
CASPER: Carbon-Aware Scheduling and
Provisioning for Distributed Web Services

Abel Souza1 Shruti Jasoria1 Basundhara Chakrabarty1 Alexander Bridgwater2 Axel Lundberg2 Filip Skogh2

Ahmed Ali-Eldin2 David Irwin1 Prashant Shenoy1

2Chalmers University of Technology
1University of Massachusetts Amherst

Abstract—In recent years, there has been a significant commit-
ment to reducing carbon emissions and shifting towards more
sustainable practices, including in computing. Computations such
as web-services exhibit various spatiotemporal and performance
flexibility, enabling the possibility of adjusting the location,
schedule, and processing intensity to align with the availability of
renewable or low-carbon energy. An example is a geographically
distributed web application hosted across multiple cloud regions,
each with varying carbon costs based on their local electricity
mix. By spatially load-balancing web requests, it becomes feasible
to reduce applications operational carbon footprint. However,
operators still face challenges in efficiently optimizing their
footprint due to a lack of insights into carbon costs. In here,
we present CASPER, a carbon-aware scheduling and provisioning
system for distributed web services. CASPER primarily aims to
minimize the carbon costs associated with resource provisioning
while also respecting the applications’s Service Level Objective
(SLO) requirements. To this end, we formulate CASPER as an
optimization problem and deploy a prototype in Kubernetes.
Our empirical results reveal the significant potential of CASPER
in achieving substantial reductions in carbon emissions: In
comparison to baseline methods, our approach demonstrates
improvements of up to 70% with no latency performance
degradation.

Index Terms—Carbon-Aware Computing, Web Services

I. INTRODUCTION

In recent years, the global focus on sustainability and en-
vironmental responsibility has brought renewable energy to
the forefront of the discussions on energy systems, leading to
an increased focus on reducing the carbon footprint of cloud
platforms in both research and industry [23], [22], [14], [13],
[10]. Although there has been substantial progress in reducing
usage, today’s datacenter infrastructures consume around three
to five percent of electricity worldwide and in ten years, five
times as much [4], [18], [12]. These estimations may be lower
than reality, as the growth of computing demand has been
increasing exponentially for decades [6], which is trigger-
ing serious datacenter efficiency concerns because demand
is outpacing supply [20], and more importantly, positioning
cloud platforms as one of the largest contributors to global
emissions [6]. that have solely relied on enhancements in
energy efficiency, which is unlikely to lead to significant reduc-
tions in carbon emissions as modern datacenters have already
achieved high levels of optimization in energy efficiency. For
instance, the Power Usage Effectiveness (PUE), a measure-
ment of the total operational efficiency of most datacenters,

0 5 10 15 20

Time (h)

0

100

200

300

400

500

600

A
vg

.
C

ar
b
on

In
te

ns
it
y

(g
.C

O
2
eq

/k
W

h)

Singapore

Germany

France

Ohio/Virginia

California

Figure 1: Grid carbon intensity for six different cloud regions
showing 6⇥ spatial variations.

is already near the optimal value of 1.0. Therefore, while
energy efficiency improvement is important, it is insufficient
to counterbalance the rising energy consumption from the
rapidly growing demand for cloud services. To effectively
reduce carbon emissions, cloud platforms must shift their focus
towards low-carbon energy sources. This entails harnessing
energy derived from renewable sources such as wind, solar,
hydro, nuclear, geothermal, and other sustainable alternatives.

To reduce cloud platforms’ carbon emissions, many have sug-
gested leveraging computing workloads’ spatial and temporal
flexibility, which is often significant, to dynamically shift the
location and time of execution to better align with when and
where low-carbon energy is available. Yet, despite the promi-
nence of such simple carbon-aware spatiotemporal workload
shifting as an abstract idea, prior work has only quantified
its benefits in specific settings such as batch workloads. Web
applications, in particular, serve as an excellent case for explor-
ing the untapped potential of carbon-aware computing. These
applications are typically distributed across multiple cloud
servers located in different regions worldwide. Traditional
approaches reduce latency by forwarding user requests to the
geographically closest replica server, reducing load times and
offering a better user experience. On the other hand, different
cloud regions have varying carbon costs associated with their
electricity sources, leading to different carbon footprints for
user requests depending on which replica server services them.
Consequently, optimizing the scheduling of user requests with
respect to the carbon costs associated with different replicas

presents an intriguing opportunity to make web applications
more sustainable.

