
1

Preventing Occupancy Detection from Smart Meters
Dong Chen, Student Member, IEEE, Sandeep Kalra, Student Member, IEEE,

David Irwin, Member, IEEE, Prashant Shenoy, Fellow, IEEE, and Jeannie Albrecht Member, IEEE
University of Massachusetts Amherst †Williams College

Abstract—Utilities are rapidly deploying smart meters that
measure electricity usage in real-time. Unfortunately, smart
meters indirectly leak sensitive information about a home’s
occupancy, which is easy to detect because it highly correlates
with simple statistical metrics, such as power’s mean, variance,
and range. To prevent occupancy detection, we propose using
the thermal energy storage of electric water heaters already
present in many homes. In essence, our approach, which we call
Combined Heat and Privacy (CHPr), modulates a water heater’s
power usage to make it look like someone is always home. We
design a CHPr-enabled water heater that regulates its energy
usage to thwart a variety of occupancy detection attacks without
violating its objective—to provide hot water on demand—and
evaluate it in simulation using real data. Our results show that a
standard 50-gallon CHPr-enabled water heater prevents a wide
range of state-of-the-art occupancy detection attacks.

Index Terms—Data Privacy, Internet of Things, Smart Grids

I. INTRODUCTION

Utilities are rapidly replacing existing electromechanical
meters, which are read manually once a month, with smart
meters that transmit a building’s electricity usage every few
minutes. In 2011, an estimated 493 utilities in the U.S. had
collectively installed more than 37 million smart meters [1].
Unfortunately, smart meters also indirectly leak private, and
potentially valuable, information about a building’s occupants’
activities [2], [3], [4], [5]. To extract this information, third-
party companies are now employing cloud-based, “big data”
platforms to analyze smart meter data en masse [6], [7], [8].

While the purpose is, ostensibly, to provide consumers
energy-efficiency recommendations, companies are mining
the data for any profitable insights. For example, detecting
power signatures—sequences of changes in power unique to a
device—for specific appliance brands could aid manufacturers
in guiding their marketing campaigns, e.g., identifying homes
with GE versus Maytag appliances [6]. Many utilities are
providing third-party companies access to troves of smart
meter data. For instance, a recent report highlights one utility’s
practice of requiring its customers to consent to sharing their
data with third parties before permitting them to use an online
web portal [9]. Such privacy violations have led to a small,
but growing, backlash against smart meter deployments [10].

An important example of simple and private information
that smart meters leak is occupancy—whether or not someone
is home and when. Tech-savvy criminals are already exploit-
ing similar types of unintentional occupancy leaks, e.g., via
publicly-visible online calendars and Facebook posts [11],
to select victims for burglaries. In addition, occupancy may
also indirectly reveal private information that is of interest to
insurance companies, marketers, potential employers, or the

government, e.g., in setting rates, directing ads, vetting an
applicant’s background, or monitoring its citizens, respectively.
Such information could include whether a home’s occupants:
i) include a stay-at-home spouse, ii) maintain regular working
hours and daily routines, iii) frequently go on vacation, or iv)
regularly eat out for lunch or dinner.

As recent work demonstrates [12], [13], launching attacks
that extract occupancy from smart meter data is surprisingly
easy, since occupancy highly correlates with simple statistical
metrics, such as power’s mean, variance, and range. Intuitively,
users’ interaction with electrical devices, e.g., turning them
on and off, lends itself to straightforward attacks that detect
changes in these metrics and associates them with changes in
occupancy. Prior work [12], [13] has observed the correlation
between occupancy and power across many different homes.

Prior research proposes techniques to thwart privacy attacks
on smart meter data [14], [15], [3], [5]. Broadly, these tech-
niques use chemical energy storage, in the form of batteries,
to power, or absorb, a fraction of a building’s total load,
thereby changing the pattern of external grid power usage the
smart meter records. By carefully controlling when batteries
charge and discharge, the techniques aim to prevent detecting
appliance power signatures using sophisticated algorithms
for Non-Intrusive Load Monitoring (NILM) [16], [17], [18].
However, these prior approaches do not change the statistical
properties, e.g., high mean power, variance, and range, that
imply occupancy, and are not designed to prevent occupancy
detection. Thus, new techniques are necessary.

To address the problem, we propose Combined Heat and
Privacy (CHPr), which regulates thermal, rather than chemical,
energy storage to make it look like someone is always home.
In this paper, we integrate CHPr functionality into the electric
water heaters already found in many homes. Water heaters
effectively serve as thermal energy storage devices that CHPr
can control to mask occupancy. In particular, we design
a CHPr-enabled water heater with the goal of preventing
occupancy detection without running out of hot water. CHPr is
inspired by Combined Heat and Power [19], which leverages
the waste heat produced from generating electricity for heating
buildings. Our hypothesis is that a CHPr-enabled water heater
is capable of regulating its power usage to prevent occupancy
detection while still providing hot water on demand. In eval-
uating our hypothesis, we make the following contributions.

