitors in the
area of commercial cloud hosting. Rackspace offers services
including cloud servers, cloud storage and cloud-based website
hosting. Cloud servers are available in eight different sizes
(with respect to available RAM and disk space) and support
a variety of Linux and Windows operating systems. In [23]
and [28], the authors provide a brief description of Rackspace
and compare its services with other cloud providers.

C. GENICloud

GENICloud [41], [16] is an open source research cloud
testbed which is based on the Slice-Based Facility Architecture
(SFA) used by PlanetLab [17]. It supports the management
of individual VMs or clusters of VMs. GENICloud uses the
Eucalyptus [31] open source cloud platform as a base and
federates it with SFA to provide a slice-based architecture to
acquire cloud instances (virtual machines) as slivers, similar
to acquiring virtual machines on PlanetLab. GENICloud as
a platform consists of a small set of nodes at various sites
connected internally to provide a cloud testbed for trusted
researchers. The GENICloud resources can be acquired using



Fig. 1. Overview of the CloudCast system architecture.

the Sface [14] GUI providing valid credentials, or a Web based
GUI similar to the one for PlanetLab.

D. ExoGENI Cloud

ExoGENI cloud [4] is a software framework and an open-
source cloud platform, which allows users to programmatically
manage a controllable, shared substrate. Based on this sub-
strate, researchers can create their own cluster infrastructure by
combining servers, storage, and network links in an arbitrary
fashion. An ExoGENI deployment is a dynamic collection
of interacting control servers that collaborate to provision
and configure resources for each experimenter according to
the policies of the participants. ORCA (ExoGENI’s control
framework) helps to provision virtual networked systems via
secure and distributed management of heterogeneous resources
over federated substrate sites and domains. ORCA allows
users to create global topologies of nodes connected via layer
2 QoS-provisioned links. Based on these features ExoGENI
cloud offers a variety of opportunities for experimentation
and research and also for developing new resource control
and management policies via plugins. The ExoGENI cloud,
similar to GENICloud, uses a slice-based architecture on
top of OpenStack [12] or Eucalyptus [31]. ExoGENI gives
researchers more flexibility than other research clouds, as well
as commercial clouds, since it allows them to i) create their
own network topology for a compute cluster, and ii) choose
between several geographically distributed clusters.

III. CLOUDCAST ARCHITECTURE

In this section, we describe the architecture of our Cloud-
Cast application. We designed this architecture for a new type
of radar sensor network developed by the center for Collabora-
tive Adaptive Sensing of the Atmosphere (CASA) [30], [42].
CASA has developed this new type of radar based weather
observation systems to better observe the lowest part of the
atmosphere and in turn improve the detection and prediction
of severe weather. We have chosen CASA since we have full
access to its radars (compared to the operational radars run
by the NWS) which allows us to evaluate CloudCast with
real radars and weather as shown in Section VI. While we

evaluate CloudCast by using the CASA system we designed
its architecture in a way that will allow its use with other radar
networks such as, e.g., NEXRAD.

Figure 1 shows the components of the CloudCast architec-
ture which is composed of the MC&C, described below, which
controls the scanning of the radars; DiCloud, an environment
that allows users to conduct data-intensive experiments in
commercial clouds (Amazon EC2 in this case); and a short
term weather forecasting algorithm called Nowcasting.

The CloudCast architecture allows the initiation of Now-
casts in the cloud in two different ways. The first way starts a
Nowcast the moment weather enters the radar networks area.
To enable this functionality, the CloudCast architecture makes
use of Meteorological Command and Control (MC&C). The
MC&C includes several detection algorithms that run on radar
data and can detect certain weather phenomena (e.g., rain).
These detections can be used to initiate a Nowcast in the
cloud. The alternative way to initiate a Nowcast is more end-
user centric. In this case, a Nowcast process is started if the
conditions in the case described above are met and if a mobile
user has requested a Nowcast service for a specific area. E.g.,
one can imagine that a user has subscribed to a Nowcast
service and would like to obtain a Nowcast if weather is in
the vicinity of their current location. In this case, a Nowcast
will only be initiated if the MC&C indicates weather and if a
user who has registered for a Nowcast service is in that area.