While renewable energy still continues to be unreliable due to
its dependence on natural factors, web applications can still
benefit from it without sacrificing performance. For instance,
the inherent fault tolerance achieved through replication and
load-balancing mechanisms can safeguard web applications
against the intermittency and unpredictability of renewable
energy sources. By ensuring that replicas are spread across
diverse regions and backed by different energy sources, these
applications can maintain high availability while capitalizing
on the potential of cleaner energy. However, although cloud
providers maintain information about their energy resources,
this information is not readily available at a software level.
Consequently, provisioners and load balancers cannot leverage
this information to optimize the carbon efficiency of web
applications. By providing them with the visibility into the
carbon costs associated with different datacenters, it becomes
possible to design heuristics to provision servers and schedule
user requests, directing them to the replicas with the lowest
carbon impacts.

As such, the objective of this paper is to evaluate the per-
formance of spatial server provisioning and geo-distributed
request scheduling in a distributed web application with a
focus on optimizing the carbon and latency costs of computa-
tion. We assume full information of energy data, formulating
this scenario as a multi-objective optimization problem. We
present CASPER, a carbon-aware scheduler and provisioner
for distributed web applications. We implement CASPER as a
Kubernetes scheduler, and our results highlight its significant
potential in achieving considerable reductions in carbon emis-
sions while respecting latency constrains. When compared to
baseline methods, our approach showcases improvements of
up to 70% without any degradation in latency performance.

II. BACKGROUND

This section provides background information on the grid
carbon intensity, cloud model, carbon-aware workload opti-
mizations, and cloud schedulers.

Carbon Intensity The electric grid relies on a combination of
generation sources to meet the demand for electricity. These
sources include fossil fuel-based generators using coal or
natural gas, renewable sources like hydro, wind, and solar,
as well as non-carbon sources such as nuclear power. Since
electricity demand fluctuates throughout the day and follows
diurnal patterns, the mix of generation sources and their
relative proportions also vary over time. It is worth noting
that renewable sources — such as wind and solar — are inter-
mittent, which further impacts the overall generation mix. The
carbon intensity (CI) of electricity supply, measured in grams
of CO2 equivalent per watt or g·CO2eq/kWh, represents the
average weighted carbon intensity of the generation sources
used at any given moment. As fossil-based sources have high,
and renewable sources have low or zero carbon weights, the

average CI depends on the proportion of each source in the
overall generation mix.

Figure 1 illustrates the carbon intensity of the grid electricity
over the 2022 period for six different geographical regions.
The figure reveals significant variations in the carbon intensity
across different regions. On the vertical axis, the carbon
intensity exhibits temporal (error lines) variations, while the
horizontal axis shows the spatial variations across regions.
Specifically, the carbon intensity shows a 4⇥ variation over a
year in France, and an even higher 6-8⇥ variation in Germany
and California for the same period. These variations imply that
the carbon footprint of a job can be up to 8⇥ higher depending
on whether it is executed during a high or low carbon-intensity
period. They suggest that the same job executed in different
cloud regions will result in different footprints, underscoring
the need for techniques that intelligently schedule jobs on
clusters based on the current and projected carbon intensity
of grid electricity. While cluster managers can leverage many
temporal variations by aligning jobs execution with low carbon
periods, our current work primarily focuses on exploiting spa-
tial variations by scheduling jobs on geographically distributed
resources across regions with lowest carbon intensity and
enough latency performance. Finally, our work concentrates on
scheduling techniques aimed at reducing a datacenter’s scope 2
emissions as defined by the GHG (Greenhouse Gas) protocol,
in which the majority of operational emissions are attributed to
grid energy (including scope 1). We do not consider embodied
emissions (scope 3).

Spatiotemporal Shifting The potential for any job to reduce
its footprint via temporal or spatial shifting is a function
of many characteristics. Particularly, a job’s overhead is a
function of its state (i.e., memory and disk) and the network
distance, i.e., latency and bandwidth, between locations. Ad-
ditionally, there may be regulatory constraints, such as HIPPA
and GDPR, that prevent spatially shifting a job outside of a
specific country, region or jurisdiction.