Design Alternatives. We outline the design alternatives for
preventing occupancy detection, including using both chemical
and thermal energy storage, from smart meter data. In doing
so, we review a wide range of sophisticated occupancy detec-
tion attacks based on thresholding [13], k-Nearest Neighbors,
Hidden Markov Models, and Support Vector Machines [12].
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CHPr-enabled Water Heater. We present the design of
our CHPr-enabled water heater and its algorithm for regulating
energy usage to prevent occupancy detection without running
out of hot water. Our approach combines multiple techniques
to accomplish this goal: it i) uses partial demand flattening
to eliminate a large majority of power variations, ii) injects
artificial power signatures to obscure the relationship between
occupancy and high, variable demand, and iii) adjusts its
operation based on home activity patterns.

Implementation and Evaluation. We experiment with
a CHPr-enabled water heater in simulation by quantifying
its effectiveness using data from a prototype home and a
real water heater. We show that CHPr-enabled water heaters
reduce the accuracy of the occupancy detection attacks above.
As one example, CHPr decreases the Matthews Correlation
Coefficient—a standard measure of a binary classifier’s overall
performance—of a threshold-based attack on the home’s smart
meter data by a factor of 10 (from 0.44 to 0.045). In addition,
we also show that, even though CHPr was not designed to
prevent Non-Intrusive Load Monitoring (NILM) [16], [18], it
actually outperforms prior battery-based techniques at reduc-
ing the accuracy of a state-of-the-art NILM algorithm without
requiring the use of expensive batteries.

II. BACKGROUND

We assume a building equipped with a smart meter that
records average power P (t) over a sampling interval T ,
yielding a time-series of power values. Today’s newer utility-
grade smart meters support sampling intervals from one to
five minutes, while older meters support fifteen minutes to an
hour. Thus, we focus on preventing occupancy detection from
smart meters with a one-minute sampling interval. Adapting
our techniques to higher resolution power meters, e.g., 1Hz
or greater, is future work. We represent occupancy as a
binary function O(t), over each sampling period t, where zero
represents an unoccupied home and one represents a home
with at least one person in it. Our work focuses on masking
occupancy to prevent inferring O(t) from P (t).

Since there is no general metric that applies to any possible
occupancy detection attack, we evaluate CHPr using a threat
model based on a wide range of sophisticated occupancy de-
tection attacks. These attacks are the focus of recent work [12],
[13] and have been shown to accurately detect occupancy
across a variety of homes. With the exception of the threshold-
ing attack, the attacks below require ground truth data to train
a classifier that learns an association between occupancy and
power. For the latter three attacks, we implement the attack
based on details from prior work [12].
Thresholding. The thresholding attack signals occupancy if
power’s mean, variance, or range exceeds some pre-defined
threshold [13]. In particular, we define an epoch length Tepoch,
and then compute power’s mean, variance, and range over each
epoch. In our experiments, we use 15 minutes as the epoch
length. Anytime one of the metrics exceeds a pre-defined
threshold, we record a potential occupancy point, resulting
in a series of points in time. We then cluster points to infer
occupancy over time, such that if two points are within a

time threshold, e.g., one hour, we consider the home occupied
during the interval between those points.
k-Nearest Neighbors. The k-Nearest Neighbors (k-NN) at-
tack uses a simple k-NN classifier. As above, the metrics
are power’s mean, variance, and range every 15 minutes. k-
NN effectively plots the training data in a three-dimensional
feature space with each point labeled as either occupied or
unoccupied. New data points are then classified based on
which label is most frequent among the k nearest points using
the Euclidean distance function. For our experiments, we set
k equal to one, such that we classify new points based solely
on the label of the nearest data point. As in prior work, we
implement the classifier in Matlab [12].
Support Vector Machines. As with k-NN, Support Vector
Machines (SVMs) plot the metrics in a three-dimensional
feature space with each point labeled as occupied or unoc-
cupied. However, linear SVMs compute a hyperplane that
best separates data points into their respective classes, e.g.,
by maximizing the distance between they hyperplane and the
nearest data point in any class. The separation effectively
assigns each region of the three-dimensional space as either
being occupied or unoccupied. The SVM then simply assigns
new data points based on which region of the space the point
resides in. To train our SVM we use libSVM [20] with a
Radial Basis Function (RBF) kernel and default parameters.
Hidden Markov Models. Finally, we use a simple Hidden
Markov Model (HMM) that associates hidden, e.g., unknown,
states with occupancy (0 for unoccupied and 1 for occupied)
and visible states with discretized levels of power consump-
tion. We characterize the HMM with two sets of probabilities
learned during training: transition and emission probabilities.
Transition probabilities characterize the probability of transi-
tioning from one value of the hidden state to another, while
emission probabilities indicate the probability of emitting a
particular power level given a particular occupancy state (0
or 1). During classification, the transition and emission prob-
abilities are used to assign values to the hidden states based
on power readings. We implement our HMM classifier using
Matlab’s built-in HMM functions. In contrast to the methods
above, HMM only uses average power every 15 minutes (and
not variance and range) for training and classification. As in
prior work [12], since our power readings are continuous and
HMMs require discretized power levels, we discretize power
by log-binning the training and test data into 20 bins.

