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C L O U D  
C O M P U T I N G

CloudCast: Cloud Computing for 
Short-Term Weather Forecasts
CloudCast provides personalized short-term weather forecasts to clients based on their 
current location using cloud services, generating accurate forecasts tens of minutes in the 
future for small areas. Results show that it takes less than two minutes from the start of 
data sampling to deliver a 15-minute forecast to a client.

D edicating high-end servers for ex-
ecuting scienti!c applications that 
run intermittently, such as severe 
weather detection or generalized 

weather forecasting, wastes resources. The infra-
structure-as-a-service (IaaS) model used by 
today’s cloud platforms is well suited for the 
bursty computational demands of these appli-
cations. Clouds are emerging as the primary 
host platform for a variety of applications, such 
as DropBox, iCloud, and Google Music. These 
applications let users store data in the cloud and 
access it from anywhere in the world. Com-
mercial clouds are also well suited for renting 
high-end servers to execute applications that 
require computation resources sporadically. 
Cloud users pay only for the time they actually 
use resources and the data they transmit to and 
from the server, which has the potential to be 
more cost effective than purchasing, hosting, 
and maintaining dedicated hardware.

With this in mind, we present CloudCast, a 
new application for short-term, location-based 
weather prediction using cloud platforms. If se-
vere weather is approaching the user’s  location, 
CloudCast automatically sends personalized 

 noti!cations. To enable this functionality, 
CloudCast combines two major components. 
The !rst component is an algorithm that pro-
duces !ne-grained, short-term weather fore-
casts—called Nowcasting1,2—up to 15 minutes 
in the future for areas as small as 100 m2. Now-
casting has the potential to personalize severe 
weather alerts by programmatically transmit-
ting highly targeted, location-speci!c warnings 
to mobile devices based on their GPS coordi-
nates. The second component is a new architec-
ture that allows the execution of Nowcasting on 
cloud platforms, such as Amazon’s Elastic Com-
pute Cloud (EC2; http://aws.amazon.com/ec2). 
Nowcasting is compute-intensive, requiring 
high-memory systems for execution. Hence, 
we use cloud services to execute the Nowcast-
ing algorithm for our CloudCast application. 
Cloud computing platforms lower the cost of 
computation by leveraging economies-of-scale. 
Generating Nowcasts on a dedicated infra-
structure is economically infeasible due to its 
enormous computational demands, which scale 
quadratically with spatial resolution.

Thus, to understand the feasibility of host-
ing Nowcasting on cloud platforms, we ana-
lyze the network and computation capability of 
four different cloud services: two commercial 
cloud services (Amazon EC2 and Rackspace 
[www.rackspace.com]) and two research cloud 
 testbeds (the Global Environment for Net work 
Innovations’ GENICloud3,4 and ExoGENI 
[http://wiki.exogeni.net]). Commercial clouds 
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use the pay-as-you-use model, charging users 
for resource usage on an hourly basis. In con-
trast, research clouds such as GENICloud and 
ExoGENI cloud provide free resources for the 
research community. These research platforms 
offer additional advantages, beyond being free 
for the research community. First, researchers 
can use them to develop prototypes of scien-
ti!c cloud applications. Second, research clouds 
such as the ExoGENI allow for dynamic con-
!guration of the network topology within the 
cloud, a feature that isn’t provided by com-
mercial clouds. Finally, research clouds are 
often connected via next-generation research 
networks—such as the National LambdaRail 
(NLR) FrameNet (www.nlr.net/framenet.php) 
or Internet2 ION (https://geni-orca.renci.org/
trac/wiki/"ukes)—which allow the provision-
ing of dedicated, isolated network resources. 
The latter will help researchers better under-
stand how distributed applications that run 
in the cloud can bene!t from new network 
technologies.