Workload Flexibility As mentioned earlier, the variations in
carbon intensity of electricity supply have a direct impact
on the emissions generated when computing across differ-
ent locations. While batch jobs such as AI and machine
learning often have flexible completion requirements and can
accommodate temporal variations, interactive workloads have
strict low-latency requirements and limited temporal flexibility.
This is especially true in web-services environments where
requests pass through multiple microservices before a response
is produced. For instance, load balancing tools enable modern
workloads with the ability to shift their execution location
to align with renewable energy sources and that are cost-
effective. These techniques work mostly with workloads that
have lightweight memory states and do not need to carry
data around locations. In this study we consider lightweight
web-requests – specifically HTTP requests –, that can be
seamlessly processed across various locations. These requests
have latency requirements that need to be limited within a

Carbon Intensity

Workload

CAP

Region 1 Region N

CAS

Balancing
Pr

ov
is

io
ni

ng

User Requests

For
eca

sts

SLOs

CASPER

Figure 2: CASPER: CAP and CAS provision and coordinate
user workloads.

maximum threshold. Given that numerous services are highly
optimized, minor deviations within a specified target are
unlikely to impact the user experience significantly, and can
enable the exercise of spatial shifting to optimize for carbon.
Cloud-based systems are specifically designed to optimize a
combination of throughput and (scheduling) response time [3],
[25], [16]. They are built to handle dynamic workloads,
varying resource needs, and leverage scaling and migration
techniques to dynamically acquire and release resources while
reducing waiting times to improve cluster utilization.

Model The cloud model operates on the principle of provid-
ing users with an abstract view of the underlying physical
resources that accommodate multiple concurrent workloads.
However, when an application or job scales, migrates, or in-
terrupts execution based on any dynamic signal such as carbon
intensity, it may face challenges due to limitations at the data-
center level that arise from other jobs utilizing resources. This
highlights a broader concept: optimizing carbon consumption
decisions must take into account the platform’s constraints,
including the availability of resources. We introduce CASPER
to tackle this specific planning issue.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section outlines the design and architecture of CASPER,
along with the key components required for its carbon-
awareness. We also introduce a load-balancer that optimizes
the workload performance by redirecting requests across
servers.

A. Architecture

CASPER is designed as a modular system that can be in-
tegrated into any existing cloud-enabled scheduler. Figure 2
illustrates the overall system architecture, highlighting its two
main components: the Carbon-Aware Provisioner (CAP) and
the Carbon-Aware Scheduler (CAS). CASPER includes various
components for interfacing with interactive jobs, such as the

Parameter Description

xij Requests redirected from region i to region j

x̄j Requests not sent to region j

sj Number of servers in region j

n Number of regions R

Ij Carbon intensity in region j

↵
Normalized weight for the carbon intensity
(in relation to number of servers sj)

�i Incoming request rate at region i

`ij Expected latency from region i to j

cj Resource capacity of region j (in # of requests)

Li Maximum tolerated latency for a request

K Maximum number of servers across all locations

tj Number of requests submitted to region j

Table I: List of parameters used by CAP.
resource manager, monitoring, and the carbon-aware load-
balancing and scheduling policies.

Carbon-Aware Provisioner. CAP acts as an intelligent
provisioner that analyzes the inter-regional network latency,
the region’s carbon intensity, and the expected workload.
Besides reducing carbon, CAP needs to provide operators
with an important estimator: the optimal number of servers
needed in each region such that the expected workload is
correctly handled for each time period. This intuition leads us
to formalize the datacenter provisioning as a multi-objective
problem.

min
x

↵
X

j

Ij
X

i

xij + (1 � ↵)
X

j

sj (1a)

s.t.
X

i

xij sjcj (1b)

X

j

sj K (1c)

xij (`ij � L) 0 (1d)
X

i,j

xij = E[�i], 8i, j (1e)

↵ 2 [0, 1] (1f)
x̄jsj = 0 (1g)
xij , sj 2 Z�0 (1h)