A. Prior Work

Prior techniques propose to alter grid power usage by con-
trolling battery charging and discharging, called Battery-based
Load Hiding (BLH) [14], [15], [3], [5], to obscure smart meter
data. BLH techniques focus on preventing NILM [16], [18],
which analyzes changes in P (t) to compute a separate power
time-series pi(t) for each i = 1 . . . n appliances in a home.
While no BLH techniques have been explicitly designed to
prevent occupancy detection, we use existing BLH techniques
as “strawmen” for comparison, since NILM algorithms im-
plicitly provide occupancy information by revealing the usage
of interactive appliances, such as a microwave or television.
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(a) Original (b) NILL (c) LS2
Fig. 1. A threshold-based attack is effective at detecting occupancy in smart meter data (a) when altered by BLH techniques, such as NILL (b) or LS2 (c).

Thus, any technique designed to prevent NILM might also
prevent occupancy detection by preventing the detection of in-
teractive appliance activity. Since there are no prior techniques
to thwart occupancy detection, we choose techniques that
prevent NILM as our baseline for comparison. We describe
two representative examples of BLH below. As we show in
Section V, while CHPr does not explicitly focus on preventing
NILM, it effectively does so as a side-effect of preventing oc-
cupancy detection, outperforming the BLH techniques below
without requiring the use of expensive batteries.
Non-Intrusive Load Leveling or NILL [3] removes changes
in P (t) that reveal appliance power signatures by leveling,
or flattening, the home’s external grid demand recorded by
the smart meter. In essence, NILL charges batteries when
actual demand is below a target demand, and then discharges
batteries when it is above the target demand, to maintain
meter readings as near to the target as possible. Ideally,
demand is flat and always equal to the target demand, thereby
revealing only the home’s average power usage and nothing
else. Note that there is nothing in the design of NILL that is
specific to NILM (or any particular NILM algorithm): only
revealing a building’s average power would also effectively
prevent occupancy detection or any other information leakage.
Unfortunately, for practical battery capacities, NILL diverges
from this ideal. As we show, once NILL discharges its battery,
it can no longer alter grid demand. Since battery depletion
often occurs during the high demand periods that correlate
with occupancy, NILL does not prevent occupancy detection.
Lazy Stepping (LS) [5] is an improvement to NILL that
requires less battery capacity to obscure appliance power
signatures from NILM. The idea behind LS is that, rather than
flatten grid demand, it controls battery charging and discharg-
ing to transform demand into a step function that removes
the fine-grained changes in power claimed to be useful in
identifying appliances. However, as we show, LS does not
prevent occupancy detection: the periods of high demand that
strongly correlate with occupancy remain identifiable.

Figure 1 visually demonstrates the points above by show-
ing the performance of the thresholding occupancy detection
attack, even after demand has been altered by NILL and
LS2.1 The graphs overlay a home’s average power usage every
minute with the results of our occupancy detection attack for a
representative day in a real home. Figure 1(a) shows that, for
the unaltered demand, with the exception of two brief periods,
the attack’s predicted occupancy nearly exactly matches the

1LS2 is the best performing variant of LS [5].

Threshold KNN HMM SVM
Original (a) 0.44 0.17 0.51 0.37

NILL (b) 0.41 0.19 0.46 0.36
LS2 (c) 0.43 0.012 0.56 0.40

TABLE I
VALUES FOR THE MCCS OVER THE SAME WEEK AS IN FIGURE 5.

ground truth, where occupants are away from 8am to 4pm.
Figure 1(b) then shows the results of the same attack on de-

mand altered by NILL using a 6kWh battery, as in [3]. Despite
the altered demand, the attack is still able to accurately detect
occupancy. The NILL-altered demand demonstrates that, in
practice, battery capacity limitations prevent ideal demand flat-
tening that obscures occupancy detection. As expected, NILL
does not prevent the high demand periods that correlate with
occupancy, since it tends to deplete its battery during these
periods, eliminating the option to later discharge its batteries
to mask high demand. Of course, there exists a larger battery
capacity, such that NILL would completely flatten demand at
the average, thereby preventing occupancy detection. However,
6kWh of capacity2 already imposes an excessively high cost—
$708 per year amortized over a battery’s lifetime based on
recent cost estimates [21], which would increase an average
U.S. home’s annual electricity bill by roughly 50% [22].