The primary reason weather services cite 
for not leveraging the cloud is data staging 
costs. We evaluate these costs for the extreme 
case of Nowcasting, which requires real-
time radar data uploads to predict conditions 
tens of minutes in the future. Compared to 
most  cloud applications, CloudCast’s Now-
casting algorithm has stricter time constraints. 
Timely execution of the algorithm is critical, 
because the Nowcast data must be made avail-
able to end users before it becomes obsolete. 
For example, in a severe weather scenario, 
we can use Nowcast information to warn the 
public, as well as to guide spotters and other 
emergency management personnel. Because 
Nowcasting predicts weather only in the very 
near-term future, it’s important that the algo-
rithm produces results fast. For instance, if it 
takes 12 minutes to generate and disseminate 
a 15-minute Nowcast, that leaves just three 
minutes for users to take action.

Our hypothesis is that the connectivity and 
diversity of current cloud platforms mitigate 
the impact of Nowcasting’s staging data and 
computation latency, enabling the platforms to 
perform the atmospheric modeling and person-
alized weather forecasting required by Cloud-
Cast. In evaluating our hypothesis, we present 
the CloudCast architecture, which links weather 
radars to cloud instances, allowing the architec-
ture’s components to request computational and 
storage resources required to generate forecasts 

based on real-time radar data feeds as requested 
from clients. We emulate a radar network using 
PlanetLab sites and conduct extensive bandwidth 
measurements between each site and cloud in-
stances. We quantify average bandwidth and its 
variability to determine if the public Internet and 
today’s clouds are suf!cient for real-time Now-
casting. We also analyze the computation time 
and cost of Nowcasting in the cloud for instanc-
es offered by cloud services and demonstrate 
CloudCast live using a deployed prototype radar 
as a proof-of-concept.

CloudCast Architecture
To get a better sense of how our application 
works, let’s take a look at its architecture. Fig-
ure 1 shows the components of the CloudCast 
architecture: the meteorological command 
and control (MC&C), which controls the ra-
dars’ scanning; cloud instances, which are au-
tomatically initiated by the MC&C; and the 
Nowcasting short-term weather forecasting 
algorithm.

MC&C Architecture
MC&C5 is the control part of the Collaborative 
Adaptive Sensing of Atmosphere (CASA) net-
work that determines how the radars will scan 
the atmosphere in each 60-second heartbeat. 
The MC&C architecture considers these dif-
ferent factors to determine how to control the 
radars. For our CloudCast approach, we use the 
MC&C’s detection features. The algorithms 
detecting the existence and current location 
of precipitation are ingested into the MC&C’s 
blackboard architecture; it’s then able to clas-
sify the situation on multiple levels. On a high 
level, it differentiates between clear air, strati-
form rain, and convective regimes, and each 
regime has a set of tasks associated. In clear air 
mode, the need for computational resources 
diminishes, whereas convective mode has strict 
requirements for data collection and heavily 
utilizes computers and networks. Rain sensed 
by the radars will be detected by the MC&C’s 
algorithms; CloudCast then uses the informa-
tion to determine when to initiate Nowcasts 
in the cloud. Thus, cloud-based Nowcasts are 
automatically initiated and halted without user 
intervention.

Cloud Services
We chose four different cloud services to analyze 
the feasibility of executing short-term weather 
forecast applications.
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Commercial cloud services. Amazon’s EC2 is a 
cloud service that provides resizable compute 
capacity to execute applications on demand. 
EC2 provides on-demand resources with pric-
ing depending on the type of resources used and 
the duration of usage. The cost of using com-
mercial cloud services also depends on addition-
al factors, such as the amount of I/O performed 
and the amount of storage used — both of which 
can incur signi!cant costs for researchers using 
cloud resources. 

Rackspace Cloud is one of Amazon’s com-
petitors in the area of commercial cloud host-
ing. Rackspace offers services including cloud 
servers, cloud storage, and cloud-based website 
hosting. Cloud servers are available in eight dif-
ferent sizes (with respect to available RAM and 
disk space) and support a variety of operating 
systems.