We present CAP’s formulation in Equation 1, and Table I
describes all of its parameters. All indices i, j represent the
set of available regions R for resource allocation, request
processing and redirection. We let x̄j 2 { 0, 1 } be the variable
that represents requests that are not sent to a region j, i.e.,P

j xij = 0. This constraint effectively means that if it is
anticipated that region j won’t receive any requests, there
should be no server allocation in that region. Moreover, xij

represents the optimal count of requests from region i that is
redirected to region j, while sj is the number of servers provi-
sioned in region j to handle incoming requests. Eq. 1(a) aims
to minimize both the total carbon cost of executing requests
(Eq. 1(b)) and the cumulative number of servers sj across
all regions (Eq. 1c) such that the minimum latency target is
guaranteed (Eq. 1d). Finally, the following assumptions are

made. First, the scope of the problem is limited to mini-
mizing carbon emissions while respecting applications latency
constraints. Second, since we consider cloud datacenters, we
ignore issues regarding capacity planning or resource limits,
although we do include a maximum threshold in the total
number of servers (Eq. 1c) used by CASPER. We also assume
the communication across load-balancers in different regions
(as seen in Figure 2) is negligible when compared to requests’
average service times. Finally, the provisioner uses forecasts
for carbon intensity and hourly workload request rates that are
expressed in terms of expected arrivals in region i (Eq. 1e).

B. Carbon Aware Scheduler

A B C

r1,j r2,j r3,j

(a) CAS Balancing

ri,j =
P

i xijP
i

P
j xij

tj

(b) Weight Factors

Figure 3: Illustration of CAS and weight calculation.

Figure 3 shows how the Carbon Aware Scheduler (CAS)
distributes requests between regions xij , which denotes the
load of requests that need to be redirected from region i to j. It
uses a vector as shown by Equation 3(b) to model each region
r’s weight, following the timely estimates obtained from CAP
(e.g., hourly). We implement CAS as a load-balancer module
in CASPER, whereas local incoming requests are redistributed
across all regions according to their proportional weights.
More importantly, CAS ensures that unforeseen workload
events — not accounted for in the CAP’s optimization — can
be effectively handled.

C. Implementation

CASPER is designed as a Kubernetes (K8S) cluster with
s < K workers, where each represents a cloud region. Each
deployment comprises of a single K8S pod and each runs the
application. A prototype has been developed to emulate the
operations of a Wikipedia-like service across six distinct AWS
regions, as detailed in the Table II. These regions were selected
as the closest regions to the original Wikimedia servers.

CAP has been developed using Python and the optimization
is solved using the PuLP library [19], an interface to the Coin-
or branch and cut (CBC) solver [21]. The region wise server
deployment array obtained as an output of CAP is used to
scale the size of each regions using server collected metrics.
Additionally, CAP computes the optimal request distribution
matrix, which is forwarded to CAS.

CAS utilizes a set of load balancers, one per-region. As
mentioned, it redirects incoming requests to the appropriate
regions based on weights derived from the CAP’s optimal
request distribution matrix. Traefik [27] is used to establish
the load balancer layer for the cluster setup. It creates a HTTP
proxy for every region to receive requests. Each traefik proxies
can dynamically route the traffic to one of the corresponding

Geographical Region AWS Region

California US-West-1

Virginia US-East-1

Ohio US-East-2

Germany EU-Central-1

France EU-West-3

Singapore AP-SouthEast-2

Table II: AWS Regions used in the evaluation.

Kiwix backend regions based on the hourly weights calculated
by CAP.

IV. EVALUATION

In this section, we first discuss the real-world application,
workload, carbon, and network traces that are utilized to eval-
uate CASPER. Then, we discuss the policies briefly introduced
in the previous section. Finally, we demonstrate and quantify
the trade-offs between carbon savings and latency performance
for various targets.

Infrastructure. The cluster hosting CASPER runs Ubuntu
Linux 20.04, and is compromised of 16 Dell PowerEdge
R430s with a two-socket Intel Xeon processor with 8 cores and
32GB of memory. The cluster consists of a control plane and
worker nodes. Each of the nodes run a Kubernetes deployment
that represents a region. For intra-cluster communication, an
overlay network is created using Flannel [5].

