
C����� C���������: A System-level Facility for
Managing Application-level Carbon Emissions

John Thiede, Noman Bashir, David Irwin, Prashant Shenoy
University of Massachusetts Amherst

ABSTRACT
To reduce their environmental impact, cloud datacenters’
are increasingly focused on optimizing applications’ carbon-
e�ciency, or work done per mass of carbon emitted. To facil-
itate such optimizations, we present C����� C���������,
a simple system-level facility, which extends prior work on
power containers, that automatically regulates applications’
carbon emissions in response to variations in both their work-
load’s intensity and their energy’s carbon-intensity. Specif-
ically, C����� C��������� enable applications to specify
a maximum carbon emissions rate (in g·CO2e/hr), and then
transparently enforce this rate via a combination of verti-
cal scaling, container migration, and suspend/resume while
maximizing either energy-e�ciency or performance.

C����� C��������� are especially useful for applications
that i) must continue running even during high-carbon peri-
ods, and ii) execute in regions with few variations in carbon-
intensity. These low-variability regions also tend to have
high average carbon-intensity, which increases the impor-
tance of regulating carbon emissions. We implement a C���
��� C�������� prototype by extending Linux Containers
to incorporate the mechanisms above and evaluate it using
real workload traces and carbon-intensity data frommultiple
regions. We compare C����� C��������� with prior work
that regulates carbon emissions by suspending/resuming
applications during high/low carbon periods. We show that
C����� C��������� are more carbon-e�cient and improve
performance while maintaining similar carbon emissions.

CCS CONCEPTS
• Hardware! Impact on the environment; • General
and reference! Performance; Metrics; Design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624644

KEYWORDS
Carbon-e�ciency, energy-e�ciency, performance.

ACM Reference Format:
John Thiede, Noman Bashir, David Irwin, Prashant Shenoy. 2023.
C����� C���������: A System-level Facility for Managing
Application-level Carbon Emissions. In ACM Symposium on Cloud
Computing (SoCC ’23), October 30–November 1, 2023, Santa Cruz,
CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3620678.3624644

1 INTRODUCTION
The number and size of cloud datacenters is continuing
to grow at a rapid pace to satisfy computing’s increasing
demand, which is being driven by a variety of new and
computationally-intensive applications in arti�cial intelli-
gence (AI) and machine learning (ML) [1]. This rapid growth
in datacenter capacity will translate into rapid growth in en-
ergy consumption if improvements in computing’s energy-
e�ciency do not keep pace with its capacity growth. That
is, every time datacenter capacity doubles, energy-e�ciency
must also double to keep energy consumption constant. A
recent report estimates datacenter capacity increased by
6⇥ in the 2010s and is expected to increase by more in
the 2020s [23]. Unfortunately, after decades of optimization,
there are few remaining opportunities for further increasing
energy-e�ciency by a factor of 6⇥ or more [4].
The trends above have led to increasing concern about

cloud computing’s carbon emissions and impact on climate
change moving forward. As a result, there has been sub-
stantial recent work on optimizing applications’ carbon-
e�ciency, or work done per mass of carbon emitted [8, 19,
25, 32–34]. Much of this work leverages variations in grid
energy’s carbon-intensity (in grams of carbon dioxide equiv-
alent per kilowatt-hour or g·CO2e/kWh) to schedule compu-
tation when and where low-carbon energy is available, e.g.,
by migrating load to low-carbon regions or deferring load to
low-carbon periods. Grid energy’s carbon-intensity varies
spatially because each region has its own mix of energy
sources, which have di�erent carbon intensities. For exam-
ple, solar, wind, hydro, geothermal, and nuclear have zero
marginal carbon emissions, while natural gas-powered gener-
ators tend to have fewer carbon emissions than coal-powered
generators. Likewise, energy’s carbon-intensity also varies
temporally because the mix of energy sources (with di�erent

https://doi.org/10.1145/3620678.3624644
https://doi.org/10.1145/3620678.3624644
https://doi.org/10.1145/3620678.3624644

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

carbon intensities) the grid uses in each region changes over
time due to changes in both demand and weather. Recent
work has developed carbon-aware policies for i) temporal
workload shifting by suspending jobs when grid energy’s
carbon-intensity exceeds a con�gurable threshold subject
to deadline constraints [34] and ii) spatial workload shifting
by routing web requests to regions with excess solar energy
subject to latency constraints [19]. This work has shown
signi�cant potential for reducing carbon emissions in and
across regions with widely variable carbon-intensity.
Unfortunately, prior work on temporal shifting does not

apply to either applications that must execute continuously
or in most high-carbon regions, as these regions have few
variations in carbon-intensity, while spatial shifting for state-
ful workloads often incurs prohibitive overheads. To address
the problem, this paper presents C����� C���������, a
simple system-level facility that regulates the carbon emis-
sions of individual applications in response to variations in
both their workload’s intensity and their energy’s carbon-
intensity. C����� C��������� extend the notion of Power
Containers [30], a previously proposed OS facility for �ne-
grained power and energy management in servers, and com-
bines it with resource de�ation and migration techniques
[28, 29] to regulate an application’s carbon emissions.
Speci�cally, C����� C��������� enable applications to

specify a con�gurable maximum carbon emissions rate (in
g·CO2e/hr), and then transparently enforce this rate via a
combination of vertical scaling, container migration, and
suspend/resume, while maximizing either performance or
energy-e�ciency. That is, instead of either suspending jobs
(or migrating them to a lower-carbon region) when carbon-
intensity increases, C����� C��������� de�ates their re-
source allocation by vertically scaling them down to ensure
they do not exceed their maximum rate. If vertical scaling
is either insu�cient or too ine�cient, C����� C���������
enforce the target carbon emissions by automatically migrat-
ing to a server with a lower energy and carbon footprint, i.e.,
a smaller server. C����� C��������� only suspend them-
selves when energy’s carbon-intensity is so high that vertical
scaling and migration cannot satisfy the carbon target.
Importantly, beyond setting the target carbon emissions

rate, C����� C���������’ operation is entirely transparent
to applications, unlike recent work on virtualizing the en-
ergy system, which exposes carbon-intensity dynamics to
applications andmakes them responsible for optimizing their
own carbon-e�ciency [32]. Our hypothesis is that C�����
C��������� provides a general and �exible tool for transpar-
ently managing application carbon emissions in response to
variations in workload- and carbon-intensity. In evaluating
our hypothesis, we make the following contributions.
Carbon- andWorkload-IntensityDataAnalysis. We ana-
lyze grid carbon-intensity and cloudworkloads in production

traces to understand how they vary. We show that, while
grid carbon-intensity typically has few variations (on the
order of hours-to-days), job resource usage, and thus energy
consumption, in production workloads varies widely (on the
order of minutes-to-hours). We also show that high-carbon
regions, where managing carbon is most important, have few
variations in carbon-intensity. Our analysis motivates that
adapting applications to changes in their workload-intensity
is just as, if not more, important as adapting to changes in
energy’s carbon-intensity in managing carbon emissions.
C����� C��������� Design. We present the design
of C����� C���������, which builds on Power Contain-
ers [30] by transparently enforcing a con�gurable maximum
carbon emissions rate for applications via a combination
of vertical scaling, migration, and suspend/resume. We de-
velop two enforcement policies forC�����C��������� that
prioritize energy-e�ciency or performance. The former min-
imizes an application’s energy consumption while minimally
throttling it, while the latter always operates close to the
carbon emissions target regardless of its energy-e�ciency.
Implementation and Evaluation. We implement a Linux
C����� C��������� (LXCC) prototype by extending Linux
Containers (LXC), and evaluate it on CloudLab and in sim-
ulation using production job and carbon-intensity traces.
We compare LXCC with a recent approach that controls car-
bon emissions by suspending/resuming applications during
high/low carbon periods [34], and show that C����� C���
������� are signi�cantly more carbon-e�cient in enabling
higher performance for only a small increase in emissions.
We have publicly released C����� C��������� under a
permissive open-source license.1

2 MOTIVATION AND BACKGROUND
In this section, we motivate C����� C��������� by an-
alyzing real-world data on grid energy’s carbon-intensity
(§2.1), cloud datacenters’ workload-intensity (§2.2), and their
impact on both energy- and carbon-e�ciency (§2.3).