A. MC&C Architecture

Meteorological Command and Control (MC&C) [42] is the
control part of the CASA network that determines how the
radars will scan the atmosphere in each 60 second heartbeat.
The scanning of each radar is determined by several factors,
including 1) detections from data obtained in present heartbeat,
2) historical detections from earlier heartbeats, and 3) end-
user policies. The MC&C architecture takes these different
factors into consideration to determine how to control the
radars. For our CloudCast approach we are making use of
the detection features the MC&C offers. For example, rain
sensed by the radars will be detected by the algorithms in the
MC&C. CloudCast uses the information to determine when to
initiate Nowcasts in the cloud. Thus, cloud-based Nowcasts are
automatically initiated and halted without user intervention.

B. DiCloud

DiCloud [21] is a platform that enables controlled access to
EC2 cloud resources. Though cloud services such as Amazon
EC2 provide details of the usage for the operations carried out
in the cloud, they perform this usage tracking on a per account
basis (which may have multiple users) rather than individual
application or user basis. For example, if one envisions that an
entity would offer Nowcasting (executed in the cloud) as a ser-
vice to mobile users, all that Amazon would provide the entity
with would be the total cost for the execution of Nowcasts in
the cloud. Based on this information it could not be determined
how much it costs to execute an individual Nowcast for a
mobile user. DiCloud on the other hand enables tracking the



costs that occur by executing individual Nowcasts and, thus,
the final receiver of the Nowcast data (E.g., mobile client)
can be precisely charged. The DiCloud server communicates
with EC2 to track each operation carried out in the DiCloud
console. Since the DiCloud console is scriptable, pre-defined
scripts can be initiated from the MC&C to start or stop a
Nowcast instance in the cloud.

C. Nowcasting
Nowcasting [36], [35] refers to short term (0 - 30min)

weather forecasting. Nowcasting is an algorithm for the pre-
diction of high impact weather events, such as flood-producing
rainfall, severe storms, and hail, in a specific region with
sufficient accuracy within a time frame such that appropriate
actions can be taken to effectively mitigate the loss of life and
property. Since Nowcasting is a short term weather predic-
tion system, its applications involve warning decision support
for detection of potentially severe weather. Its performance
is typically measured in terms of categorical yes/no (e.g.,
rain/no-rain) detection relative to a predetermined measure-
ment threshold representative of a desired threat. This model
of measuring performance is well-suited for our Nowcasting
application where the ability of the Nowcasting algorithm to
predict a sufficiently high reflectivity value in a given region
is important for end-user emergency decision support.

In order to measure the quality of a Nowcast we make use
of three statistical metrics used by NWS to assess warning
programs [39]. The three metrics are False Alarm Rate (FAR),
Probability of Detection (POD) and threat score or Critical
Success Index (CSI) and there definition is as given below:

FAR =
false alarms

hits + false alarms
(1)

POD =
hits

hits + misses
(2)

CSI =
hits

hits + misses + false alarms
(3)

As shown in [36] these metrics can be used to determine
the quality of a Nowcast. One way to assess the quality
of a Nowcast is to calculate the three metrics mentioned
above by comparing a Nowcast for time t with the actual
observation at time t. For example, in the case of a five
minute Nowcast one would calculate FAR, POD, and CSI by
comparing the Nowcast for time t (created at t − 5 minutes)
with the actual observation at t. The actual comparison is
performed as follows. A hit is defined as the case in which
the pixels for both the image created from the Nowcast and
the image created from the actual observation are either both
active or inactive. Where active describes a pixel value that is
equal or greater than a predefined threshold level. Similarly,
inactive is defined as a pixel value being below the predefined
threshold level. A false alarm is defined as the case where
an active pixel is presented by the Nowcast image, while an
inactive pixel is presented by the actual observation image.
The opposite case defines a miss in the above equations.

In Section V, we use the above metrics to analyze the
Nowcasting case study for two different weather conditions
for various data aggregation factors in the cloud.