Application. To evaluate CASPER, we deploy Kiwix [8],
a platform to host and distribute compressed versions of the
Wikipedia. Specifically, we use the pre-built version of the
German Wikipedia from May 2023, which comprises a total
of 32 GB of content, hosted as a Zim file [9]. Requests are
sent through the CAS load-balancer, which exposes an external
HTTP port interconnecting all nodes in the cluster. Since we
are only interested in the intra-network latency and emissions
across regions, only the Kiwix frontend page is accessed.

Telemetry. Each region’s load-balancer exports their service-
level metrics, specifically the total count of HTTP requests
served by each endpoint and their associated service time. To
calculate the carbon cost of request execution, this metric is
multiplied by the region’s current hour’s carbon intensity.

A. Datasets

Carbon Intensity. The carbon intensity data for all the
aforementioned geographical regions (Table II) at an hourly
granularity, and is represented by Figure 1. This data has been
collected from ElectricityMaps [7] for the year 2022.

Workload and Network Traces. We use the Wikimedia’s
dataset [11] covering six datacenters across the USA, Europe,
and Asia. For each region, the dataset includes the request
rates (requests per-second) and datacenter hourly utilization
covering 2022. Since two of the AWS regions do not match
those from Wikimedia’s – i.e., Netherlandas and Texas –, we
select the two closest AWS regions i.e., Germany and Ohio
(Table II). Average latency data (in milliseconds) across all

0 5 10 15 20

Time (h)

0.0

2.0

4.0

6.0

8.0
R

ec
ei

ve
d

R
eq

u
es

ts
N

u
m

b
er

⇥103

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

0 5 10 15 20

Time (h)

0.0

2.0

4.0

6.0

8.0

⇥103

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

0 5 10 15 20

Time (h)

0.0

2.0

4.0

6.0

8.0

⇥103

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

(a) Latency (b) Carbon-20 (c) Carbon-500

Figure 4: Request Redirection Rate per-region: Loads tend to be forwarded to greener nearby regions.

Latency Carbon-20 Carbon-100 Carbon-400 Carbon-500

Policy

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
P

ro
vi

si
on

in
g

(N
or

m
al

iz
ed

)

ap-southeast-2

eu-central-1

eu-west-3

us-east-1

us-east-2

us-west-1

Figure 5: Average Resource Provisioning per-region

AWS regions are obtained from Cloudping [1] for the 2022
year.

Workload Generation A sample of the workload is repre-
sented in Figure 4(a), with incoming requests in all regions.
Each hour is divided into timesteps, and the request rate for
each timestep is selected from a set of values that follow an
exponential distribution. Parameters to generate the distribu-
tions are selected such that the upper limit of the generated
values is approximately 1.5⇥ the request rate for the hour.

B. Experimental Setup

We conduct a comprehensive evaluation of CASPER through-
out the entire year of 2022. The parameters for CAP are set
as follows: n = 6 (representing the AWS regions), ↵ = 0.5
(equal weights to both carbon and latency costs), cj = 100
(one server can handle up to 1k requests), and K = 500
(global maximum number of servers). We also introduce
several variations in the values of Li (see below), which
establish the maximum acceptable latency for each request.
CAP runs at the beginning of every hour to determine the
provisioning of servers at each location. The CAS weights are
then calculated based on the output of CAP. To assess the
system’s performance, we execute a real workload simulation
spanning 24 hours. Metrics are collected at 10-minute intervals
and aggregated at the end of each hour. We conduct evaluations
using the following policies:

Latency. This simulation serves as the baseline scenario with-
out any carbon optimization, where requests are solely served

based on the lowest latency, i.e., locally in the originating
region, without any load balancing. This configuration strictly
aligns with Mediawiki’s operational approach, as it adheres to
their stringent latency performance requirements.

Carbon-L Policies. These runs focus on carbon optimization
with various latency L threshold guarantees, ranging from
20 to 500ms. This approach involves a trade-off in terms
of performance, as requests can be redirected as long as the
latency requirements remain below L ms. These thresholds
represent intermediate cases where the carbon cost of execu-
tion is reduced by permitting increases in latency as requests
reach more distant, lower carbon regions. Among the tested
scenarios, the one with a latency threshold of L = 500 ms
represents the highest value among all possible inter-region
latencies. In this particular case, the carbon cost of execution
is minimized by allowing unrestricted redirections, as long as
regions can accommodate the amount of requests.