Likewise, Figure 1(c) shows the results of the attack on
demand altered by the LS2 algorithm, which uses much less
battery capacity—0.5kWh in this case, as in [5]—than NILL.
As the graph demonstrates, with 0.5kWh of battery capacity,
LS2’s battery is simply too small to mask the periods of high
demand by discharging its battery. Instead, LS2 discretizes
demand to obscure the many small changes in power that
NILM might leverage to identify appliances. As Figure 1(c)
shows, due to the small capacity battery, demand altered by
LS2 retains the general shape of the original demand profile
including the periods of high, variable demand that indirectly
reveal the home’s occupancy status.

Table I quantifies the effectiveness of all of our attacks
over the same week as in Figure 5 by showing the Matthews
Correlation Coefficient (MCC) [23], a standard measure of
a binary classifier’s performance, where values are in the
range −1.0 to 1.0, with 1.0 being perfect detection, 0.0 being
random prediction, and −1.0 indicating detection is always
wrong. MCC values closer to 0.0, or random prediction, are
better for masking occupancy. The expression for computing

2Cost estimates are based on a commercially-available sealed AGM/VRLA
deep-cycle lead-acid battery designed for home solar panel installations.
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Fig. 2. Different options for masking occupancy, including i) demand flattening using both BLH (a) and thermal energy storage (b), ii) artificial power signature
injection (c), and iii) CHPr’s hybrid approach (d) that combines demand flattening and artificial signature injection to minimize its energy requirements.

MCC is below, where TP is the fraction of true positives, FP
is the fraction of false positives, TN is the fraction of true
negatives, and FN is the fraction of false negatives, such that
TP+FP+TN+FN= 1. The table shows that neither NILL nor
LS2 significantly lowers the MCC of the thresholding, HMM,
and SVM occupancy detection attacks. While LS2 reduces the
detection accuracy of the k-NN attack, the results show that
k-NN is the worst performing and most unsophisticated attack.

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(1)

Summary. Our results show that existing BLH techniques do
not prevent occupancy as a side-effect of attempting to prevent
NILM. In addition, any BLH technique wastes a significant
fraction of any energy it stores in its battery, due to energy
conversion losses. These losses are at least 20% of the stored
energy with existing battery and inverter technology [24]. The
insights above lead to CHPr’s approach, which leverages the
thermal energy storage in large elastic heating loads, such as
water heaters, to cheaply and efficiently mask occupancy. In
addition, since CHPr only reschedules energy a water heater
already consumes, it avoids conversion losses.

III. USING THERMAL STORAGE: DESIGN ALTERNATIVES

We consider the design alternatives for using thermal energy
storage to mask occupancy. Figure 2 highlights the differences
between BLH and thermal energy storage. BLH flattens grid
demand by controlling battery charging and discharging, such
that, in the ideal (although not in practice for reasonable
battery capacities), the smart meter always sees a steady,
flat power consumption level (depicted by T in Figure 2(a)).
Whenever the home’s demand rises above T , BLH discharges
its battery to provide the home additional power, rather than
drawing it from the grid. The approach thwarts occupancy
detection attacks by “clipping” any power usage above T ,
exposing a constant power usage to the smart meter that
effectively makes it look like no one is ever home.3

Thermal energy storage is also capable of flattening demand
in a similar manner, although it cannot “clip” power usage in
the same way as a battery, since it is incapable of discharging
general-purpose electricity, i.e., it cannot convert its heat back
into electricity. Instead, thermal energy storage can only flatten

3An occupancy detector may still detect occupancy if T is sufficiently high.

demand by raising grid power usage, e.g., by converting
electricity into heat, to its peak level (depicted by T ′ in
Figure 2(b)). In this case, the thermal storage device controls
its resistive heating elements to draw a variable amount of
power (above the normal power draw) to ensure that the total
power draw is always T ′. Thus, thermal energy storage is able
to thwart occupancy detection by “boosting” power usage such
that the home always draws a steady power T ′ from the grid.
The thermal device then stores the heat for later use.