2.1 Grid Energy’s Carbon-Intensity
As mentioned in §1, grid energy’s average carbon-intensity
in g·CO2e/kWh varies over time based on the changing mix
of generators (with di�erent carbon-intensities) it uses to
satisfy a variable demand. In addition, di�erent regions have
widely di�erent carbon-intensity characteristics in terms
of both their average magnitude and variance. For exam-
ple, Figure 1 shows both the average carbon-intensity (top)
and Coe�cient of Variation (CoV) (bottom) for 27 regions
worldwide. This data comes from electricityMap [3], a car-
bon information service that estimates per-region carbon
emissions based on public data about the type and output
of generators used in each region over time. ElectricityMap
1https://github.com/carbon�rst/CarbonContainers

https://github.com/carbonfirst/CarbonContainers

C����� C��������� SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Figure 1: The average carbon-intensity (top) and Co-
e�cient of Variation (CoV) (bo�om) for many regions
worldwide. The x-axis is ordered by increasing CoV. The
locations with high average carbon-intensity generally
have a low CoV, albeit with some notable exceptions.

reports the average carbon-intensity every hour. Since the
set of active generators and their output changes relatively
slowly (based primarily on day/night cycles), grid energy’s
carbon-intensity does not change signi�cantly within an
hour. We use this data to compute the annual daily carbon-
intensity CoV (based on hourly readings). The CoV is the
ratio of a dataset’s standard deviation to its mean. Thus, a
CoV at or near 0 indicates nearly constant data. The G-axis
for both graphs in Figure 1 is in order of increasing CoV.

The graph demonstrates multiple key points. Most impor-
tantly, there is a wide di�erence between the lowest carbon
region and the highest carbon region—by more than 500⇥—
as some regions have large quantities of zero-carbon energy
sources, e.g., hydro, nuclear, geothermal, solar, wind, etc.,
while others have almost none. Clearly, managing carbon
emissions in the higher carbon regions is much more impor-
tant, and has a much bigger impact, than managing them in
lower carbon regions. For example, reducing energy usage by
only 5% in a region where carbon-intensity is 800g·CO2/kWh
lowers emissions more than reducing energy usage by 100%
(which is impossible) in a region where carbon-intensity is
only 30g·CO2/kWh (assuming carbon-intensity is constant).
Notably, there is also a wide di�erence between the re-

gions with the lowest and highest CoV. Many CoVs are quite
low, as nearly one-third of the regions have a daily hourly

��
��
�����

��
�� ��
��
�����

��
�� ��
��
����	

��
�� ��
��
����

��
�� ��
��
�����

�

���

	��

���

���

����

	
�
�

�
�
�

�
�
�
�
�
��
�

�
�
�
	
�
�
�
�
��
�
�
�

���������� ������ �����������

Figure 2: Energy’s carbon-intensity for representative
regions over a 96-period with low (Poland), medium
(Netherlands), and high (California) CoV (see Figure 1).

CoV below 0.05, as indicated by the vertical dotted lines,
which divides the regions into thirds. A CoV<0.05 indicates
that energy’s carbon-intensity is nearly constant. Further,
CoVs for the middle third of regions range from only 0.05 to
0.15, which, while higher, is sill relatively low. Only the last
couple of regions in our dataset have much higher CoVs (0.15
and 0.35) due to large penetrations of renewable energy. Fig-
ure 2 illustrates the di�erences in CoV for 3 di�erent carbon
regions over 48 hours: one in each third of Figure 1(bottom).
The graph shows minimal variations for the regions in the
lowest and middle third of CoV (Poland and the Netherlands),
and more variation for the region in the highest third third
of CoV (California), largely due to high solar penetration.

Our illustrative example also shows that the regions with
less variation tend to have a higher average carbon-intensity.
Figure 1(top) shows that this is generally true across all 27
regions with a few notable exceptions. The �gure plots the
average carbon-intensity of each region in the same order as
in Figure 1(bottom). As shown, the average carbon-intensity
trend generally decreases as the CoV increases, except for
some regions mixed in with very low carbon-intensity. These
regions have a low CoV and low average carbon-intensity
primarily due to the presence of large quantities of nuclear
and hydro energy. In all other cases, the decrease in carbon-
intensity is due to increasing solar andwind energy, which in-
creases the CoV. Overall, the highest-third of regions in terms
of CoV has an average carbon-intensity of 189g·CO2/kWh;
the middle-third has 344g·CO2/kW; and the lowest-third has
551g·CO2/kW (or nearly 2⇥ more than high CoV regions).
Importantly, carbon-aware scheduling policies that

suspend/resume applications when carbon-intensity is
high/low [34] are only e�ective when carbon-intensity varies
widely. Unfortunately, our analysis shows this only happens
in regions with low average carbon-intensity. Thus, while
suspend/resume policiesmay yield a signi�cant local percent-
age reduction in carbon emissions, their absolute reduction
is quite small. In addition, the lack of variations in carbon-
intensity across many regions means that dynamically mi-
grating jobs to the lowest carbon region is ine�ective for jobs

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

�	�	��
� �	��
�	�
� �	�
�	��
� �	��
�
� �

�������������

	

	

�	

�

�	

�

��
��

��
 �

��
��

���
�

��
��

�

��	

��

�	��

���

�
�	

Figure 3: Percentage of VMs from a random 1000 VM in
the Azure trace with di�erent ranges of CoV.

with any memory and disk state. The migration overhead is
high, and the carbon-intensity across di�erent regions rarely
intersects. As Figure 2 illustrates, low-carbon regions tend
to always have lower carbon-intensity than high-carbon re-
gions. Thus, even if we ignore migration overhead, there are
few times when moving from one region to another substan-
tially lowers carbon emissions.

2.2 Datacenters’ Workload-Intensity
We also analyzed jobs’ workload-intensity from a produc-
tion job trace. In this case, we analyze a public trace released
by Azure that provides the minimum, maximum, and aver-
age CPU utilization and memory allocation for ⇠2.7 million
production virtual machines (VMs) every 5 minutes over 30
days. The Azure trace has a size of 235GB and contains ⇠1.9
billion readings [2]. There are two primary takeaways from
our trace analysis that motivate our work.

High Workload Variations. Most importantly, VM CPU uti-
lization exhibits potentially wide variations on the order of
minutes to hours. While a few VMs exhibit constant resource
usage, most exhibit some variance. For example, Figure 3
shows that, from a random sample of 1000 VMs in the Azure
trace, only 8% have a CoV below 0.25. In this case, we com-
pute the CoV over 5-minute intervals, rather than the 1-hour
intervals in the carbon-intensity data. Thus, even the low
CoVs suggest more variation than the carbon-intensity traces.
In addition, 30% of VMs have CoV greater than 1 which indi-
cates extremely high variance (i.e., where standard deviation
exceeds the mean), and over 50% of VMs have CoV greater
than 0.4. Overall, the variations in workload-intensity are
much larger than those in energy’s carbon-intensity.

Low Resource Utilization. The second important takeaway
from our workload-intensity analysis is that average CPU
utilization across VMs is typically low with more than 43%
of the VMs having less than 10% utilization. In general, low
utilization is highly energy-ine�cient. Since servers are not
energy-proportional [7], their most e�cient operating point
is at 100% utilization, as this amortizes their baseload power
across the most amount of computation. Baseload power

is non-trivial and can be as high as 50% of a server’s peak
power. As a result, migrating jobs across servers as their
utilization changes can have a substantial e�ect on their
energy-e�ciency, and thus also their carbon-e�ciency.

2.3 Impact on Carbon-E�ciency
Our analysis above motivates our design for C����� C���
�������, which regulates an application’s carbon emissions
in response to variations in both carbon- and workload-
intensity using a combination of vertical scaling, migration,
and suspend/resume. As we show, C����� C��������� pri-
marily adapt to changes in an application’s workload-intensity,
as it varies much more than carbon-intensity.
Importantly, when an application’s workload-intensity

changes on a server, so does its energy-e�ciency and thus
carbon-e�ciency, as carbon emissions are simply the prod-
uct of an application’s energy consumption and its energy’s
carbon-intensity. Speci�cally, when workload-intensity de-
creases, energy-e�ciency also decreases since servers are not
energy-proportional. At some point, migrating to a smaller
server, i.e., with fewer cores and less memory, can increase
energy-e�ciency and thus carbon-e�ciency, since it reduces
baseload power and amortizes it over the same computation.
As we discuss, C����� C���������’ enforcement policy
leverages this insight to satisfy its carbon target, while mini-
mally throttling resources and maximizing energy-e�ciency.

As summarized below, C����� C��������� address mul-
tiple problemswith existing techniques for leveraging tempo-
ral and spatial variations in energy’s carbon-intensity using
suspend/resume scheduling and wide-area migration.
Ine�ective in high carbon regions. Suspend/resume sched-

uling policies that suspend jobs when carbon emissions are
high and resume themwhen low are only e�ective in regions
where energy’s carbon-intensity varies widely [34]. That
is, these techniques are only e�ective if energy’s carbon-
intensity is periodically low. Yet, as we show in §2.1, en-
ergy’s carbon-intensity does not vary widely in many re-
gions, largely due to a low penetration of intermittent solar
and wind energy sources, which cause most of the variations.
As a result, the regions with high carbon emissions (by a wide
margin), where managing carbon emissions is the most criti-
cal, tend also to be the ones where suspend/resume sched-
uling policies are the least e�ective. In contrast, C�����
C��������� can enforce an arbitrary carbon emissions rate
regardless of the variations in grid energy’s carbon-intensity,
and thus can be e�ective even in high-carbon regions with
few variations. As mentioned above, C����� C���������
mostly adapt to frequent and signi�cant changes in a job’s
workload-intensity rather than energy’s carbon-intensity.