IV. MEASUREMENTS

In the previous section, we explained the architecture of
our CloudCast application in detail. As seen in Figure 1, a
potential bottleneck for the real-time operation of Nowcasting
in the cloud is the link between the radar nodes and the cloud
instances. Hence, in this section we investigate the network
feasibility of cloud services for the CloudCast operation.
(Detailed description can be found in [27])

In this section, we describe a series of measurements we
performed to investigate to what extent the cloud services
may be used for real-time weather applications. To perform
measurements in a large-scale setting we replicate a distribu-
tion system that, at least on the network level, is similar to
the NEXRAD system. Kelleher [26] et al. give an overview
on how data from the NEXRADs is disseminated by using
NOAA’s NOAANet backbone and Internet2. Since we do not
have access to NEXRAD nodes for our measurement, we make
use of PlanetLab [17] a global research network that supports
large-scale, distributed experiments. According to [42], radars
generate data at a constant rate of roughly 5 Mbps. In the
rest of the paper, we use 5 Mbps as the minimum required
throughput between a radar node and the cloud instances to
allow real-time transmission for Nowcasting operation. This
threshold can be varied based on the application’s need.

A. Experiment

To make our experiment as realistic as possible we went
through the exercise of choosing PlanetLab nodes that are
close in physical location to the NEXRAD radars. Unfortu-
nately, close proximity between NEXRADs and PlanetLab
nodes is not always given due to the fact that locations for
weather radars are chosen based on parameters like coverage
and beam blocking, which often places them in remote areas.
Although there are 159 NEXRAD radar sites in US, we could
find only 103 PlanetLab nodes close to those locations, out
of which there were around 60 PlanetLab Nodes active at any
given time. Hence, in our measurements we use results from
around 60 PlanetLab nodes compared to 159 NEXRAD radars.

We have conducted three different measurement scenarios
to depict the network capabilities of cloud services considered
for our Nowcasting application and any real-time scientific
application in general. We conducted a serial measurement
where data is transmitted to cloud instances from each indi-
vidual PlanetLab nodes (replicating the NEXRAD radars). We
conducted this measurement to verify how the cloud instances
perform without any competing traffic. We also conducted
a parallel measurement, where data from all the PlanetLab
nodes transmit data to a cloud instance at the same time. We
performed this experiment to verify if the cloud instances can
handle the large traffic from all the NEXRAD radars at once
and still maintain the required minimum threshold throughput
of 5 Mbps for our CloudCast operation. Since not all radar
nodes around the country would transfer their data to one
central instance simultaneously a more likely scenario is the
case where a group of radar nodes that belong to a geographic
region will transmit their data to a cloud instance that is close



to this subset of radar nodes. To investigate this scenario, we
conducted a distributed measurement where only 10 PlanetLab
nodes transmit data to a cloud instance in parallel.

B. Measurement Results

The results from the measurements are shown in Tables I
and II. To investigate if the location of the EC2 instance
has an impact on throughput we performed the measurement
twice, once with an EC2 instance in a West Coast data center
and another in the EC2 East Coast data center. Also, to
investigate if the time of the day has any impact on our
measurement results we perform our measurements twice for
each cloud instance, once during the day and once at night
time. Approximate time for the day measurement was around
noon and for night measurement was around midnight (PST).
For these measurements we used Iperf [6] to transmit data.

Table I and Table II give an overview of the average
throughput measurement from PlanetLab nodes to the com-
mercial cloud instances and research cloud instances, respec-
tively. As it can be seen from the results of serial mea-
surements row in Tables I and II, both the research cloud
testbed nodes and the commercial cloud service nodes perform
well without competing traffic with an average throughput
above the required threshold of 5 Mbps. Out of the cloud
instances we investigated, ORCA cloud instance performs best
without competing traffic yielding an average throughput of
110.22 Mbps followed by EC2 East Coast data center cloud
instance with 85.03 Mbps, EC2 West Coast data center cloud
instance with 36.24 Mbps, Rackspace cloud instance with
35.33 Mbps and then GENICloud instance with a mere average
throughput of 9.71 Mbps. We also note that there is not
much improvement in the average throughput for the nighttime
measurements and the order remains almost the same.

The parallel measurement row shown in Tables I and II pro-
vides results that are very different to the serial measurement
results described above. ORCA, Rackspace and GENICloud
instances yield a better average throughput during the parallel
measurement than EC2 cloud instances. ORCA, Rackspace
and GENICloud instances yield an average throughput of
17.2 Mbps, 14.12 Mbps and 7.68 Mbps respectively which
is greater than the threshold throughput of 5Mbps required
for our Nowcasting application. EC2 cloud instances yield an
average throughput of 3.14 Mbps and 1.24 Mbps for East and
West Coast data center, respectively, which is well below the
threshold throughput of 5 Mbps for our application.