Since the homes we monitor have a high peak-to-average
power ratio, raising power usage to the peak value T ′ requires
a substantial amount of energy, which in turn requires a
large amount of thermal energy storage capacity to make
use of the heat. To reduce the power necessary to mask
occupancy, thermal energy storage can also leverage artificial
power signature injection, which controls the thermal device
to inject “noise” that resembles real electrical loads in the
home (depicted in Figure 2(c)). By injecting fake signatures
that resemble real loads during low-power periods when no
one is home, the approach makes it appear that someone is
always home, which also thwarts occupancy detection, but
using less energy. As before, the thermal device stores its
heat for later use. As we describe in the next section, CHPr
leverages a hybrid approach (in Figure 2(d)) that combines
artificial signature injection with partial demand flattening,
such that it raises demand to an intermediate value T ′′ (below
the peak value T ′). Since partial demand flattening reveals
peaks above T ′′, CHPr only injects signatures larger than T ′′.

IV. A CHPR-ENABLED WATER HEATER

A standard tank-based residential water heater includes a
reserve tank with a cold-water inlet pipe at the bottom and a
hot-water outlet pipe at the top, since heated water naturally
rises to the top of the tank. Residential water heaters include
tanks that range in size from 30-100 gallons (equivalent to
113.6-378.5 liters, respectively) with heating elements ranging
from 3500W to 5500W. Importantly, a water heater’s average
total energy usage (and its thermal energy capacity) is a
significant fraction of an average home’s usage. For example,
a standard 50 gallon (or 189.3 liter), 4.5kW water heater that
runs for three hours each day consumes 13.5kWh [25], while
an average U.S. home consumes only ∼24kWh per day [22].

A typical water heater operates by always attempting to en-
sure that i) the tank is full and ii) the tank’s water temperature
is equal to an adjustable target temperature that is typically set



5

between 120F and 140F (or 48.9C to 60C). Thus, when hot
water is drawn from the tank, e.g., due to someone taking a hot
shower, the water heater refills the tank with cold water, and
then immediately begins heating it at maximum power until the
tank’s water reaches the target temperature. The temperature
of the intake water is usually in the range of 50F-60F (or
10C-15.6C), but is dependent on the climate. Water heaters
generally employ a tight guardband of 15F (or 8.33C), such
that if no hot water is drawn out, the water heater waits until
the water is, for example, 105F (or 40.6C) before reheating it
to the 120F (or 48.9C) target [26]. Since hot water rises, water
heaters often employ two heating elements and thermostats,
one at the top and bottom of the tank.

A CHPr-enabled water heater works by relaxing the opera-
tional requirements above and not always using the maximum
power to immediately heat intake water. As an example,
Figure 3 shows the power usage of a 50 gallon (or 189.3
liter), 4500W water heater over one day on the left y-axis.
The short regular bursts of power are due to maintaining
the water temperature within the 15F guardband, while the
longer periods of power usage stem from heating the cold
intake water that is replacing hot water drawn out of the
tank. The right y-axis shows the amount of available hot
water (at 120F), assuming ideal insulation where it takes
2.93x10−4kWh to raise 1lb (or 0.45kg) of water by 1F (or
0.56C). We then compute the amount of 120F (or 48.9C) hot
water by correlating the heater’s energy usage with a volume
of heated water. Figure 3 indicates that, on this day, the tank
never runs out of hot water. The figure also shows that the
water heater could heat at a slower constant rate (indicated
by the dotted red lines) using less than the maximum power
without ever running out of hot water. Rather than heat at a
slow constant rate, CHPr varies the heating element’s power
usage to partially flatten demand and inject artificial signatures,
while using the same amount of energy over the period.

To determine how fast it must heat water to prevent running
out, which dictates the energy it must consume over a given
period, CHPr tracks the amount of remaining hot (120F/48.9C)
water at the top of the tank and estimates the time until the
next significant use of hot water. Our current implementation
simply maintains an estimate of the average length t between
usage periods greater than 25 gallons (or 94.66 liters), or
roughly a single shower, and ensures that after a significant
usage period all the water is heated within t. While more
sophisticated methods for estimating t are possible, we did not
explore them since our simple method proved effective. Given
an energy budget and this time period estimate t, CHPr then
determines how much to partially flatten demand and inject
artificial signatures, as described below.
Partial Demand Flattening. Since a water heater does not
use enough energy to completely flatten demand at its peak,
CHPr employs a flattening threshold Pflat that only partially
flattens demand to a target level less than the peak demand.
To maintain Pflat at each t with current demand N(t), CHPr
consumes Pflat-N(t) whenever N(t) < Pflat. Since average
demand is typically much lower than peak demand, a low
flattening threshold is able to hide a large percentage of the
changes in power without using much energy.
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Fig. 3. A day’s power usage (black) for a 50 gallon (or 189.33 liter), 4.5kW
water heater, and the remaining hot (120F/48.9C) water in its tank (red).