High performance penalty. Even in regions where carbon-
intensity varies widely, it typically follows a diurnal pattern
with signi�cant changes occurring on the order of hours.

C����� C��������� SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Thus, reducing carbon emissions using suspend/resume poli-
cies often requires delaying jobs by many hours—from night
to day. This high performance penalty is likely undesirable
for many shorter batch jobs, and prohibitive for interactive
jobs, which require an immediate response. Thus, by rate-
limiting rather than suspending jobs, C����� C���������
lowers the performance penalty due to high carbon peri-
ods compared to suspend/resume policies: jobs always keep
running but at a lower performance level.
High migration overhead. One way to prevent delaying

jobs when carbon-intensity increases is to migrate them to
lower carbon regions [31]. While dynamically migrating (or
routing) small web/inference requests to low-carbon regions
(as part of geo-replicated services) is possible [19], migrat-
ing stateful jobs with non-trivial memory or disk state over
the wide area incurs a high performance and energy over-
head [35]. This overhead limits the applicability and bene�t
of carbon-aware spatial workload shifting. Further, cross-
region migration is only useful between regions with highly
variable carbon-intensity that is also out-of-phase, where
low-carbon periods are not aligned. However, as we show in
§2.1, there are few such regions. In contrast, C����� C���
������� shows that job migration can be an e�ective tool for
managing carbon emissions within a datacenter, even when
all servers share the same energy and thus carbon-intensity.
While all servers share the same energy, datacenters include
di�erent types of servers. Since the energy-e�ciency of ap-
plications with time-varying demand is di�erent on di�erent
types of servers, their carbon-e�ciency is also di�erent.

3 CARBON CONTAINERS DESIGN
In this section, we �rst present C����� C���������’ archi-
tecture (§3.1), which builds on Linux Containers (LXC), and
then discuss its carbon enforcement policy (§3.2).

3.1 System Architecture
C����� C��������� enable users to con�gure a maximum
(or target) carbon emissions rate (in g·CO2e/hr), which they
transparently enforce via a policy that combines vertical
scaling, container migration, and suspend/resume. We as-
sume the target carbon rate is set based on an exogenous
policy that captures applications’ tradeo� between perfor-
mance and carbon emissions. Of course, setting a lower target
carbon rate may decrease performance, e.g., when a high
carbon-intensity period aligns with high utilization. Alter-
natively, a policy may choose to set a higher target carbon
rate to service a critical application, and accept much higher
carbon emissions. There is no free lunch in optimizing car-
bon; only tradeo�s. As we discuss, C����� C���������’
goal is to maximize an application’s energy-e�ciency while
minimally throttling performance, as workload- and carbon-
intensity vary, subject to its target carbon emission rate.

LXCC interface LXC interface

migrator

policy module

power
carbon

scaler

LXCC

resource

cluster

monitoring

enforcement

server 1

server 2

server N

user
carbon control

standard LXC control

Figure 4: High-level architecture for C����� C�������
���, including its monitoring, policy, and enforcement
modules on a cluster with servers of varying sizes.
Figure 4 depicts the C����� C��������� architecture,

which builds on existing container functions. While we
build on LXC, the architecture is general and could interface
equally well with other container implementations. Since our
prototype builds on LXC, we refer to it as LinuxC�����C���
������� or LXCC. C����� C��������� operate from the per-
spective of a cloud user, rather than provider, and thus make
decisions locally without considering a cloud platform’s car-
bon emissions. While providers should consider their whole
infrastructure in optimizing carbon emissions, cloud users
can only control their applications. The C����� C�������
��� core is a policy module that runs as a background dae-
mon and i) registers newly created containers, ii) monitors
containers’ workload-, power-, and carbon-intensity, and
iii) controls vertical scaling, container migration, and sus-
pend/resume functions to enforce each container’s carbon
target. We discuss these basic functions and policies in §3.2.
3.1.1 Carbon Container Interface. LXCC’s policy module in-
cludes a programmatic interface for registering new contain-
ers, setting their maximum carbon target, and con�guring
their enforcement policy. The policy module also includes a
con�guration �le that captures information on the types of
servers available for migration, the information necessary
for requesting them, i.e., a cloud API key, and information on
monitoring per-container power usage and energy’s carbon-
intensity. Aswe discuss in §4, we built an lxcc command-line
program that wraps the lxc command-line tool and inter-
faces with the policy module’s programmatic interface. Our
command-line tool passes most commands through to lxc,
retaining the same interface and options as lxc, but adds
new lxcc-speci�c options, e.g., for setting the carbon tar-
get, and also registering and de-registering containers with
the policy module when they are created and destroyed. We
made the LXCC interface as similar as possible to LXC.
3.1.2 Monitoring Subsystem. The policy module includes a
monitoring subsystem that monitors applications’ resource,
power, and carbon usage in real time, as discussed below.
Resource monitoring. LXCC monitors per-core utilization,
memory usage, and a range of other hardware performance

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

counters, to determine if a container is under-utilizing its
resources or potentially being throttled. Speci�cally, LXCC es-
timates resource utilization on a scale from 0-100%, such that
100% utilization indicates a container that has been throt-
tled, i.e., could use additional resources, while any utilization
below 100% is not throttled. We use a performance model
to normalize this utilization relative to a baseline server to
make it comparable across di�erent servers. This utilization
is also averaged across the cores assigned to a container.
We assume a family of homogeneous server instances as

in cloud platforms with resources that are �xed multiples
of each other, and scale the estimated utilization across dif-
ferent servers linearly based on this multiple. That is, these
servers have the same hardware architecture, but with di�er-
ent resource allocations. This enables LXCC to use a simple
linear performance model to estimate resource usage on
other servers. For example, we assume a container running
at 40% utilization on the baseline server would run at 20% uti-
lization on a server 2⇥ larger and 80% utilization on a server
0.5⇥ smaller. For simplicity, LXCC optimistically assumes that
a throttled container operating at 100% utilization would op-
erate at 50% utilization on a server 2⇥ as large, e.g., it can
utilize more cores. If this assumption is wrong, then the en-
forcement policies will self-correct, as the actual utilization
will be less than expected, which will trigger the enforce-
ment policy. Note that a container that is highly utilizing
a large server instance may have a normalized utilization
greater than 100%, indicating that it would be throttled on
the baseline server. Since LXCC’s goal is to throttle containers
as little as possible, its enforcement policy will only throttle
them once they are at or near the carbon target.

LXCC also uses the resource usage above to infer a con-
tainer’s real-time power usage, as discussed below. In general,
to support more heterogeneous servers, i.e., with di�erent
hardware architectures, LXCC could use more sophisticated
performance models, e.g., using machine learning, that infer
the resource usage on other servers from the resource usage
on the server it is currently executing on. However, adding
such support is future work. LXCC monitors resource usage
at a high resolution, e.g., every �ve minutes.
Power monitoring. LXCC requires the ability to monitor
�ne-grained power on a per-container basis, as in prior
work on Power Containers [30]. In particular, LXCC supports
model-based power monitoring based on performance coun-
ters. Users can supply their own con�gurable model for each
server, or use external power monitoring software, such as
PowerAPI [13], that includes such models. Thus, LXCC can
leverage the substantial prior work on developing power
models [13]. These power models must be con�gured for
LXCC based on the particular set of servers it runs on. They
include a base power component, which is the power at idle

Optimize Control
power
carbon
utilization

Sense

size
up

size
downstay

carbon energy

A

A
scale

A

Bmigrate

Figure 5:C�����C���������’ workflow formonitoring
energy usage and carbon-intensity to make container-
level carbon management decisions.
and does not change with utilization, and a marginal power
component, which dynamically varies with utilization.
As prior work shows, CPU utilization remains the domi-

nant component of marginal power consumption, as it still
has by far the widest dynamic power range [13]. We also
show this experimentally in §4 for the servers used in our
evaluation. When determining whether to migrate a con-
tainer, LXCC combines the performance model above with its
power model to estimate what a container’s utilization and
power would be on other servers, and thus requires power
models for other candidate servers as well. LXCC monitors
power usage at a high resolution, e.g., every �ve minutes.
Carbon monitoring. LXCC interfaces with electricityMap’s
API [3] to monitor the carbon-intensity of its servers’ energy
based on their operating region. LXCC enables users to spec-
ify the region in a con�guration �le. As mentioned earlier,
carbon-intensity changes only every hour, so the policy mod-
ule only updates it once per hour. Given average power con-
sumption ? (C) over its monitoring interval � and energy’s
carbon-intensity 2 (C), the policy module also monitors a con-
tainer’s overall carbon emissions rate ⇠ (C)=? (C) ⇥ 2 (C). As
we discuss in §3.2, the enforcement policy responds if ⇠ (C)
is at or close to the carbon target rate ⇠C0A64C .
3.1.3 Enforcement Mechanisms. LXCC’s enforcement policy
uses a combination of 3 mechanisms — vertical scaling, con-
tainer migration, and suspend/resume — discussed below to
ensure containers remain at or below their carbon target.
Vertical scaling. LXCC sets resource quotas to cap the maxi-
mum power usage as in recent work [21]. Speci�cally, LXCC
uses LXC cgroups to control the number of cores a container
can use and (optionally) the time slice for each core. By cap-
ping resource usage, vertical scaling caps the power usage
and carbon emissions rate for a given carbon-intensity. As
we discuss in §3.2, LXCC adjusts containers’ resource quota in
response to changes in energy’s carbon-intensity to ensure
they never exceed their target carbon emissions rate.