The distributed measurement row in Tables I and II shows
that each of the cloud instances considered perform better
when only a subset of nodes are transmitting data in parallel.
As in the serial measurement scenario the average throughput
results from all the cloud instances are greater than the
threshold throughput of 5 Mbps. The ORCA cloud instance
performs better than the other three cloud instances with
an average throughput of 112.55 Mbps while the Rackspace
cloud instance provides an average throughput of 34.15 Mbps.
GENICloud instance provides an average throughput of 9.43
Mbps and EC2 cloud service provides an average throughput

of 32.46 Mbps and 9.99 Mbps in the East and West Coast data
centers, respectively. It can be observed from the measurement
results that GENICloud instance is the most consistent irre-
spective of the number of nodes and transmission scenarios
(serial, parallel, distributed) used.

C. Mobile Bandwidth

As mentioned in Section I, it is our overarching goal to
develop an architecture that allows the execution of on-demand
Nowcast algorithms in the cloud to provide short-term weather
forecasts to mobile devices. So far we have investigated
the network characteristics for data that is transmitted from
weather sensors to the cloud. Another important link in the
overall system is the network from an instance in the cloud to
the end user’s mobile device. In order to characterize that link
we performed an iperf measurement from a mobile device to
EC2 cloud data centers. For our measurement we make use
of a laptop that connects to the Internet via a 3G modem. We
perform the measurements in 3 different locations (at work,
at home and in the car traveling on a major highway) for
the duration of an hour. Similar to earlier measurements, we
perform this experiment in both East and West EC2 instances.
The results from the measurements are shown in Figure 2.

The measurement results show a surprisingly high variance
in throughput, from tens of Kbps (home) up to slightly over
1100 Kbps (car) in both measurements. In addition to the
high variance, it is somewhat surprising that the scenario in
which the highest and lowest throughput are obtained are
from a measurement performed while traveling in a car on a
highway. The huge differences in throughput lead to significant
differences in download time of the Nowcasting images from
the central web server in CloudCast. Based on the data from
this measurement we derive that for the highest throughput it
would only take 0.8 seconds to download the images while it
would take 35.8 seconds in the worst throughput case.

D. Summary

From our measurement, we conclude that the networking
capabilities of the cloud instances are sufficient for our real-
time Nowcasting application. We also infer that, the network
performance of research cloud testbeds are on par with that
of the commercial cloud services and can be used as a
test instance to execute the Nowcasting application without
incurring any additional cost.

The results from the mobile measurement show that the
throughput on a 3G wireless link is very volatile. This volatil-
ity can lead to the fact that the final Nowcast result is delivered
to a mobile client with an additional delay of up to 30 seconds.
This is a large delay considering the average data staging and
algorithm execution time is around 70 seconds (see Section V).

The measurement results presented in this paper can also
be used to verify which cloud services (either commercial or
research) offer sufficient network capacity for other applica-
tions that require a certain throughput. One example would
be a camera sensor network for security or monitoring for
which data are transmitted from a set of distributed cameras



TABLE I
SUMMARY OF AVERAGE THROUGHPUT OF ALL MEASUREMENTS IN COMMERCIAL CLOUD SERVICES

Measurement type Average (Mbps) Maximum (Mbps)
EC2 East EC2 West Rackspace EC2 East EC2 West Rackspace

Day Night Day Night Day Night Day Night Day Night Day Night
Serial 85.04 86.80 36.25 37.06 35.34 50.66 387.00 360.00 80.40 84.80 134.00 145.00

Parallel 3.15 4.28 1.25 1.06 14.12 12.46 4.87 10.80 10.40 11.20 74.00 43.90
Distributed 32.46 35.26 10.00 9.98 34.16 32.81 240.00 245.00 44.20 64.20 118.00 105.00

TABLE II
SUMMARY OF AVERAGE THROUGHPUT OF ALL MEASUREMENTS IN RESEARCH CLOUD TESTBEDS

Measurement type Average (Mbps) Maximum (Mbps)
GENICloud ORCA GENICloud ORCA

Day Night Day Night Day Night Day Night
Serial 9.744 9.92 110.22 115.40 52.70 53.00 760.00 764.00

Parallel 7.36 8.46 17.20 41.19 32.80 51.10 48.10 417.00
Distributed 9.43 9.89 112.55 98.53 52.10 52.00 626.00 631.00

TABLE III
PERCENTAGE OF PLANETLAB NODES WITH THROUGHPUT BELOW 5MBPS THRESHOLD.