C. Results

1) Effects on Request Redirection: Figures 4(a)-(c) present
workload redirection results for Latency, Carbon-20, and
Carbon-500. As shown in Figure 1, Zone "eu-west-3" (France)
has the lowest carbon intensity, followed by "us-west-1"
(California), "us-east-[1,2]" (Ohio/Virginia), "eu-central-1"
(Germany), and "ap-southeast-2" (Singapore). Figure 4(a)
simply shows the original workload, where no redirection
happens. Notably in Figure 4(b), due to close proximity and
low carbon intensity, CASPER redirects as many requests
as possible from Germany towards France. And due to the
latency constrains (20ms), Ohio and Virginia cannot induce
savings. This behavior is more evident in 4(c): As the latency
constraint is relaxed (500ms), France and California receive
as many requests as possible from all regions. However,
eu-west-3 reaches capacity at various moments, triggering
CASPER to forward load to California (us-west-1).

2) Effects on Resource Provisioning: Figure 5 illustrates
the resource provisioning across the six AWS regions. The
Latency policy represents the original provisioning with
no redirections. As the latency constraints increase, the
CASPER initiates re-provisioning of servers from the German

("eu-central-1") region to France due to its lower carbon
and lower network latency. Under Carbon-100, a significant
portion of the Ohio and Virginia workloads are redirected
exclusively to France, as the 100ms latency requirement can
be fulfilled. It is worth noting that requests originating from
Singapore are only directed to greener locations under the
Carbon-400 policy. This limitation arises from the end-to-end
latency from Singapore to any other region surpassing the
100ms threshold. Moreover, the capacity in France reaches
its limit under the Carbon-400 policy, prompting redirections
towards California, in addition to few towards Germany to
meet the latency requirements.

3) Effects on Carbon and Latency: Figures 6(a)-(d) present
a comparative analysis of all policies. Figures 6(a) and (c)
clearly illustrate the primary tradeoff of CASPER, wherein
the relaxation of latency constraints leads to an increased
potential for emissions reduction. The Latency policy, despite
achieving an average response time as low as 6ms, exhibits the
highest carbon emissions due to requests remaining localized
in high-intensity regions such as Germany and Singapore.
Notably, Carbon-20 demonstrates that even small relaxations
in latency constraints can result in a 25% carbon reductions.
Carbon-100 achieves a 37% reduction, while Carbon-400
reaches a point of diminishing returns with a 70% reduction,
similar to Carbon-500 which represents an unrestricted carbon
optimization scenario. Moreover, Figures 6(b) and (d) display
the hourly variations in average latency and emissions, respec-
tively. In comparison to the Latency policy, Carbon-20 shows
a minimal increase in latency of 6ms while simultaneously
reducing emissions. Carbon-100 through Carbon-500 exhibit
latency increases ranging from 5-16⇥, although delivering the
most substantial reductions. Finally, it is important to note that
results would change with other ↵ values. This is primarily
due to the fact that CASPER would redirect requests differently
due to the trade-off between carbon emissions and the number
of servers needed to satisfy latency SLOs. Specifically, as ↵
increases, CASPER would redirect more requests to greener
regions at the cost of latency because this would reduce
the number of servers in browner regions. In contrast, as ↵
decreases, CASPER would prioritize latency, opting to handle
requests locally despite the carbon costs of setting additional
servers.

V. RELATED WORK

Carbon-aware computing encompasses several key research,
some with similar tradeoffs as presented in here [24]. Tree-
house [2] proposes a software-centric approach to reduce the
carbon intensity of datacenter computing by making energy
and carbon visible at the application layer. CADRE focuses
on carbon-aware data replication to reduce overall carbon
footprint, while leveraging load flexibility and interactions
with the electricity market to minimize carbon emissions [29].
[28] investigates the potential of shifting computational work-
loads to less carbon-intensive periods based on the fluctuating
carbon intensity of energy supply. [17] introduces a low-carbon

Latency Carbon-20 Carbon-100 Carbon-400 Carbon-500

Policy

0

50

100

150

200

L
at

en
cy

(m
s)

0 5 10 15 20

Time (h)