Vertical scaling has two potential drawbacks when enforc-
ing a carbon target. Most importantly, since servers typically
have a low dynamic power range, vertical scaling alone may
not satisfy a carbon target if carbon-intensity signi�cantly
increases, as happens in the evening in regions with a high
solar penetration. In such cases, even if the resource quota

C����� C��������� SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

is set to 0%, a server’s baseload power may cause it to ex-
ceed its carbon target. In addition, vertically scaling down
a container’s quota decreases its energy-e�ciency, since it
amortizes the server’s baseload power over less computation.
Container migration. Container migration addresses both
drawbacks of vertical scaling. In essence, migrating a con-
tainer to smaller and larger servers e�ectively extends LXCC’s
dynamic power range. In general, smaller servers, e.g., with
fewer cores and memory, also have a proportionately lower
baseload power, and thus are more energy-e�cient; they can
also be just as performant as larger servers for workloads
that cannot fully utilize a larger server. As discussed in §3.2,
LXCCmigrates to larger servers, if the carbon emissions allow,
to prevent throttling a container, and migrates to smaller
servers to enforce the carbon target once it becomes more
energy-e�cient than further vertical scaling down. LXCC in-
cludes a con�gurable table of servers available for migration,
e.g., as provided by cloud platforms, where each container
locally determines where to migrate based on its own policy.

As we discuss in §4, LXC supports both checkpoint/restore
and live migration [12], although there are some restrictions
on the container con�guration. Live migration is transparent
and incurs little downtime, while a checkpoint/restore migra-
tion requires pausing the container, transferring its memory
state to the destination server, and then restoring it. While
both approaches can maintain active TCP connections as
long as the downtime is less than the TCP timeout, a check-
point/restore migration incurs a performance overhead as
the application cannot execute during the migration.
Suspend/Resume. LXCC can also suspend a container, which
idles its server and drops its marginal power usage to 0.
However, since servers always consume baseload power, sus-
pending containers is in�nitely energy-ine�cient, as they
perform no useful work but still consume substantial energy.
LXCC’s enforcement policy only suspends a container when
it cannot operate below the carbon target by migrating to the
smallest (most energy-e�cient) server and vertically scal-
ing it down to minimize the baseload power that is wasted
when suspended. The baseload power of the smallest server
dictates a lower bound on LXCC’s power usage. Thus, there
are scenarios where it is impossible for LXCC to enforce its
carbon target if the carbon-intensity increases too much.

3.2 Carbon Enforcement Policy
Given a target carbon emissions rate for a container, LXCC
transparently executes an enforcement policy that combines
the mechanisms above to ensure the container does not ex-
ceed its rate. LXCC’s enforcement policy has two variants.
The default policy ensures a container does not exceed the
target carbon emissions rate, minimizing energy consump-
tion without throttling the container, i.e., by never operating
at 100% utilization. We call this policy the energy-e�ciency

policy, since it prioritizes energy-e�ciency. In contrast, users
may also con�gure an alternative performance policy, which
ensures that a container’s emissions rate always remains
within some threshold of the target rate. Thus, under the
performance policy, a container may run on a large, power-
intensive server at low usage, as long as it remains below its
carbon target, which is highly ine�cient. The performance
policy is useful for providing a container reserve capacity to
handle any sudden load bursts with low latency.

In e�ect, the energy-e�ciency policy variant enforces the
target carbon rate, while also minimizing overall carbon
emissions, while the performance policy variant operates at
or near the target. Both policy variants minimize throttling
the container subject to the target carbon rate, i.e., they only
throttle when necessary to enforce the carbon target. Below,
we �rst discuss general aspects of both enforcement policy
variants, and then discuss their speci�c di�erences.
3.2.1 General Enforcement Policy. Both policy variants con-
tinuously compare the current carbon emissions ⇠8 (C) of a
container on its current server 8 to its carbon target⇠C0A64C . If
⇠8 (C) comes within some con�gurable threshold n , LXCC trig-
gers an enforcement mechanism. As described above, ⇠8 (C)
is a function of a container’s resource utilization (and thus
power usage) and energy’s carbon-intensity. The value of n
is con�gurable and presents a tradeo�. If the value is near 0,
i.e., actions are only enforced when at the target, then the
container i) may periodically exceed ⇠C0A64C since enforce-
ment actions have some delay, and ii) may cause thrashing
that triggers unnecessary enforcement actions, i.e., migra-
tions. As n’s value increases, the policy diverges more from
the strict target, but lessens the overhead due to thrashing.
The �rst enforcement mechanism is to vertically scale a

container down until⇠ (C) is not within the threshold, as ver-
tical scaling has lower overhead than migration. In parallel,
the policy also estimates, based on the power model of the
next smallest server 9 , the carbon emissions rate ⇠ 9 (C). As
the policy vertically scales down a container, if the carbon
emissions rate ⇠ 9 (C) on the next smallest server ever drops
below ⇠8 (9) and the smaller server throttles the application
less than vertically scaling down the larger server, the policy
triggers a migration of the container to the smaller server.
To illustrate the decision of when to migrate versus con-

tinue vertically scaling, consider the following example with
a “big” server that has 2⇥ the resource capacity of a “small”
server, where we assume the big server has a baseload power
of 100W and peak power of 200W, while the small server has
a baseload power of 50W and peak power of 100W. If the
big server is throttled by 50%, i.e., capped at 50% utilization,
it would consume 150W, but have the same performance
capacity as a small non-throttled server consuming 100W.
At this point, assuming the container is fully using its 50%
allocation on the big server, the policy would migrate to

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

the smaller server as it provides the same performance for
less energy. Note that if LXCC requests to provision a server
from the list for migration, and it is not available, then LXCC
removes the server and re-evaluates the policy.

At some point, if both a container’s workload- and carbon-
intensity increase too much, the policy will migrate the appli-
cation to the smallest server such that further migrations are
impossible, and the container is fully throttled due to vertical
scaling. At this point, the policy suspends the container until
carbon-intensity decreases to a point where the container
can be vertically scaled up and is not throttled.
In addition to scaling containers down when ⇠8 (C) ap-

proaches ⇠C0A64C , the policy may also scale containers up
if their resource utilization increases, and they are below
⇠C0A64C . Similar to above, in this case, the policy vertically
scales containers up until they reach ⇠C0A64C or they have
access to the server’s entire resource capacity. If a container
is fully utilizing a server’s resource capacity, and it is still
below⇠C0A64C , then the server is throttled, and the policy will
migrate the container to the next largest server (as long as
doing so would not exceed ⇠C0A64C).
3.2.2 Energy-e�iciency Variant. The energy-e�ciency pol-
icy variant extends the general policy above by simply mi-
grating containers to smaller servers if they are not fully
utilizing their current server. In this case, the migration deci-
sion is essentially the same as the one above, but is triggered
instead based on a lack of server utilization rather than forced
vertical scaling due to being near ⇠C0A64C . That is, in the ex-
ample above, if a container is only utilizing the big server
50% or less, rather than being vertically scaled down to 50%,
the decision is the same: migrating to the smaller server will
be more energy-e�cient and carbon-e�cient, and doing so
will not throttle the container. Thus, the energy-e�ciency
variant will migrate the container down in this case. Notably,
the energy-e�ciency variant still ensures that containers
are never throttled if they are below ⇠C0A64C . That is, the pol-
icy does not simply maximize energy-e�ciency, as doing so
would require always executing a container on the smallest
most energy-e�cient server regardless of throttling.
3.2.3 Performance Variant. Unlike the energy-e�ciency
variant above, the performance policy variant does not mi-
grate containers to smaller servers when they are below
⇠C0A64C and are not fully utilizing their current server. In-
stead, the performance policy attempts to vertically scale up
and migrate containers to larger servers to be within n of
the carbon target regardless of a container’s utilization. As
a result, the performance policy is less energy-e�cient, as
it may run an idle container on a large server 8 if energy’s
carbon-intensity is low, as long as the container’s carbon
emissions rate ⇠8 (C) remains below ⇠C0A64C . Thus, the per-
formance variant uses its excess carbon to maintain reserve
capacity to handle unexpected bursts in resource usage. Since

� 	� ��
� �� ���
��#!%"����$���(�$�! ����

�

�

�

��

�	�

���

���

�!
&�

"��
�
�

���
���!"'
��#�
��$&!"�
� �� ���

���

�
�

�
�

���

���

Figure 6: Measured power usage relative to resource uti-
lization levels. CPU usage is set at 100% to isolate the
e�ect of memory, network, and disk from CPU.
many jobs have a low average usage interspersed with large
bursts of utilization, the performance variant tends to incur
less migrations and overhead from migrating containers to
smaller servers after a burst of resource and power usage.