Research cloud services. GENICloud3,4 is an open 
source research cloud testbed that’s based on 

PlanetLab’s Slice-Based Facility Architecture 
(SFA).6 The testbed supports the management 
of individual virtual machines (VMs) or VM 
clusters. GENICloud uses the Eucalyptus7 open 
source cloud platform as a base and federates it 
with SFA to provide a slice-based architecture to 
acquire cloud instances (VMs) as slivers.

ExoGENI cloud is a software framework and 
an open source cloud platform that lets users 
programmatically manage a controllable, shared 
substrate. The Open Resource Control Archi-
tecture (ORCA, which is ExoGENI’s control 
framework) helps provision virtual networked 
systems via secure and distributed management of 
heterogeneous resources over federated substrate 
sites and domains. ORCA lets users create global 
topologies of nodes connected via layer-2 QoS-
provisioned links. ExoGENI gives researchers 
more "exibility than other cloud services, be-
cause it lets them create their own network to-
pology for a compute cluster and choose between 
several geographically distributed clusters.

Figure 1. Overview of the CloudCast system architecture. The application is composed of meteorological 
command and control (MC&C), cloud instances, and the Nowcasting short-term weather forecasting 
algorithm.
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Nowcasting
Nowcasting1,2 refers to short-term (less than 
30  minutes) weather forecasting. The Now-
casting algorithm predicts high-impact weather 
events, such as "ood-producing rainfall, severe 
storms, and hail, in a speci#c region with suf-
#cient accuracy within a time frame such that 
appropriate actions can be taken to effectively 
mitigate the loss of life and property. Because 
Nowcasting is a short-term weather-prediction  
system, its applications include warning-decision  
support for detecting potentially severe weath-
er. Its performance is typically measured in 
terms of a categorical yes/no (such as rain/ 
no-rain) detection relative to a predetermined 
measurement threshold representative of a 
desired threat. This model of measuring per-
formance is well suited for our Nowcasting ap-
plication, because the Nowcasting algorithm’s 
ability to predict a suf#ciently high re"ectivity 
value in a given region is important for end-
user emergency decision support.

Measurements
Now that we have a better understanding of 
CloudCast’s architecture, let’s investigate the 
network feasibility of cloud services for Cloud-
Cast. As you can see in Figure 1, a potential 
bottleneck for the real-time operation of Now-
casting in the cloud is the link between the ra-
dars and the cloud instances.

To understand the network capability of 
cloud services for Nowcasting, we perform a 
series of measurements in a large-scale setting 
by replicating a distribution system that, at least 
on the network level, is similar to the Next-
Generation Radar (Nexrad) system. Kevin 
Kelleher and his colleagues8 give an overview 
on how data from Nexrads are disseminated by 
using the National Oceanic and Atmospheric 
Administration’s NOAANet backbone and 
Internet2. We perform our measurements in 
two different radar settings: one measurement 
emulates Nexrad radars and the other uses our 
four-node radar network that’s located in south-
western Oklahoma.5,9 Both Nexrad and CASA 
radars use Internet2 as their backbone network 
and thus have similar network settings. Because 
we don’t have access to Nexrad nodes for our 
measurement, we use PlanetLab,6 a global re-
search network that supports large-scale, dis-
tributed experiments. Previous work showed 
that radars generate data at a constant rate of 
roughly 5 megabits per second (Mbps).5 For the 
remainder of our analysis, we use 5 Mbps as the 

minimum required throughput between a radar 
node and the cloud instances to allow real-time 
data transmission for Nowcasting operation.