Artificial Power Signature Injection. Partially flattening
demand still exposes changes in power that occur above the
threshold. To hide these changes, CHPr injects artificial power
signatures. Importantly, CHPr does not simply inject demand
randomly, since an attacker may be able to detect these random
or atypical patterns in smart meter data. Instead, CHPr replays
realistic power signatures. These power signatures are derived
from the home’s aggregate data, by storing, in a database,
sequences of the home’s power changes that occur above the
flattening threshold. CHPr also takes additional steps to ensure
artificial demand is difficult to discern from real demand. For
example, the power signature database includes attributes for
each signature, such as average power and duration. CHPr
then divides power signatures into categories based on their
attributes, e.g., small, medium, large and short, medium, and
long, and computes the fraction of signatures in each category.

We use this fraction to weight each category’s random selec-
tion, such that the artificial demand matches the breakdown of
real demand. In addition, to prevent attackers from detecting
repeated signatures, CHPr introduces some randomness into
the replayed signature by raising or lowering each point by
a small random amount, e.g., 0-5% of usage. To further
reduce its energy requirements, CHPr only injects signatures
when the home is unoccupied. Our premise is that injecting
artificial power signatures should not be necessary when a
home is occupied—-there is no need to make the data look
like someone is home when someone actually is home. When
the home is unoccupied, CHPr randomly selects signatures
from the database to inject and replay at an injection rate
equal to the rate at which the home generates power signatures
above the flattening threshold when occupied. Our prototype
explicitly tracks home occupancy by monitoring occupants’
GPS coordinates in real time via a smartphone application.

Finally, CHPr also adjusts its flattening threshold and rate
of artificial signature injection over time to match the expected
rate each period. Our premise is that there is no need to make
low-power nighttime periods look like high-power daytime
periods, or low-power weekdays look like high-power week-
ends. Instead, CHPr need only ensure these time periods look
the same with respect to each other, regardless of whether
a home is occupied or unoccupied. Thus, CHPr indexes its
power signature database based on each signature’s real time-
of-use. At any time, CHPr randomly selects from past power
signatures that occurred near that time, e.g., within an hour,
since typical power signatures in the morning, e.g., a coffee
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maker, are likely to be different from those in the evening, e.g.,
a TV. Indexing signatures by time is also important because
an attacker could exploit usage patterns that appear unnatural.
Tuning CHPr. CHPr sets the flattening threshold Pflat for
each period based on the excess energy available after estimat-
ing the energy required to inject artificial signatures (based on
the rate of signatures observed when the home is occupied). Of
course, CHPr could run out of energy if its i) estimated energy
budget over a time period t is inaccurate or ii) occupants leave
for extended periods, such that the water heaters does not have
enough thermal capacity to partially flatten demand and inject
artificial signatures over the period. As with BLH, whenever
CHPr runs out of energy it has no choice but to expose
the home’s raw usage to the smart meter. We evaluate the
frequency and impact of running out of energy in Section V.

V. EVALUATION

We implement a simulator in R to evaluate CHPr. The
simulator takes as input a home’s aggregate power trace and
its water heater power trace, and reschedules the water heater’s
power consumption based on the approach outlined in the
previous section. The simulator uses minute-level power data
we have gathered from a real home; our home deployment
and our data is described in detail in prior work [27]. We also
require ground truth occupancy to quantify the performance
of our occupancy detection attacks.

To gather ground truth occupancy data, the adult occupants
in the home run a real-time geolocation application on their
cell phone, which we query to determine the home’s ground
truth occupancy (based on the occupants’ GPS coordinates).
We have collected GPS data for roughly one year, and power
data for three months; we train our classifiers below (and from
Section II) on 82 days worth of data. Note that, while our
home’s occupancy rate may appear high, based on our own
data collection at other homes and national statistics [28],
[22], we believe the power usage and occupancy pattern are
representative of a large class of homes. For instance, consider
that even if all occupants are away for a standard 40-hour work
week (8 hours per day), and home otherwise, the resulting
occupancy rate is still 76.2% (128 out of 168 hours).

A. Preventing Occupancy Detection

We evaluate CHPr’s effectiveness against each of the oc-
cupancy detection attacks from Section II. We quantify the
performance of the occupancy detection attack on both the
original demand and the CHPr-modified demand in terms of
the Matthews Correlation Coefficient (MCC) [23]. Recall from
Section II, that the MCC is a standard measure of a binary
classifier’s performance, where values are in the range −1.0
to 1.0, with 1.0 being perfect detection, 0.0 being random
prediction, and −1.0 indicating detection is always wrong.
MCC values closer to 0.0, or random prediction, are better
for masking occupancy.