4 IMPLEMENTATION
We implemented aC�����C��������� prototype in python
3.7+ using a microservice approach consisting of a collection
of coordinating services that run as background daemon
processes and communicate via gRPCs. Our implementa-
tion uses Linux Containers (LXC 3.0.3) [22] and CRIU v3.7
(Checkpoint/Restore in Userspace) [6] for migration. CRIU
supports container checkpoint/restore (or stop-and-copy)
and live migration, although the implementations are highly
sensitive to the container con�guration and its set of running
processes. For our experiments, we con�gured containers
such that these mechanisms would work. In particular, our
containers include a stock 64-bit Ubuntu Xenial image. Our
prototype includes i) a front-end command-line tool for cre-
ating, con�guring, and destroying C����� C���������, ii)
a monitoring service for resource, power, and carbon usage,
and iii) a policy module that receives data from the monitor-
ing service and triggers enforcement mechanisms based on
the policy in §3.2. We discuss each service’s implementation
below, and then present prototype microbenchmarks.
LXCC services. LXCC uses a con�guration �le that includes
information on the available server types, their power mod-
els, API keys for cloud platforms and carbon information
services, and ssh keys for accessing other servers. Our pro-
totype uses a simple power model that includes a server’s
baseload and peak power such that power usage increases
linearly from the baseload to the peak power based on server
utilization. These simple models were highly accurate when
calibrated to our servers. In particular, Figure 6 shows the
power usage of our local server (a Dell PowerEdge R430), as
a function of the resource utilization of its CPU, memory,
disk, and network resources. Here, we used the stress-ng

C����� C��������� SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

� � 	
 � �

���� $���%������

�

��

��

	�

�

��

��

�

��
�

��
�!

��
��

�!
�

�#!����
��!#��
���� �!!
������ �!!
��� �"�����#����� �!!���
��� �"��������� �!!���

Figure 7: The time required to suspend/resume, com-
press/decompress, and migrate LXCC containers as a
function of memory footprint.
workload emulator to utilize each resource in isolation at
a speci�c percentage. Since utilizing any resource also in-
creases CPU utilization, for all resources except CPU, we
conducted the experiments with the CPU at 100% utilization.

Figure 6 demonstrates both that i) the memory, disk, and
network have little dynamic power range, since there is little
di�erence in power at 100% utilization for any resource (see
inset) and ii) the relationship between CPU utilization and
power consumption is roughly linear. We experimented with
other power models, including �tting a cubic polynomial
and training machine learning models using performance
counters, but found that these models were not signi�cantly
more accurate than a simple linear model. In general, the
relationship between resource usage and power is server-
speci�c, and depends on the dynamic ranges of a server’s
components. As a result, the simple linear power model
above may not apply to other servers. However, C�����
C��������� is agnostic to the precise power model, and
can support arbitrarily complex power models that are a
function of any values available to the monitoring service,
which include a wide range of performance counters.

We intend our prototype to operate on cloud platforms,
where it requests new servers dynamically, whenmigrating a
container to a smaller or larger server. In this case, the policy
module issues a request to a cloud API to provision a server
before migrating to it. We assume these cloud servers boot
an image with the LXCC services running, and are accessible
via the same ssh keys. Here, we assume a one-to-one ratio
between C����� C��������� and cloud servers (which
may run as VMs). In addition, LXCC can also operate from a
static set of servers; our experiments on CloudLab use this
approach, since CloudLab does not provide a programmatic
API for dynamically provisioning servers.
Command-line tool. The lxcc command-line program
wraps the normal lxc tool and provides minimal additional
functionality. The lxcc tool enables users to view current
information on a container’s resource, power, and carbon
usage by fetching data from the monitoring service. The tool
also enables users to create, con�gure, and destroy C�����

C���������. When creating a container, the tool registers
the container with the monitoring and policy modules. The
tool also enables con�guring containers by setting their tar-
get carbon rate ⇠C0A64C , n threshold, and policy variant (i.e.,
energy-e�ciency versus performance policy).
Monitoring module. The monitoring module tracks en-
ergy’s carbon-intensity via electrictyMap’s API. The module
maps processes to speci�c containers and tracks their re-
source utilization. The service uses this utilization as input
to the power models above to track estimated power usage
and carbon emissions rate, both on the current server and
the other available server types. The monitoring module in-
cludes an API that enables other services to query its data.
The monitoring module also writes resource usage, power,
and carbon data to disk for historical analysis.
Policy module. The policy module polls the monitoring
service for each container’s carbon emissions rate and re-
source usage every interval, e.g., 5 minutes by default, and
implements the enforcement policy from §3.2. Our prototype
implements vertical scaling using Linux cgroups, by control-
ling the number of cores a container can use. As mentioned
above, our prototype uses CRIU for migration. When per-
forming a stop-and-copy migration, the policy module check-
points the container, compresses its �lesystem, con�guration,
and checkpoint �les, and transfers them to the destination
server. The policy module at the destination service receives
the archive, decompresses it, relocates the container �lesys-
tem and con�guration to LXC’s directory (/var/lib/lxc),
and restores the container from the CRIU snapshot.

4.1 Microbenchmarks
We next benchmark the performance of various sub-tasks
that C����� C��������� perform.
Migration overhead. Figure 7 shows the time required to
suspend/resume, compress/decompress, and migrate LXCC
containers as their memory footprint increases on a Cloud-
Lab server (d430) with 32 CPU cores and 62 GB of memory. In
this case, the migration is from a d430 server to a d820 server.
The results are the average of 10 experiments, where the
error bars represent the standard deviation. We separate the
time to suspend/resume and compress/decompress, and also
show the migration time with both compressed and uncom-
pressed memory images. Of course, the migration overhead
depends on the size of a container’s memory and disk state.
Here, we migrate a container’s memory-resident working
set, which varies, along with a small root disk.
Our results o�er two key insights. First, the time to mi-

grate the uncompressed image is the dominant time, and
roughly equal to compressing, migrating, and decompress-
ing the image. The time to migrate the compressed image is

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

�
 �� ��
���������

�

	�

�

��

��

�

��

��
���
"�
���

��
��

�

�!�����������������
�!�����������������

�!���������
�������
� �����

Figure 8: E�ect of migrating to a server of a di�erent
size on resource utilization.
negligible given the high compression ratio. Notably, this mi-
gration time is signi�cantly less than the time needed to sus-
pend/resume. Second, the time for all operations is roughly
linear with memory size, although with di�erent slopes. Sus-
pend/resume and compress/decompress scale more grace-
fully, i.e., have smaller slopes, than migrating an uncom-
pressed image. Nevertheless, the experiments also show that
even for relatively high memory footprints, e.g., 7GB, the mi-
gration time for a stop-and-copy migration is still less than
2 minutes. Of course, a live migration incurs no downtime,
although it does incur some energy cost from requiring two
servers to operate at the same time.
Server performance comparison. Our prototype uses a
simple power model that assumes server performance and
power usage scales linearly with resource capacity. Figure 8
validates this assumption for a compute-intensive job that
operates at 40% utilization on our baseline server with 32
cores. We migrate the workload to servers with 40 and 64
cores, and verify that the utilization changes proportionately,
as expected. Figure 8 shows the actual utilization on each
server, and the expected utilization based on the core ratio.
Workload emulator. Finally, we use a workload emulator
(stress-ng) to replay utilization traces on servers. We run
a microbenchmark to verify that stress-ng can maintain a
con�gurable utilization. Figure 9 shows the result of using
stress-ng on a 64-core server above at 40% utilization. The
graph shows that stress-ng maintains a utilization within
<1% of the target 40% utilization. Here, we monitor CPU
every 5 seconds and report a moving average over 1 minute.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of C����� C���
�������. We �rst present experiments that demonstrate the
ability of our C����� C��������� prototype, LXCC, to en-
force an arbitrary carbon emissions target. We then evaluate
C����� C���������’ enforcement policy in simulation at
large-scale across a wide range of workload characteristics
and carbon-intensity scenarios, and compare them with a
recent suspend/resume scheduling approach [34].