Measurement type EC2 East EC2 West Rackspace GENICloud ExoGENI
Day Night Day Night Day Night Day Night Day Night

Serial 12.9% 14.5% 12.5% 18.7% 18.7% 15.6% 15.6% 14.6% 9.8% 8.2%
Parallel 100% 68.8% 100% 97.3% 48.8% 17.7% 22.2% 15.5% 17.7% 24.4%

Distributed 12.6% 16.6% 21.8% 35.9% 15.6% 15.6% 17.1% 15.6% 5.7% 13.4%
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Fig. 2. Mobile Device to EC2 Bandwidth Measurement

to a central processing node. Assuming the processing would
be performed on one of the cloud instances investigated in
this paper and the minimum throughput requirement for a
single camera stream is known one can simply use the results
presented in this paper to determine which scenarios and cloud
instances can support such an application.

V. NOWCASTING CASE STUDIES

In the previous section, we investigated the network fea-
sibility of commercial and research cloud services for our
CloudCast application. In this section, we present case studies
of cloud-based Nowcast generation for two weather scenarios
and study the prediction accuracy based on the metrics de-
scribed in Section III-C. We also investigate how insufficient
resources impact Nowcast prediction accuracy.

A. Weather Data

Since the performance of the Nowcasting algorithm may
be affected by the type of weather, we have selected two
very different cases to evaluate the performance of a Nowcast
algorithm that runs in the cloud. The first case from May
10th, 2010 depicts a supercell thunderstorm forming in the

CASA radar domain, strengthening as it moves ENE. This
storm went on to produce an EF4 tornado in the city of
Norman, OK shortly after it exited the field of view of the
radars. Supercells tend to be discrete; They rob moisture
from their surroundings and precipitation is contained in a
relatively small area. The intense forces of a supercell may
also result in non-linear movement over time, deflecting right
or left as the storm reaches the upper levels of the atmosphere
and is affected by the coriolis force. Additionally, supercells
generally have slower movement than other types of storms.
From the perspective of Nowcasting, the slower movement
may lead to reduced spatial error, however it is partially
balanced by the difficulties predicting non-linear trajectories.

The second case from May 19th 2010 was a squall line
moving west to east across the domain. Squalls are fast
moving, long lived, elongated areas of precipitation. They may
stretch hundreds of miles and reach forward speeds of 100
MPH in rare cases. Squalls do not generally produce large
tornadoes as do supercells, but are known to cause weak spin-
ups and straight line wind damage. In this specific case, winds
were measured at approximately 60 MPH, which qualifies



TABLE IV
NOWCAST ALGORITHM EXECUTION TIME.

Instance Type Memory (GB) Disk (GB) Cost/hr ($) Total Cost ($) Exec. Time (Sec)
EC2 Large 7.5 850 0.34 1.13 74.34

EC2 X-Large 15.0 1690 0.68 2.17 73.77
EC2 High Memory X-Large 17.1 420 0.50 1.63 55.90

EC2 High Memory Double X-Large 34.2 850 1.00 3.54 55.40
Rackspace Large 8.0 320 0.48 1.63 96.53

Rackspace X-Large 15.5 620 0.96 3.22 96.80
Rackspace Double X-Large 30.0 1200 1.8 5.39 96.38

GeniCloud 8.0 20 - - 67.45
ExoGENI 8.0 20 - - 56.83

as low-end severe. As squalls are associated with larger air
masses, the movement tends to be linear and is thus easier to
model, however the fast advection speeds can lead to enhanced
spatial errors if network or computation latency is introduced.