0

50

100

150

200

250

L
at

en
cy

(m
s)

Latency

Carbon-20

Carbon-100

Carbon-400

Carbon-500

(a) Average Latency (b) Hourly Latency

Latency Carbon-20 Carbon-100 Carbon-400 Carbon-500

Policy

0

100

200

300

400

500

600

700

C
ar

b
on

E
m

is
si

on
s

(g
.C

O
2
E

q)

0 5 10 15 20

Time (h)

0

200

400

600

800

A
ve

ra
ge

C
ar

b
on

E
m

is
si

on
s

(g
C

O
2
E

q)

Latency

Carbon-20

Carbon-100

Carbon-400

Carbon-500

(c) Average Emissions (d) Hourly Emissions

Figure 6: Performance and carbon tradeoffs across policies.

extension to the Kubernetes scheduler, sorting cloud regions by
carbon intensity and migrating workloads to regions with low
carbon cost. However, the proposed framework is evaluated
primarily for batch jobs. On the other hand, numerous works
have employed integer programming techniques to devise new
techniques for low-carbon scheduling [26]. Carbon-aware geo-
distributed scheduling is particularly relevant for Machine
Learning (ML) workloads requiring long periods of execution
[15]. [30] proposes Cucumber, an admission control policy
that leverages load and energy forecasting techniques to de-
termine scheduling strategies to use renewables. Unlike the
previous works, CASPER is the first framework that seamlessly
integrates server provisioning and request scheduling for a
geo-distributed web application, with a particular focus on
interactive web requests.

VI. CONCLUSION AND FUTURE WORK

This paper introduced CASPER, a carbon-aware scheduler
and provisioner designed for distributed web applications.
We implement CASPER as a Kubernetes scheduler, and our
results highlight its significant potential in achieving consid-
erable reductions in carbon footprint for web applications. We
observe substantial savings in the carbon footprint for said
applications running in geo-distributed settings, reaching up to
70% and negligible loss in performance. CASPER represents a
crucial advancement in carbon-aware schedulers for distributed
applications. However, further analysis and exploration of
additional strategies are warranted to enhance the system’s
efficiency. As a potential avenue for future work, the imple-
mentation of auto-scaler policies that continuously monitors
resource usage across regions and that dynamically adjusts
allocations could be explored. The analysis of such auto-
scaling algorithms can further improve the overall carbon-
saving capabilities presented with CASPER.

VII. REFERENCES

[1] Matt Adorjan. Cloudping, 2017. www.cloudping.co.

www.cloudping.co

[2] Thomas Anderson, Adam Belay, Mosharaf Chowdhury,
Asaf Cidon, and Irene Zhang. Treehouse: A case
for carbon-aware datacenter software. arXiv preprint
arXiv:2201.02120, 2022.

[3] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes:
Lessons Learned from Three Container-Management
Systems Over a Decade. ACM Queue - Containers, 14(1),
January-February 2016.

[4] Gary Cook and David Pomerantz. Clicking clean: A
guide to building the green internet. Greenpeace Inter-
national, Tech. Rep., 2015.

[5] CoreOS. Flannel, 2016. https://github.com/flannel-io/
flannel.

[6] Peter J. Denning and Ted G. Lewis. Exponential Laws
of Computing Growth. Communications of the ACM,
60(1):54–65, January 2017.

[7] ElectricityMap. Electricitymap. https://electricitymaps.
com/, 2022.

[8] Emmanuel Engelhart and Renaud Gaudin. Kiwix, 2007.
https://kiwix.org.

[9] Emmanuel Engelhart, Tommi Makitalo, and Manuel
Schneider. openzim, 2016. https://openzim.org.

[10] Carole-Jean Wu et al. Sustainable AI: Environmental
Implications, Challenges and Opportunities. In MLSys,
August 2022.

[11] Wikimedia Foundation. Wikimedia’s grafana installation,
2023. https://grafana.wikimedia.org/.

[12] C. Garcia. AKCP, the real amount of energy
a data center uses. https://www.akcp.com/blog/
the-real-amount-of-energy-a-data-center-use/, February
2022.

[13] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei,
Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu.
ACT: Designing Sustainable Computer Systems with an
Architectural Carbon Modeling Tool. In ISCA, June
2022.