� 	
�
�� ��� ��� ��� �
�
������!�����!�

�

	�

�

��

��

�

�"
���

$�
"��

��
��

�

��#�����#� ���
�� ��"

�� ��� ���
��
����

����

���	

Figure 9: E�cacy of our prototype in replaying workload
traces. While the instantaneous utilization varies, the
moving average is within < 1% of the target usage.

5.1 Evaluation Setup
Below, we describe our C����� C��������� evaluation
setup, various baselines, and speci�c evaluation metrics.
5.1.1 Traces. We use two types of traces in our evaluation:
resource usage traces from production cloud workloads and
carbon-intensity traces for di�erent geographical regions
in the world. For resource usage, we use a Microsoft Azure
trace [2, 14] that provides the minimum, maximum, and av-
erage CPU and memory usage information for ⇠2.7 million
VMs every 5 minutes over a 30-day period. We sample 1000
VMs at random for our large-scale analysis in simulation. For
carbon-intensity information, we use the average carbon-
intensity information from electricityMaps [3]. The traces
provide hourly carbon-intensity values for all the regions in
the world. Since our enforcement policy performs di�erently
based on the variance in carbon-intensity, we select repre-
sentative regions that have high (Netherlands) and medium
(California) variations in their carbon-intensity, as discussed
in §2 and shown in Figure 2. Ultimately,C�����C���������
bene�ts depend on both applications’ pattern of workload
demands and carbon-intensity. If neither workload demand
nor carbon-intensity vary, there is little room for reducing
carbon emissions without degrading performance.
5.1.2 Baselines. We compare C����� C��������� with
three baselines: carbon-agnostic, suspend/resume, and C���
��� C��������� with vertical scaling without migration.
For the carbon-agnostic approach, we assume a job runs

on a baseline server without any vertical scaling or migra-
tion. For suspend/resume scheduling, we assume a job also
runs on a baseline server without any vertical scaling or
migration. In this case, the scheduler suspends a job when its
rate of carbon emissions falls below the target carbon rate,
and resumes it once it rises above. Finally, we also implement
a variant of C����� C��������� that uses vertical scaling
and suspend/resume but does not migrate containers. That is,
this policy will attempt to satisfy the carbon target by verti-
cally scaling down, but if it cannot it suspends the container
rather than migrating. This is essentially a resource-aware

C����� C��������� SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

�
 	� 	

�

 �� �
 �� �

���

��

	��

	�

��
��

��
��

�
���

��
��

��
�

�
��

��

�

�
�

��
!

��
�

����� ���
���������� ��������������� �
������������ ��
�����

� � �� �� 	� 	�
�
� �� ��
�

	�

��

�

��

���

��
���
��
���

��
��

�

� � �� �� 	� 	�
�
� �� ��
��������������

�

	

�

�

��

��
��

��
��

�

Figure 10: Illustration of our C����� C��������� pro-
totype. Since this trace is less than an hour duration,
the carbon intensity is steady at 300.91 gCO2/kWh.

version of suspend/resume scheduling. When simulating
C����� C���������, we assume jobs start on the same base-
line server as above, but can migrate to one of �ve servers
in the same family that are 4⇥, 2⇥, 0.5⇥, and 0.25⇥ the re-
source capacity. We model these capacities after a family of
general-purpose servers on a public cloud platform, specif-
ically Amazon Web Services. We assume the baseload and
peak power of these servers is in proportion to their resource
capacity, and that our baseline server has a baseload power
of 100W and peak power of 200Wwith power usage between
the base and peak scaling proportionate to utilization.
5.1.3 Metrics. We focus our evaluation on quantifying the
average carbon emissions rate (in g·CO2e/hour) and the per-
centage an application is throttled, which represents its per-
formance degradation. The throttling percentage is normal-
ized relative to our baseline server, such that 10% throttling
on average represents a job that would have utilized a server
with 110% of the capacity of our baseline server. The goal is
to have both low average carbon emissions rate (at or below
the target) and a low throttling percentage.

5.2 Prototype Evaluation
We �rst evaluate our C����� C��������� prototype to
demonstrate its salient features. Figure 10 shows a time-
series of our prototype running a job with variable workload-
intensity over a nearly hour-long period. We use our stress-
ng workload emulator to replay the job within C����� C���
�������. The top graph shows the target carbon rate, as well
as the average carbon emissions for our C����� C��������

	��
�� ��� ���
�� ��� ��� ��� ���
��&�$#��" '' $#'���&��(����$
���
�� #)(��

�

	

�

�

�*
�&

��
��

�"
 ''

 $
#'

��
�(

�
��

�$

�

��

��

 #
)(

��

��&�$#��$#(� #�&
��&(��!����! #�

�)'%�#����')"�

Figure 11: Average carbon emissions rate for C�����
C��������� and other baseline approaches in a region
with highly variable carbon-intensity.

	
 � �
 � � � �
��'�%$��#!((!%$(���'��)����%
���
��!$*)��

�

�

��

��

��

	��

�+
�'
��
��
�
'%
))"
��
��

� ��'�%$��%$)�!$�'(
��')!��"����"!$�
�*(&�$����(*#�

Figure 12: Average thro�ling for C����� C���������
and other baseline approaches in a region with highly
variable carbon-intensity (companion to Figure 11)

and for a carbon-agnostic policy. For this example, we use
the energy-e�ciency policy for C����� C���������.
The top graph shows that C����� C��������� starts

above the target but then recognizes this and migrates to
a smaller server to get below the target. In contrast, the
carbon-agnostic approach remains above the target for the
entire period. The middle graph shows the utilization of
the container, which increases at the beginning of the trace
but then decreases in the middle and then increases again
at the end; both the C����� C�������� and the carbon-
agnostic approach yield the same utilization, as they replay
the same trace. The bottom graph then shows the number
of cores utilized by the container. At the start, the C�����
C�������� attempts to vertically scale down the container
to reduce the carbon emissions before determining it must
migrate to a smaller server to get emissions below the target.
Here, the destination machine is a pc3000 server (2 CPU
cores), while the original server was a d710 (8 CPU cores).
This is annotated in each graph, and the results can be seen in
the top graph as a signi�cant reduction in the average carbon
emissions rate. The prototype graph above demonstrates the
basic functions of our C����� C��������� prototype.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

	��
�� ��� ���
�� ��� ��� ��� ���
��&�$#��" '' $#'���&��(����$
���
�� #)(��

�

	

�

�

�

�*
�&

��
��

�"
 ''

 $
#'

��
�(

�
��

�$

�

��

��

 #
)(

��

��&�$#��$#(� #�&
��&(��!����! #�

�)'%�#����')"�

Figure 13: Average carbon emissions rate for C�����
C��������� and other baseline approaches in a region
with medium variable carbon-intensity.

	
 � �
 � � � �
��'�%$��#!((!%$(���'��)����%
���
��!$*)��

�

�

��

��

��

	��

�+
�'
��
��
�
'%
))"
��
��

� ��'�%$��%$)�!$�'(
��')!��"����"!$�
�*(&�$����(*#�

Figure 14: Average thro�ling for C����� C���������
and other baseline approaches in a region with medium
variable carbon-intensity (companion to Figure 13).

5.3 Large-scale Evaluation
We next perform a larger-scale evaluation over more jobs and
more regions. Note that our simulation experiments include
the overhead from migration from our testbed. Thus, we ex-
pect individual C����� C��������� performance to follow
our experiments. In a production datacenter, performance
may improve due to higher-capacity networking infrastruc-
ture. In these experiments, we select a random sample of 1000
jobs from the Azure trace, and simulate their performance
with C����� C���������. We report averages across the
jobs, as well as standard deviation using error bars.
Figure 11 shows the average carbon emissions rate of

each approach at varying target carbon rates for our region
with highly variable carbon-intensity, alongside the carbon
emissions under a carbon-agnostic policy. We can see that
C����� C��������� manages to maintain a carbon emis-
sions rate below the given target, even for small targets. That
said, the other policies also operate below the carbon target.

However, the carbon rate for the suspend-resume policy is
misleading for low target values. Carbon savings alone fails
to capture the advantage that migration and vertical scaling
have over the other policies, especially suspend-resume. In
particular, when a job is suspended, no forward progress
is being made, and as such the suspend-resume approach

	��
�� ��� ���
�� ��� ��� ��� ���
��#�"!�� �$$�"!$���#��%����"
���
���!&%��

�

	

�

�

�'
�#
��
��
�
�$$
�"
!$
��
�%
�

��
�"

�
��

��
�!
&%
��

��#�"!���"$%��
��#�"!��"!%��!�#���������!%�
��#�"!��"!%��!�#����#�"# �!%�

Figure 15: Average carbon emissions rate for the energy-
e�ciency and performance policy variants in a region
with highly variable carbon-intensity.