We used these canned weather data sets for our analysis de-
scribed in the following sections. The use of identical data sets
is necessary to allow for a valid comparison of the performance
of different cloud service, since individual weather events can
be very different and thus the computational requirements of
Nowcasting. In Section VI, we will present results from an
experiment where live data is used.

B. Cost and Computation Time

In this section, we discuss the measurement procedure to
calculate the cost and computation time of the Nowcasting op-
eration for one hour of weather data described in Section V-A
with various instance types offered by Amazon EC2 and
Rackspace cloud services. We also calculate the computation
time of the Nowcasting operation for the same weather data
with the instances offered by GENICloud and ExoGENI
research cloud services. As mentioned in Section III-B, we use
DiCloud as an interface to start the instances, attach storage,
and calculate cost of operation for Nowcasting in EC2 cloud
service. For each of the EC2 instance types in Table IV,
DiCloud is used to bring up the instances with the Nowcasting
image, attach EBS storage and start the ingest of weather
data from the radars. Once the cloud-based Nowcast instance
receives the first set of radar scans, it starts to generate 1-to-15
minute Nowcasts which are stored in EBS.

We have carried out this operation for one hour of weather
data and with DiCloud’s cost tracking mechanism (see Sec-
tion III-B) we determine the cost for running this 1-hour
Nowcast operation. In addition, the execution time for 15
minute Nowcasting of each weather data from the radar in the
EC2 instances is measured and the mean is calculated over
the whole 1-hour interval. We carry out the same operation
on other EC2 instance types and show the results in Table IV.
As it can be seen from Table IV, the computation time for
Nowcasting on EC2 cloud service decreases as the instance
types selected becomes larger and more expensive. The last
column in Table IV shows that, the execution time of the 15-
minute Nowcast algorithm decreases by ∼ 30% by executing
it on a high-performance instance while the cost almost triples.
Thus, choosing an appropriate EC2 instance for executing a
Nowcast is a trade-off between faster execution time and cost.

Similar to EC2 cloud service, Rackspace commercial cloud
service also offers different types of instances as shown in
Table IV. We carried out the Nowcasting operation on each
of the Rackspace instance types mentioned in Table IV for
one hour of weather data and calculated the computation time
taken by the Rackspace instances to generate Nowcasts for the
weather data. We also noted the cost for Nowcasting operation
on Rackspace cloud instance using the web interface offered
by Rackspace which allows the users to keep track of their
instances.

As it can be observed from Table IV, the computation
time taken by Rackspace cloud instances is about 96.50 secs
on average to generate 15-minute Nowcasts. Comparing the
computation time taken by the two commercial cloud instances
(EC2 and Rackspace) to generate 15-minute Nowcasts, it
can be seen that the computation time taken by EC2 cloud
instances are lesser than those taken by Rackspace cloud
instances. Another interesting result shown in Table IV is that
with high performance instance types in EC2, the computation
time decreases, while the computation time remains about the
same on Rackspace cloud service. This observation shows that
it might not be beneficial to pay more for high performance
instances on Rackspace for computation intensive applications.

We also performed the computation time analysis on re-
search cloud service (GENICloud and ExoGENI) instances
for the same weather data used to analyze the computation
time of commercial cloud services. The result from our
analysis is presented in Table IV. Both the research cloud
services offer only one type of instance which is sufficient for
the standard operation of Nowcasting application. From the
computation time results presented in Table IV for GENICloud
and ExoGENI instances, it can be seen that both the research
cloud instances take less time (67.45 secs and 56.83 secs
respectively) to compute 15-minute Nowcasts compared to the
EC2 and Rackspace cloud instances (74.34 secs and 96.53 secs
respectively) of the same characteristics. It can also be noted
that, ExoGENI research cloud instance is the fastest instance
to compute 15-minute Nowcasts in just 56.83 secs compared
to any of the other cloud instances considered.