Figure 4 shows how the MCC for each occupancy detection
attack varies based on the capacity of the water heater. The
water heater’s capacity determines the amount of thermal
energy storage available for CHPr. In this case, a value of
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Fig. 4. CHPr decreases the MCC of the occupancy detection attacks as water
heater size increases, with the exception of the k-NN attack with a water
heater size greater than 50 gallons.

0 for the capacity indicates the performance of the attack
on the original demand. The experiment shows that, with the
exception of the k-NN attack, the accuracy of each occupancy
detection attack decreases as the size of the water heater
increases. This is somewhat expected, since the larger the
water heater size, the more energy CHPr has to shift in time
to mask occupancy. However, the k-NN attack’s performance
actually increases for the 80-gallon and 100-gallon sizes due
to our activity optimization. The reason is that, at these sizes,
concentrating signature injections in the unoccupied periods
actually increases the power level during these periods beyond
the occupied period. As a result, the k-NN classifier begins to
associate these high levels of power usage with unoccupied
periods. While we designed CHPr for standard-sized water
heaters, where energy capacity is limited, this result suggests
modifications to the activity optimization are necessary for
high capacity water heaters, such that they inject energy during
both occupied and unoccupied periods.

Another interesting insight from our results is that, while the
threshold, SVM, and HMM attack have similar MCCs on the
original power data, their performance diverges under CHPr
as the water heater size increases. SVM is the most robust to
CHPr, decreasing from an MCC near 0.38 to 0.259 for a 50-
gallon tank, while thresholding is the least robust, decreasing
from an MCC of 0.45 to 0.04 for a 50-gallon tank. The HMM
attack has performance in between SVM and thresholding.
Table II shows the breakdown of true positives, true negatives,
false positives, and false negatives, as well as the MCC, for the
original demand (when using HMM for detection) and each
of the attacks when using a standard-sized 50 gallon water
heater. In this case, HMM performs the best on the original
demand. The table shows that CHPr effectively reduces the
MCC to near 0 for the Threshold and HMM attack.

Figure 5 provides a visual depiction of CHPr’s ability to
mask occupancy using data from our home over a represen-
tative week in the summer. The top graph shows both the
home’s power usage each minute, including a standard 50
gallon (or 189.3 liter) water heater, as well as its ground truth
occupancy using the occupants’ GPS coordinates. The brief
spikes in electricity usage throughout the week are due to
heating water. The lower graph then shows the power usage
after rescheduling the water heater’s power consumption using



7

Type True Positives True Negatives False Positives False Negatives MCC
Original (HMM) 61.83% 17.86% 6.25% 14.06% 0.510

CHPr (Threshold) 73.01% 2.78% 13.22% 10.99% 0.045
CHPr (HMM) 5.58% 23.44% 0.67% 70.31% 0.081
CHPr (KNN) 49.33% 8.93% 15.18% 26.56% 0.018
CHPr (SVM) 50.67% 15.18% 8.93% 25.22% 0.259

TABLE II
PERFORMANCE OF THE BEST OCCUPANCY DETECTION ATTACK (HMM) ON A WEEK OF REPRESENTATIVE DATA FROM A HOME, COMPARED WITH THE

PERFORMANCE OF EACH ATTACK ON DATA MODIFIED BY CHPR WITH A 50-GALLON WATER HEATER.
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Fig. 5. A home’s original week-long power usage and ground truth occupancy (top), as well as its power usage when using a CHPr-enabled water heater
and detected occupancy when using the threshold-based occupancy detection attack outlined in Section II (bottom) .

CHPr, as well as the detected occupancy of this modified
power trace using our threshold-based attack. A good example
of CHPr’s capabilities occurs between days four and five when
the home is unoccupied for an extended period. Using the
original demand, the low power usage clearly indicates the
occupants are away, while the CHPr-modified demand makes
the power usage appear similar to an occupied home. While
there are a few instances where the water heater runs out of
energy, i.e., fully heats all of its tank’s water, that cause it
to expose a low power usage that may reveal an unoccupied
home, e.g., between days two and three, the data exposes much
less occupancy information overall. In addition, there are no
instances where our (simulated) reserve tank runs out of hot
water due to CHPr’s operation.

B. Preventing NILM

As we discuss in Section II, BLH techniques do not prevent
occupancy detection as a side-effect of attempting to prevent
NILM. Here, we show that CHPr actually outperforms NILL
and LS2 in preventing NILM simply as a side-effect of pre-
venting occupancy detection. For this experiment, we evaluate
NILL, LS2, and CHPr using a state-of-the-art NILM algorithm
based on Factorial Hidden Markov Models (FHMMs) [29],
[30], [31]. The algorithm is the basis for the Reference Energy
Disaggregation Dataset (REDD) [30] and is implemented as
part of the open-source NILM Toolkit (NILM-TK) [31]. A
recent paper shows that the algorithm performs outperforms
other, previously proposed, NILM algorithms [31].