[14] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse,
Hsien-Hsin S. Lee, Gu-Yeon Wei, David Brooks, and
Carole-Jean Wu. Chasing Carbon: The Elusive Envi-
ronmental Footprint of Computing. In HPCA. ACM,
February 2021.

[15] Kawsar Haghshenas, Brian Setz, and Marco Aiello. Co2
emission aware scheduling for deep neural network train-
ing workloads. In 2022 IEEE International Conference
on Big Data (Big Data), pages 1542–1549, 2022.

[16] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali
Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, and
Ion Stoica. Mesos: A Platform for Fine-grained Resource

Sharing in the Data Center. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
March 2011.

[17] Aled James and Daniel Schien. A low carbon kuber-
netes scheduler. In 6th International Conference on
ICT for Sustainability, ICT4S 2019, volume 2382 of
CEUR Workshop Proceedings. CEUR-WS, June 2019.
6th International Conference on ICT for Sustainability,
ICT4S 2019 ; Conference date: 10-06-2019 Through 14-
06-2019.

[18] Nicola Jones. How to stop data centres from gobbling
up the world’s electricity. Nature, 561(7722):163–167,
2018.

[19] Stuart Mitchell, Michael OSullivan, and Iain Dunning.
Pulp: a linear programming toolkit for python. The
University of Auckland, Auckland, New Zealand, 65,
2011.

[20] Sparsh Mittal. A survey of techniques for approximate
computing. ACM Computing Surveys (CSUR), 48(4):1–
33, 2016.

[21] Matthew J Saltzman. Coin-or: an open-source library
for optimization. Programming languages and systems in
computational economics and finance, pages 3–32, 2002.

[22] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy,
Qianlin Liang, David Irwin, and Prashant Shenoy. Eco-
visor: A Virtual Energy System for Carbon-Efficient
Applications. In ASPLOS, pages 252–265, New York,
NY, USA, March 2023. ACM.

[23] Emma Strubell, Ananya Ganesh, and Andrew McCallum.
Energy and Policy Considerations for Modern Deep
Learning Research. In AAAI Conference on Artificial
Intelligence (AAAI), pages 13693–13696, New York, NY,
USA, February 2020. ACM.

[24] Thanathorn Sukprasert, Abel Souza, Noman Bashir,
David Irwin, and Prashant Shenoy. Quantifying the
benefits of carbon-aware temporal and spatial workload
shifting in the cloud. arXiv preprint arXiv:2306.06502,
2023.

[25] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: The Next Generation. In
European Conference on Computer Systems (EuroSys),
pages 1–14, New York, NY, USA, 2020. ACM.

[26] Samuel Trevino-Martinez, Rapinder Sawhney, and Oleg
Shylo. Energy-carbon footprint optimization in sequence-
dependent production scheduling. Applied Energy,
315:118949, 2022.

[27] Emile Vauge. Traefik, 2016. https://traefik.io/traefik/.

[28] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kor-
dian Gontarska, and Lauritz Thamsen. Let’s wait awhile:

https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://electricitymaps.com/
https://electricitymaps.com/
https://kiwix.org
https://openzim.org
https://grafana.wikimedia.org/
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://traefik.io/traefik/

How temporal workload shifting can reduce carbon
emissions in the cloud. In Proceedings of the 22nd
International Middleware Conference, pages 260–272,
2021.

[29] Zichen Xu, Nan Deng, Christopher Stewart, and Xiaorui
Wang. Cadre: Carbon-aware data replication for geo-
diverse services. In 2015 IEEE International Conference
on Autonomic Computing, pages 177–186. IEEE, 2015.

[30] Siyue Zhang, Minrui Xu, Wei Yang Bryan Lim, and
Dusit Niyato. Sustainable aigc workload scheduling of
geo-distributed data centers: A multi-agent reinforcement
learning approach, 2023.

	Introduction
	Background
	System Design and Implementation
	Architecture
	Carbon Aware Scheduler
	Implementation

	Evaluation
	Datasets
	Experimental Setup
	Results
	Effects on Request Redirection
	Effects on Resource Provisioning
	Effects on Carbon and Latency

	Related Work
	Conclusion and Future Work
	References