We conduct four different measurement 
scenarios to depict the network capabilities of 
cloud services considered for our Nowcasting 
application. We conduct a serial measurement 
where data are transmitted to cloud instances 
from each individual PlanetLab node (replicat-
ing Nexrad radars). We conduct this measure-
ment to verify how the cloud instances perform 
without any competing traf#c. We also con-
duct a parallel measurement, where data from 
all the PlanetLab nodes transmit data to a 
cloud instance at the same time. We perform 
this experiment to verify if the cloud instances 
can handle the large traf#c from all the Nexrad 
radars at once and still maintain the required 
minimum threshold throughput of 5 Mbps for 
our CloudCast application.

Because not all radar nodes around the coun-
try would transfer their data to one central in-
stance simultaneously, a more likely scenario 
is the case in which a particular geographic 
region’s radar nodes will transmit their data to 
a cloud instance that’s close to this subset of ra-
dar nodes. To investigate this scenario, we con-
ducted a distributed measurement where only 
10 PlanetLab nodes transmit data to a cloud 
instance in parallel.

The measurements explained so far consider 
data sent from the radar continuously, but in 
a real scenario, the data is sent in bursts ev-
ery minute. From the Nexrad data collected, 
we’ve seen that 7.5 Mbytes of data is sent from 
the radar every minute. Hence, we perform a 
bursty traf#c measurement to understand how 
the cloud services perform for bursty data sent 
from the radars. For our measurements, we use 
Iperf (http://iperf.sourceforge.net) to transit 
data from radar nodes to cloud instances.

Table 1 gives an overview of the average 
throughput measurement from Nexrad radar 
nodes (PlanetLab nodes) and CASA radar nodes 
to the commercial cloud instances and research 
cloud instances. To investigate if the location of 
the EC2 instance has an impact on throughput, 
we performed the measurement twice—once 
with an EC2 instance in a West Coast data cen-
ter and another in the EC2 East Coast data cen-
ter. The results of serial measurements for both 
the Nexrad radar nodes and CASA radar nodes 
in Table 1 show that both the research cloud 
testbed nodes and the commercial cloud service 
nodes perform well without competing traf#c, 
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with an average throughput above the required 
threshold of 5 Mbps.

Out of the cloud instances we investigated, 
the ExoGENI cloud instance performs best 
without competing traf!c, yielding an aver-
age throughput of 110.22 Mbps for the Nexrad 
radar links and 424.25 Mbps for CASA radar 
links. ExoGENI was followed by Amazon’s 
EC2 East Coast data center cloud instance with 
85.03 Mbps; the EC2 West Coast data center 
cloud instance with 36.24 Mbps; the Rackspace 
cloud instance with 35.33 Mbps; and, !nally, 
the GENICloud instance with a mere aver-
age throughput of 9.71 Mbps for Nexrad ra-
dar links. For the CASA radar links, the EC2 
West Coast instance performs better than the 
EC2 East Coast instance, but the average still 
remains above our required threshold through-
put of 5 Mbps for both radar links.

The parallel measurement rows for Nexrad 
and CASA radars shown in Table 1 provide 
results that are quite different from the afore-
mentioned serial measurement results. The 
ExoGENI, Rackspace, and GENICloud cloud 
instances yield a better average throughput 
during the parallel measurement than EC2 
cloud instances. ExoGENI, Rackspace, and 
GENICloud cloud instances yield an aver-
age throughput of 17.2, 14.12, and 7.68 Mbps, 
respectively, for Nexrad radar links, which 
is greater than the threshold throughput of 
5 Mbps required for our Nowcasting applica-
tion. EC2 cloud instance links to Nexrad radar 
nodes yield an average throughput of 3.14 Mbps 
and 1.24 Mbps for the East and West Coast 
data centers, respectively, which is well below 
the threshold throughput of 5 Mbps. CASA 
radar links to cloud instances perform better 

for  parallel measurements, as Table 1 shows, 
yielding an average throughput of more than 
5 Mbps for each cloud instance.