	��
�� ��� ���
�� ��� ��� ��� ���
��#�"!�� �$$�"!$���#��%����"
���
���!&%��

�
	

�
�

�
�
�

�'
�#
��
��
�
�$$
�"
!$
��
�%
�

��
�"

�
��

��
�!
&%
��

��#�"!���"$%��
��#�"!��"!%��!�#���������!%�
��#�"!��"!%��!�#����#�"# �!%�

Figure 16: Average carbon emissions rate for the energy-
e�ciency and performance policy variants in a region
with medium variability carbon-intensity.
substantially increases the time needed to �nish a job. In this
�gure, many of the low carbon targets result in small emis-
sions averages because the suspend-resume policy spends
signi�cant amounts of time not running. Vertical scaling
reduces this penalty by throttling resources before forcing
a full stop. This throttling also has an impact on the perfor-
mance, based on the magnitude of resource reduction and
the time spent at reduced resource levels. Suspension can be
re-contextualized in terms of throttling by de�ning a suspen-
sion as a period of 100% magnitude throttling. In this case,
such vertical scaling naturally has a bound on the potential
savings at 100% resource reduction.

Figure 12 then compares the performance throttling expe-
rienced by the jobs while operating under the given policies
for the same experiment as Figure 11. The suspend-resume
approach naturally experiences the highest degree of throt-
tling, as its only mechanism for avoiding exceeding a carbon
threshold is to completely stop until the carbon-intensity
decreases. Vertical scaling experiences less throttling due to
the reasons stated above, while C����� C��������� experi-
ences the least amount of throttling by a signi�cant margin.
Due to C����� C���������’ migration policy, its e�ective
energy scaling range becomes much larger than using ver-
tical scaling in isolation. By moving to smaller servers, the
jobs can e�ectively reduce their minimum baseload energy

C����� C��������� SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

requirements. Due to this �exibility, C����� C���������
rarely needs to fully suspend execution at any point. Migra-
tion is also highly e�ective because applications in cloud
traces have high variances, as shown in Figure 3. Thus, mi-
grating to a smaller more energy-e�cient server during a
low-intensity period yields signi�cant bene�ts.

Figures 13 and 14 show the same analysis for a region with
medium variations. A similar pattern emerges as in our �rst
region: for many of the lower end targets, suspend-resume
fails as it waits inde�nitely for a carbon-intensity reduction
that never comes. C����� C��������� themselves have a
lower carbon bound that they cannot completely satisfy, but
this limit is de�ned by the size of the smallest available server
instead of a limit inherent to the region. In this case, for low-
end targets, C����� C���������with migration experience
some overhead that increases its carbon emissions relative
to vertical scaling (although still operating below the target
carbon emissions rate), but this comes with a substantial
decrease in throttling.
5.3.1 Energy-E�iciency vs Performance Policy Variants. In
§3, we describe two variations of our carbon enforcement
policy: an energy-e�ciency and performance variant. As
mentioned, we anticipate that aggressively optimizing for
energy-e�ciency may not be suitable for all use cases, as
some applications and users may not be looking to minimize
their carbon emissions, but rather maximize their perfor-
mance while satisfying a carbon rate limit. Such applications
would desire a policy that more aggressively scales up to
larger servers to avoid throttling time and be better prepared
to handle large bursts of demand. The performance policy
variant aims to accommodate these use cases. As such, we
evaluate the two implementations of our policy against each
other, and against a carbon-agnostic policy.
Speci�cally, Figures 15 and 16 compare the carbon emis-

sions of each policy for our high carbon and medium carbon
variation region. These �gures demonstrate how these di�er-
ent policies manage carbon emissions. As the carbon target
increases, the performance policy variant is able to spend
more time running on larger machines, resulting in more
carbon emissions but also higher performance. Figure 17
then captures the di�erence in performance potential where
the x-axis is again the carbon target, while the y-axis is the
percentage of time spent on di�erent size servers. In particu-
lar, the �gure shows that the performance policy spends a
much larger fraction of time executing C����� C���������
on larger, less energy-e�cient servers. However, note that
both policy variants still satisfy the carbon target.

6 RELATEDWORK
C����� C��������� is related to a range of prior work
on power, resource, and carbon management on cloud plat-
forms, which we discuss below. Most importantly, C�����

 � �
 � � � �
��"�! ����##�! #���"��$����!�������� %$��

	

�	

	

�	

�	

		

��
"&
�"
��
��
��
��

�

	���'
	���'

	��'
	��'

'

'

�'
�'

�'
�'

������� $
��"�!"�� $

Figure 17: Percentage of time spent on di�erent size
servers by the performance and energy-e�ciency policies
in a high carbon variation region.
C��������� di�ers from much of this prior work in that it
focuses on providing a mechanism for enforcing a carbon
target without dictating how it might be used. We envision
that C����� C��������� could be used in a wide variety
of higher-level systems, such as carbon-aware cluster sched-
ulers for batch/service jobs, serverless functions, etc.
Power management. C����� C��������� are directly in-
spired by prior work on Power Containers [30]. Indeed, C���
��� C��������� essentially extend Power Containers by
enforcing a target carbon rate that includes not only power
consumption but also energy’s carbon-intensity. We also de-
signed C����� C��������� with cloud platforms in mind
by enabling them to self-migrate between di�erent types
of servers as their utilization (and thus energy-e�ciency)
changes. C����� C��������� sets power caps by placing
quotas on resource usage, which is a common technique used
by many prior systems [20, 21, 27]. However, prior work gen-
erally caps power to prevent server clusters from exceeding
the power delivery infrastructure’s maximum power rating.
In our case, C����� C��������� cap power to prevent ex-
ceeding a target carbon emissions rate.
Resource management. There has also been a variety of
work that uses containers to adjust resource usage on cloud
platforms, often in response to price changes. For example,
HotSpot migrates containers to di�erent servers in response
to changes in spot prices [29]. However, HotSpot focuses on
maximizing an application’s cost-e�ciency, i.e., cost per unit
of resource utilized, and not regulating carbon emissions. As
a result, unlike C����� C���������, HotSpot will throttle
containers if it is more cost-e�cient to do so, and also does
not employ vertical scaling since it is never cost-e�cient
to purchase resources and not use them. Similarly, C�����
C��������� is also related to prior approaches to resource
de�ation [16, 28] that vertically scale resources in response
to cloud platforms reclaiming resources for high-priority
tasks. C����� C��������� also “in�ate” and “de�ate” the
resources allocated to a container but in response to changes
in carbon emissions rather than scheduling decisions.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA John Thiede, Noman Bashir, David Irwin, Prashant Shenoy

Carbon management. There is substantial recent work
on managing carbon emissions in cloud datacenters due to
climate change [11, 15, 17, 18, 24–26, 32, 34].
Some of this work has focused on embodied carbon [17,

18], which represents the carbon emissions from producing
and using computing infrastructure. While C����� C���
������� focuses on regulating operational carbon — from
powering servers — its carbon metrics could be extended
to include a server’s amortized embodied carbon based on
its expected lifetime and utilization. In this case, amortized
embodied carbon would increase as utilization decreases,
since the server’s total embodied carbon would be amortized
over less computation. While including amortized embodied
carbon in our metric would be trivial and not signi�cantly
change C����� C���������’ design or function, we explic-
itly did not include it because of multiple concerns: specif-
ically, over whether server lifetime and embodied carbon
can be accurately measured, and whether embodied carbon
should be entirely attributed to cloud applications. That is,
since a cloud application’s embodied carbon represents the
manufacturer’s operational carbon, current carbon account-
ing frameworks “double count” embodied carbon. As a result,
based on current carbon accounting frameworks, such as
the GHG protocol [5], combining embodied and operational
carbon into a single metric may be misleading [9, 10].
There has also been much recent work that has focused

on optimizing operational carbon. Much of this work ad-
vocates selecting datacenters that operate in regions with
low-carbon energy [11, 15, 24–26]. However, our analysis in
§2 shows that there are few such regions. Many workloads
also cannot operate in these regions due to capacity limi-
tations and latency constraints. In addition, our analysis in
§2 shows that dynamically migrating jobs to lower carbon
regions is not bene�cial due to both high migration over-
head and a lack of opportunity, as regions’ carbon-intensity
rarely inverts. We also compare C����� C��������� with
recent suspend/resume scheduling policies, such as Wait
AWhile [34]. While suspend/resume scheduling is e�ective
in reducing relative carbon emissions, it is only e�ective in
regions with widely variable carbon-intensity, which only
occurs when carbon-intensity is already low on average. This
approach is not e�ective in regulating carbon emissions in re-
gions with high carbon-intensity, where it is most important,
as they tend to have fewer carbon-intensity variations.
Finally, C����� C��������� di�ers from recent work

that proposes ecovisors [8, 32], which virtualize the energy
system and exposes visibility and control of it to applica-
tions. Ecovisors burden applications with managing their
own carbon emissions, and require application-speci�c mod-
i�cations. In contrast, beyond setting the target carbon emis-
sions rate, C����� C��������� operate at the system-level,

are entirely transparent to the application, and thus require
no application-speci�c modi�cations. That said, ecovisors
have the �exibility to support C����� C���������, and
we plan to implement C����� C��������� on the ecovisor
interface as future work. C����� C��������� represent one
possible abstraction that ecovisors could support to make
carbon management more transparent to applications.