C. Data Aggregation

The results from the measurements described in Section IV
shows that the link capacity from the radar nodes and the cloud
instances is not always feasible for our Nowcasting operation
with certain link throughput always lower than the threshold
throughput of 5 Mbps (See Table III). One way to encounter



TABLE V
NOWCAST ALGORITHM EXECUTION TIME FOR LIVE MEASUREMENT

Instances Memory (GB) Disk (GB) Exec. Time (s) Total Time (s)
EC2 7.5 850 71.98 95.08

Rackspace 8 320 102.48 120.33
GeniCloud 8 20 67.37 78.60
ExoGENI 8 20 56.10 72.07

for the link capacity limitations between the radar nodes and
the cloud is to reduce the amount of data through aggregation.
In this section, we look at a very simple, lossy aggregation
method to reduce the amount of data that has to be transmitted
between the radars and an instance in the cloud. The method
takes a standard radar moment data file and down-samples it
to a specified amount. The down-sampling simply merges a
specified number of gates in a radial. For example, a down-
sampling factor of two averages two gates into one and, thus,
reduces the file size and the required bandwidth for real-time
transmission by a factor of two. Figure 3 shows an example
where this aggregation method is applied to single radar data.
We observe that even with a relatively high aggregation rate
(75% in Figure 3(c)) the visible degradation is marginal.

To analyze the impact of lossy data aggregation with an
objective metric, we use FAR, POD, and CSI, described in
Section III-C. In the next section, we analyze the impact of
lossy aggregation for our two weather scenarios.

D. Lossy Prediction

We now look into Nowcast prediction accuracy from the
aggregated radar data for the two weather scenarios explained
in Section V-A. We compare the scores of the 15-minute
Nowcast data for the aggregated data with that of the non-
aggregated data for the two weather scenarios in the following.

Figures 4(a), 4(b) and 4(c) show the POD, FAR and CSI
respectively for the 15-minute Nowcasts generated for weather
data collected on May 19th 2010. Similarly, Figures 5(a), 5(b)
and 5(c) shows the POD, FAR and CSI respectively for the 15-
minute Nowcasts generated for weather data collected on May
10th 2010. The metrics are calculated for Nowcasts generated
for weather data aggregated up to 128 gates. From the two
weather scenarios presented in the Figures, we can infer that
the reduction in prediction accuracy is minimal due to radar
data aggregation up to 32 gates. From the CSI or threat scores
for the two scenarios, we observe that for an aggregation
factor of 32 gates, the prediction scores are similar to the
non-aggregated radar data, while further aggregation degrades
prediction accuracy. Our observation allows us to aggregate
radar data up to 32 gates for those radars whose link bandwidth
is below threshold, and still maintain high prediction accuracy.

VI. LIVE MEASUREMENT

In this section, we present the results from a live, end-to-
end measurement that was performed with our own radar on
campus as a proof-of-concept for our CloudCast application.

We carried out a live measurement on each of the cloud
instances considered to calculate the overall time taken for
the Nowcasting process from the time data is generated by the

radar, transmitted to the instance executing the algorithm, gen-
erating 15-minute Nowcast images and sending the predicted
images to a central web server to be used by clients. The
overall duration of the sum of the individual steps mentioned
above determines how much time a user has between when
a severe weather situation is indicated by the Nowcast and
when it actually occurs. Obviously, it is the goal to maximize
that time interval. For the live measurement analysis we used
the data from our own radar on campus which is a prototype
CASA radar [30]. Table V shows the result from the live
measurement carried out on the cloud instances. The average
overall time taken for the whole Nowcasting process was
about 95.08 seconds for the EC2 cloud instance, out of which
71.98 seconds were consumed by the generation of 15-minute
Nowcasts by the algorithm running on the cloud instance.
This means, it takes about 23.10 secs for the data to be sent
from the radar to the receiving instance, create the predicted
images and transfer the images back to the central server to
be accessible by clients. Similarly, the total time taken for
the whole Nowcasting process on Rackspace, GENICloud and
ExoGENI cloud instances is 120.33, 78.60, 72.07 seconds,
respectively. The overall time taken for the whole Nowcasting
process on ExoGENI cloud instance is much lower than the
time taken on the other cloud instances considered which is
also the case for the time taken only for the generation of
15-minute Nowcasts as explained in the Section V-B.

Figure 6 shows the POD, FAR and CSI metrics (defined
in Section III-C) calculated for the live weather data analysis
carried out on each of the cloud services. The difference in
the values for each cloud instance is due to the different
weather that occurred during each live measurement. Since we
performed the measurement for each cloud instance at different
points in time atmospheric condition can be quite different.
In summary, we demonstrated with this live measurement
the potential and feasibility of performing short-term weather
forecasts for mobile devices in the cloud. From the timing
analysis we found that, for 15-minute Nowcasting it takes only
approximately 2 minutes to generate the Nowcast images and
disseminate it to the client, which leaves the clients with 13
minutes to take any necessary action based on the 15-minute
prediction.