These cloud instances perform better when 
only a subset of nodes is transmitting data in par-
allel, as shown in the distributed measurement 
row for Nexrad radars in Table 1. As in the serial 
measurement scenario, the average throughput 
results from all the cloud instances are greater 
than the threshold throughput of 5 Mbps. The 
ExoGENI cloud instance performs better than 
the other three cloud instances, with an average 
throughput of 112.55 Mbps, while the Rackspace 
cloud instance provides an average through-
put of 34.15 Mbps. The GENICloud instance 
provides an average throughput of 9.43 Mbps, 
and the EC2 cloud service provides an average 
throughput of 32.46 and 9.99 Mbps in the East 
and West Coast data centers, respectively.

The results from the bursty traf!c measure-
ment experiment, where data are transmitted 
in bursts of 7.5 Mbytes every minute, yield an 
average throughput greater than the required 
threshold throughput of 5 Mbps for each of the 
cloud instances considered, for both Nexrad 
radar nodes and CASA radar links. Table 1 
summarizes the results from the bursty traf-
!c measurement. From our measurement, we 
conclude that the networking capabilities of the 
cloud instances are suf!cient for our real-time 
Nowcasting application. We also infer that the 
network performance of research cloud tes-
tbeds are on par with that of the commercial 
cloud services, and we can use them as a test 
instance to execute the Nowcasting applica-
tion without incurring any additional cost. Ad-
ditional data from our measurements can be 
found elsewhere.10

Table 1. Summary of average throughput of all measurements.*

 
 
Measurement 
type

EC2 
East 
Avg. 

(Mbps)

EC2 
West 
Avg. 

(Mbps)

 
Rackspace 

Avg. 
(Mbps)

 
GENICloud 

Avg. 
(Mbps)

 
ExoGENI 

Avg. 
(Mbps)

EC2  
East 
Max 

(Mbps)

EC2 
West 
Max 

(Mbps)

 
Rackspace 

Max 
(Mbps)

 
GENICloud 

Max  
(Mbps)

 
ExoGENI 

Max 
(Mbps)

Nexrad serial 85.035 36.248 35.335 9.744 110.22 387 80.4 134 52.7 760

Nexrad parallel 3.146 1.249 14.122 7.364 17.2 4.87 10.4 74 32.8 48.1

Nexrad 
distributed

32.463 9.995 34.159 9.434 112.55 240 44.2 118 52.1 62.6

Nexrad bursty 75.8 89.575 85.75 8.967 79.55 80.2 95.8 92.6 53.5 91.7

CASA serial 165.75 216.75 155.25 8.945 424.25 176 233 216 55.6 444

CASA parallel 46 64.575 102.75 7.965 163.75 47.9 77 144 35.71 179

CASA bursty 128.87 197.66 78.98 9.04 456.10 187.34 213 145 53.21 490

* CASA = Collaborative Adaptive Sensing of Atmosphere; EC2 = Elastic Compute Cloud; GENI = Global Environment for Network Innovations; 
and Nexrad = Next-Generation Radar.
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Nowcasting Analysis
Having investigated the network feasibility of 
commercial and research cloud services for our 
CloudCast application, we can present the cost 
and computation time analysis of cloud-based 
Nowcast generation on the cloud instances 
considered. As a proof-of-concept of our appli-
cation, we present the results of the live analysis 
performed with our own radar located on our 
campus. We also perform an analysis that com-
pares the cost of running Nowcast in the cloud 
to the cost of using dedicated hardware.

Computation Time
Let’s consider the measurement procedure to  
calculate Nowcasting’s cost and computation  
time for one hour of weather data for the simi-
lar instance types offered by Amazon EC2 and  
Rackspace cloud services. We also calculate 
Nowcasting’s computation time for the same 
weather data with the instances offered by 
GENICloud and ExoGENI research cloud 
services. The weather data used was collected 
during a severe weather event in May 2011.