Note that prior work on NILL and LS2 did not evaluate
their performance against a real NILM algorithm. Instead,
they used general privacy metrics, such as mutual information
measures, entropy, and “sister pairs,” to indirectly evaluate

performance. Our results indicate that these indirect measures
do not necessarily correlate with the performance of a real
NILM algorithm. This is due to the fact that NILM accuracy is
largely dictated by the accuracy of detecting large loads, which
NILL and LS2 do not effectively prevent. NILM algorithms
continue to perform poorly at detecting small loads, even
without actively obscuring the demand.

We quantify NILM accuracy by computing the sum of the
errors between each load’s actual and inferred power usage,
normalized by a home’s total energy usage P (t), at each time
t. Formally, if p̃i(t) denotes load pi’s actual power usage at
time t and pi(t) denotes its inferred power usage from NILM
at time t, then we define an error factor δ over T intervals as:

δ =

∑N
i=1

∑T
t=1 |p̃i(t)− pi(t)|∑N

i=1

∑T
t=1 p̃i(t)

(2)

Here, the numerator is the sum of the absolute errors at each
data point, and the denominator is the home’s total energy
usage over T . Lower values of δ are better; an error factor of
zero indicates perfect NILM. While there is no upper bound
on the error factor, a value of one indicates the reading-to-
reading errors are equal to the home’s energy usage. Note that
this metric is a variant of the “total energy correctly assigned”
metric from prior work [30].

Figure 6(left) shows the error factor for our NILM algorithm
when NILL and LS2 alter grid power as a function of available
battery capacity. The graph shows that when not using NILL
or LS2 the error factor is 0.95 (the data point at x = 0).
As expected, the error factor rises when using NILL, since
more battery capacity enables it to flatten demand and remove
more variations in power that reveal appliance usage. The
rise in error factor demonstrates that NILL is reducing the
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Fig. 6. NILM error factor as a function of energy capacity for different methods of altering grid demand (left), and when using CHPr-based techniques (right).

accuracy of our NILM algorithm. However, notice that the
rise is only 25% (from 0.95 to 1.24) when using a 12kWh
battery, which would have an amortized cost of $1416 per year
based on the estimates from §II. By contrast, LS2 is nearly
completely ineffective at reducing the accuracy of our NILM
algorithm; the algorithm’s accuracy at recognizing appliance
power signatures remains nearly the same.

Figure 6(right) shows results for the same time period
when using two versions of CHPr as a function of the water
heater’s reserve tank capacity. CHPr-Noise uses the available
energy from the water heater to inject random power values
similar to recent work [32], while CHPr-Occupancy is our
CHPr algorithm for preventing occupancy detection. Both
CHPr-Noise and CHPr-Occupancy increase the error in the
NILM algorithm more than NILL and LS2. Even though it
is not designed to prevent NILM, CHPr-Occupancy actually
performs the best, with an error factor near 1.55 for a 25-gallon
water tank, which has a thermal energy capacity of 6.75 kWh.
With a similar size battery, NILL only achieves an error factor
of 1.19. Of course, many homes already have water heaters,
which could easily integrate CHPr functions, while few have
any integrated battery storage, which would require a large
capital investment to install.

VI. CONCLUSION

This paper presents CHPr (Combined Heat and Privacy),
which prevents occupancy detection using the thermal energy
storage inherent to the large elastic heating loads already
present in many homes, in particular electric water heaters.
As we show in § II, CHPr leverages thermal energy storage
to mask occupancy because using chemical energy storage,
in the form of batteries, requires a level of energy storage
capacity that is prohibitively expensive. CHPr’s algorithm
combines partial demand flattening, artificial power signature
injection, and activity- and occupancy-aware optimizations
to reduce its energy requirements. Importantly, CHPr does
not waste any energy or increase electricity costs: it simply
reschedules the energy a water heater already consumes to
mask occupancy, while ensuring the reserve tank does not
run out of hot water. We evaluate CHPr against multiple
sophisticated occupancy detection attacks based k-Nearest
Neighbor clustering, Hidden Markov Models, Support Vector
Machines, and Thresholding. Our evaluation shows that CHPr
is effective at masking occupancy by regulating the power
usage of a standard 50 gallon (or 189.3 liter) water heater,
decreasing the MCC of occupancy detection from 0.51 (with
the HMM attack) to 0.045 with the threshold-based attack,

0.081 with the HMM attack, and 0.259 with the SVM attack.
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