VII. RELATED WORK

A substantial amount of research has been carried out to
investigate the feasibility of running scientific applications
in commercial clouds such as Amazon’s AWS. Hazelhurst
examines the performance of the bioinformatics application
WCD [20]. Deelman et al. provide details of performance and
storage costs of running the Montage workflow on EC2 [18].
The High-Energy and Nulclear Physics (HENP) STAR exper-
iment has examined the costs and challenges associated with
running their analysis application in the EC2 cloud [24], [25].
Ramakrishnan et al. have examined the usefulness of cloud
computing for e-Science applications [32], [29]. In addition,
standard benchmarks have also been evaluated on Amazon
EC2. Rehr et al. show that Amazon EC2 is a feasible platform



(a) Non-aggregated radar data (b) 50% aggregated radar data (c) 75% aggregated radar data

Fig. 3. Example for simple, lossy radar data aggregation
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(c) Critical Success Index (CSI)

Fig. 4. Nowcasting analysis with various aggregation factor for weather data from May19th 2010.
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Fig. 5. Nowcasting analysis with various aggregation factor for weather data from May10th 2010.
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Fig. 6. Nowcasting analysis with live weather data on each of the cloud services.

for applications that do not need advanced network perfor-
mance [33]. Wang et al. [37] study the impact of virtualization
on network performance in the cloud. Ramakrishnan et al. per-
form a comprehensive comparison of the performance of EC2
with HPC platforms, using real applications representative of
the workload at a typical supercomputing center [22].

The Nowcasting algorithm used in this paper is based on the
Nowcasting system operating in the CASA Distributed Collab-
orative Adaptive Sensing network. [35], [36] provide details
on the Dynamic and Adaptive Radar Tracking of Storms
(DARTS) Nowcasting method. The DARTS Nowcasting falls

under the area-based Nowcasting methods which estimate a
motion vector field over the entire radar coverage domain.

Other examples of area-based Nowcasting methods are pre-
sented in Tracking of Radar Echoes by Correlation (TREC) by
Rinehart et al. [34], Growth and Decay Storm Tracker(GDST)
by Wolfson et al. [40], and McGill’s Algorithm for Precip-
itation Nowcasting by Lagrangian Extrapolation (MAPLE)
presented by Germann et al. [19].

To the best of our knowledge, the work presented in this
paper is the first to look into the feasibility of commercial and
research clouds for real-time application of weather forecast-



ing and the first work to introduce a mobile application for
short-term weather prediction in the cloud.

VIII. CONCLUSION

In this paper, we present CloudCast, a mobile application
for personalized short-term weather forecasting. CloudCast
uses instances from commercial and research cloud services
to execute a short-term weather forecasting application which
is based on a Nowcasting algorithm. We demonstrate the
network feasibility of using cloud services for our CloudCast
application by performing a series of measurements.

We also compare the compute feasibility of Nowasting in
the cloud with real weather data on various instance types
offered by cloud services. We calculate the computation time
and the cost to generate 15-minute Nowcasts in the cloud.
Our results show that computation time for generating 15-
minute Nowcasts reduces by ∼ 30% if executed on a high-
performance instance, but with an almost 300% higher cost
than a low-performance instance in EC2 cloud service. It can
be observed from the results that ExoGENI cloud service
provides lower computation time to generate 15-minute Now-
casts compared to other cloud services considered. We also
performed a live experiment with our CloudCast architecture
based on data from a weather radar that is located on our
campus. The results from our live measurement show a very
high prediction accuracy whereas the delay between data
generation at the radar to the delivery of 15-minute Nowcast
image to a mobile client is less than 2 minutes on average.

We have shown that commercial and research cloud services
are feasible for the execution of our real-time CloudCast
application. With this approach accurate, short-term weather
forecasts can be provided to mobile users. We believe that
CloudCast has the potential to support emergency managers
and the general public in severe weather events by promptly
providing them with potentially life-saving information.
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