For each of the cloud services mentioned in 
Table 2, we bring up the instances with the Now-
casting image and start the ingest of weather data 
from the radars. Once the cloud-based Nowcast 
instance receives the !rst set of radar scans, it 
starts to generate 1- to 15-minute Nowcasts, 
which are kept on the instance’s storage. We car-
ry out this operation for one hour of weather data 
and determine the cost for running this 1-hour 
Nowcast operation using the cost-tracking ser-
vices provided by Amazon EC2 and Rackspace in 
their instance-management console. In addition, 
the execution time for 15-minute Nowcasting of 
each weather data from the radar in the cloud in-
stances is measured and the mean is calculated 
over the whole 1-hour interval.

As Table 2 shows, to generate 15-minute Now-
casts on the commercial cloud services, EC2’s 
average computation time is 74.34 seconds and 
Rackspace’s average is 96.53 seconds. The boot-
up time of the instances is approximately 7 min-
utes on average for both EC2 and Rackspace. 

Hence, generating the !rst 15-minute Nowcast 
takes about 8 minutes and 14 seconds for EC2 and 
8 minutes and 36 seconds for Rackspace, whereas 
the subsequent 15-minute Nowcast generation 
takes only about 74 and 96 seconds for EC2 and 
Rackspace, respectively. Comparing their cost 
versus computation time to generate 15-minute 
Nowcasts, we see that EC2’s computation time 
and cost is less than that of Rackspace.

We also perform the computation time anal-
ysis on the research cloud service instances 
with GENICloud and ExoGENI for the same 
weather data used to analyze the computation 
time of commercial cloud services. Table 2 
shows the results of our analysis. Both research 
cloud services offer only one type of instance, 
which is suf!cient for the standard operation of 
Nowcasting application. As Table 2 shows, both 
research cloud instances take less time (67.45 
and 56.83 seconds, respectively) to compute 
15-minute Nowcasts than EC2 and Rackspace. 
ExoGENI computes the 15-minute Nowcasts 
the fastest (just 56.83 seconds), and the boot-
up time for GENICloud and ExoGENI cloud 
instances are about 2 minutes on average com-
pared to 7 minutes for EC2 and Rackspace.

As a proof-of-concept for our CloudCast ap-
plication on cloud services, we carry out a live 
measurement on each of the four cloud instances 
to calculate the overall time taken for the Now-
casting process—that is, data is generated by the 
radar, the data is transmitted to the instance ex-
ecuting the algorithm, the 15-minute Nowcast 
images are generated, and the images are sent 
to a central webserver to be used by clients. The 
overall duration of the sum of the individual steps 
determines how much time a user has between 
when a severe weather situation is indicated by 
the Nowcast and when it actually occurs. Obvi-
ously, the goal is to maximize that time interval.

For the live measurement analysis, we use 
the data from our own radar on campus, which 
is a  prototype CASA radar.9 The last column 
in  Table 2 shows the results from the live mea-
surement carried out on the cloud instances. 
The average overall time taken for the whole 

Table 2. Nowcast algorithm execution time for live measurement.

 
Instances

Memory 
(Gbytes)

Disk 
(Gbytes)

Cost/hour 
(US$)

Total cost 
(US$)

Execution 
time (s)

Total  
time (s)

Amazon EC2 7.5 850 0.34 1.13 74.34 95.08

Rackspace 8 320 0.48 1.63 96.53 120.33

GENICloud 8 20 – – 67.45 78.60

ExoGENI 8 20 – – 56.83 72.07
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 Nowcasting  process was about 95.08 seconds for 
the EC2 cloud instance, of which 71.98 seconds 
is consumed in generating 15-minute Nowcasts 
by the algorithm running on the cloud instance. 
Thus, it takes about 23.10 seconds for the data 
to be sent from the radar to the receiving in-
stance, create the predicted images, and transfer 
the images back to the central server to be ac-
cessible by clients. Similarly, the total time taken 
for the whole Nowcasting process on Rackspace, 
GENICloud, and ExoGENI cloud instances is 
120.33, 78.60, and 72.07 seconds, respectively.