7 CONCLUSION
In this paper, we present the design and implementation
of C����� C���������, a system-level facility for manag-
ing application-level carbon emissions.C�����C���������
enable applications to specify amaximum target carbon emis-
sions rate, and then transparently enforce this rate via a com-
bination of vertical scaling, migration, and suspend/resume
while maximizing either a container’s energy-e�ciency or
performance. We motivated the need for C����� C�������
��� by analyzing both energy’s carbon-intensity and produc-
tion workload characteristics and presented the design of
C����� C���������’ key mechanisms along with several
policies. We evaluated C����� C��������� using a proto-
type and in simulation using real workload traces. Our results
show that C����� C��������� are more e�ective than exist-
ing suspend/resume policies, i.e., they substantially increase
performance while maintaining similar carbon emissions.
Importantly, our approach is e�ective over a wide range
of operating regimes, including geographic regions where
carbon-intensity is high or variance is low. As future work,
we plan to implement a range of higher-level policies using
C����� C��������� to demonstrate its e�cacy for di�erent
types of compute and data-intensive applications.
Acknowledgements. This research is supported by NSF
grants 2213636, 2136199, 2106299, 2102963, 2105494, 2021693,
2020888, 2045641, as well as VMware.

REFERENCES
[1] OpenAI Blog, AI and Compute. https://openai.com/blog/ai-and-

compute/, March 16th 2018.
[2] Azure Public Dataset. https://github.com/Azure/AzurePublicDataset,

Accessed October 2020.
[3] Electricity Map. https://www.electricitymap.org/map, Accessed March

2022.
[4] Google Data Centers E�ciency. google.com/about/datacenters/

e�ciency/, Accessed March 2022.
[5] Greenhouse Gas Protocol. https://ghgprotocol.org/, Accessed March

2022.
[6] Checkpoint/Restore in Userspace (CRIU). https://criu.org/Main_Page,

Accessed June 2023.
[7] Luiz Andre Barroso and Urs Hölzle. The Case for Energy-Proportional

Computing. Computer, 40(12):33–37, December 2007.
[8] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin,

Prashant Shenoy, Ramesh Sitaraman, Abel Souza, and AdamWierman.
Enabling Sustainable Clouds: The Case for Virtualizing the Energy
System. In SoCC, November 2021.

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://github.com/Azure/AzurePublicDataset
https://www.electricitymap.org/map
google.com/about/datacenters/efficiency/
google.com/about/datacenters/efficiency/
https://ghgprotocol.org/
https://criu.org/Main_Page

C����� C��������� SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

[9] Noman Bashir, David Irwin, and Prashant Shenoy. On the Promise
and Pitfalls of Optimizing Embodied Carbon. In Proceedings of the 2nd
Workshop on Sustainable Computer Systems (HotCarbon), 2023.

[10] Noman Bashir, David Irwin, Prashant Shenoy, and Abel Souza. Sus-
tainable Computing – Without the Hot Air. In Proceedings of the First
Workshop on Sustainable Computer Systems Design and Implementation
(HotCarbon), 2022.

[11] A. Chien. Driving the Cloud to True Zero Carbon. CACM, 64(2),
February 2021.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen†,
Eric Jul†, Christian Limpach, Ian Pratt, and Andrew War�eld. Live
Migration of Virtual Machines. In NSDI, April 2005.

[13] Maxime Colmant, Pascal Felber, Romain Rouvoy, and Lionel Seinturier.
WattsKit: Software-De�ned Power Monitoring of Distributed Systems.
In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), April 2017.

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource Central: Understanding and
Predicting Workloads for Improved Resource Management in Large
Cloud Platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 153–167, New York, NY, USA, 2017.
ACM.

[15] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark,
Roy Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A.
Smith, Nicole DeCario, and Will Buchanan. Measuring the carbon
intensity of ai in cloud instances. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, FAccT ’22, 2022.

[16] Alex Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek Sharma.
Cloud-scale VM-de�ation for Running Interactive Applications on
Transient Servers. In ACM Symposium on High-Performance Parallel
and Distributed Computing (HPDC), Stockholm, Sweden, June 2020.

[17] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S.
Lee, David Brooks, and Carole-Jean Wu. ACT: Designing Sustainable
Computer Systems with an Architectural Carbon Modeling Tool. In
ISCA, June 2022.

[18] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee,
Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Chasing Carbon:
The Elusive Environmental Footprint of Computing. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2021.

[19] Vani Gupta, Prashant Shenoy, and Ramesh Sitaraman. Combining
Renewable Solar and Open Air Cooling for Internet-scale Distributed
Networks. In e-Energy, June 2019.

[20] V. Kontorinis, L. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis,
D. Tullsen, and T. Rosing. Managing Distributed UPS Energy for
E�ective Power Capping in Data Centers. In ISCA, June 2012.

[21] Shaohong Li, Xi Wang, Faria Kalim, Xiao Zhang, Sangeetha Abdu
Jyothi, Karan Grover, Vasileios Kontorinis, Nina Narodytska, Owolabi
Legunsen, Sreekumar Kodakara, et al. Thunderbolt: Throughput-
Optimized, Quality-of-Service-Aware Power Capping at Scale. In
USENIX Symposium on Operating System Design and Implementation
(OSDI), November 2020.

[22] Canonical Ltd. Linux Containers. https://linuxcontainers.org/.

[23] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan
Koomey. Recalibrating Global Data Center Energy-use Estimates.
Science, 367(6481):984–986, February 2020.

[24] David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and
Je� Dean. The Carbon Footprint of Machine Learning Training Will
Plateau, Then Shrink. Technical report, Google Inc., April 2022.

[25] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Je� Dean.
Carbon Emissions and Large Neural Network Training. Technical
report, arXiv, April 2021.

[26] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Je� Dean.
Carbon Emissions and Large Neural Network Training, 2021.

[27] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li,
Darren De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy,
Christopher Malone, Jimmy Clidaras, et al. Data Center Power Over-
subscription with a Medium Voltage Power Plane and Priority-Aware
Capping. InACM Symposium on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2020.

[28] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. Resource
de�ation: A new approach for transient resource reclamation. In
Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–17,
2019.

[29] Supreeth Shastri and David Irwin. HotSpot: Automated VM Hopping
in Cloud Spot Markets. In ACM Symposium on Cloud Computing
(SoCC), Santa Clara, California, September 2017.

[30] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and
Zhuan Chen. Power Containers: An OS Facility for Fine-grained Power
and Energy Management on Multicore Servers. In ACM Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), March 2013.

[31] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero,Weijia Song, Robert
van Renesse, and Hakim Weatherspoon. Follow the Sun through the
Clouds: Application Migration for Geographically Shifting Workloads.
In ACM Symposium on Cloud Computing (SoCC), Santa Clara, Califor-
nia, October 2016.

[32] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang,
David Irwin, and Prashant Shenoy. Ecovisor: A Virtual Energy System
for Carbon-E�cient Applications. In ASPLOS, March 2023.

[33] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
Policy Considerations for Modern Deep Learning Research. In AAAI
Conference on Arti�cial Intelligence (AAAI), February 2020.

[34] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska,
and Lauritz Thamsen. Let’s Wait Awhile: How Temporal Workload
Shifting Can Reduce Carbon Emissions in the Cloud. In Proceedings of
the 22nd International Middleware Conference (Middleware), December
2021.

[35] TimothyWood, K.K. Ramakrishnan, Prashant Shenoy, and Jacobus Van
der Merwe. CloudNet: Dynamic Pooling of Cloud Resources by Live
WAN Migration of Virtual Machines. In International Conference on
Virtual Execution Environments (VEE), Newport Beach, CA, March
2011.

https://linuxcontainers.org/

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Grid Energy's Carbon-Intensity
	2.2 Datacenters' Workload-Intensity
	2.3 Impact on Carbon-Efficiency

	3 Carbon Containers Design
	3.1 System Architecture
	3.2 Carbon Enforcement Policy

	4 Implementation
	4.1 Microbenchmarks

	5 Experimental Evaluation
	5.1 Evaluation Setup
	5.2 Prototype Evaluation
	5.3 Large-scale Evaluation

	6 Related Work
	7 Conclusion
	References