Thus, with our live measurement for the po-
tential and feasibility of performing short-term 
weather forecasts for mobile devices in the 
cloud, we found that, for 15-minute Nowcast-
ing, it takes only approximately two minutes 
to generate the Nowcast images and dissemi-
nate them to the client. That gives the clients 
13 minutes to take any necessary action based 
on the 15-minute prediction. Additional infor-
mation on Nowcasting accuracy on cloud ser-
vices can be found elsewhere.11

Operation Costs
To better understand the operating cost of 
weather forecast models and the advantages of 
moving the forecasting to the cloud, here we 
provide a brief analysis of the forecasting cost.

In the spring of 2011, the CASA Engineer-
ing Research Center operated a four-radar net-
work in southwest Oklahoma. From 2 April 
to 15 June 2011, an intensive operation period 
(IOP) was de"ned for a total of 75 days (1,800 
hours), representing the climatological peak 
season for thunderstorms. During this time, 
the network, covering 10,300 square kilometers, 
had ongoing convective precipitation for ap-
proximately 90 hours, or 5 percent of the IOP. 
Several of  CASA’s derived products, including 
multi- Doppler winds and 15-minute re#ectivity 
Nowcasting, are useful only during these events 
because X-band Radars aren’t able to deter-
mine winds in clear air, and Nowcasting algo-
rithms don’t predict convective initiation. Our 
 approach was to dedicate individual computers 
to each product despite the 95 percent idle rate 
and frequent over-provisioning during smaller 
scale and weaker events. The machines needed 
to process the data in a timely manner were pur-
chased in 2011 and cost more than US$4,000 
dollars each, not including IT overhead expens-
es associated with their management.

As a result of this experience, we looked 
into the IaaS cloud model, a more ef"cient 

compute-cloud-based architecture designed 
to procure computing resources on demand 
in an automated fashion. A lightweight com-
mand-and-control server differentiates be-
tween clear-air, stratiform rain and convective 
regimes, and issues Java-based in-line spot re-
quests to Amazon EC2. Disk images precon-
"gured with various processing algorithms are 
uploaded in advance, triggered, and released 
as weather enters and exits the radar domain. 
The routines responsible for triggering more 
resource-intensive algorithms are integrated 
on-board the radar and require no addition-
al maintenance or overhead. These include 
re#ectivity thresholding (RT) and storm-
cell identi"cation and tracking (SCIT) with 
 local radar data, as well as external monitor-
ing routines, such as XML-based RSS feeds, 
for Weather Forecast Of"ce (WFO) watches  
and warnings.

Based on current spot prices for machines 
similar to those used in the 2011 IOP (45 cents/
hour), 90 hours of active use would cost about 
$40 per product, plus $2 per user to stream the 
resultant data out of the cloud. This represents 
signi"cant cost savings over the dedicated com-
pute model, assuming a "ve-year lifecycle. In 
addition to computing, long-term data stor-
age of the radar data is another substantial 
cost. The 90 hours of moment data containing 
storms from four radars—combined with the  
derived merged products—amounts to  roughly 
700 Gbytes for the IOP. Current rates of 
10 cents per gigabyte per month yield ongoing 
$70/month costs to keep this data online. Disk 
arrays are expensive to purchase and main-
tain, and the cloud storage model appears to be 
cheaper, although it has fewer advantages than 
the computing model.

W e’ve shown that commercial 
and research cloud services are 
feasible for the execution of 
our real-time CloudCast ap-

plication and can provide accurate, short-term 
weather forecasts to end users. We believe that 
CloudCast has the potential to support emer-
gency managers and the general public in se-
vere weather events by promptly providing 
them with potentially life-saving information. 
In the future, we would like to build a proto-
type of our architecture in collaboration with 
cloud services to run Nowcasting on demand 
for a longer experimentation. 
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