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ABSTRACT
Understanding the energy usage of buildings is crucial for policy-
making, energy planning, and achieving sustainable development.
Unfortunately, instrumenting buildings to collect energy usage data
is difficult and all publicly available datasets typically include only
a few hundred homes within a region. Due to their relatively small
size, these datasets provide limited insight and are insufficient for
analyses that require a larger representation, such as an entire city
or town. In recent years, utility companies have installed advanced
electric and gas meters, i.e., “smart meters” that enable energy
data collection on a massive scale. In this paper, we analyze such
a dataset from a utility company that includes energy data from
14,836 smart meters covering a small city. We conduct a wide-
ranging analysis of the city’s gas and electric data to gain insights
into the energy consumption of both individual homes and the city
as a whole.

In doing so, we demonstrate how city-scale smart meter datasets
can answer a variety of questions on building energy consumption,
such as the impact of weather on energy usage, the correlation be-
tween the size and age of a building and its energy usage, the impact
of increasing levels of renewable penetration, etc. For example, we
show that extreme weather events significantly increase energy us-
age, e.g., by 36% and 11.5% on hot summer and cold winter days,
respectively. As another example, we observe that 700 homes are
highly energy inefficient as its energy demand variability is twice
that of the aggregate grid demand. Finally, we study the impact of
increasing level of renewable integration in homes and show that
solar penetration rates higher than 20% of demand increases the
risk of over-generation and may impact utility operations.
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1. INTRODUCTION
The building sector contributes an estimated 40% of the energy

and 70% of the electricity consumed in the United States each
year [4]. As a result, there is a significant interest in understanding
and optimizing building energy usage. Recently, a number of inex-
pensive consumer/utility-grade advanced smart meters have come
on the market, which monitors building energy usage, e.g., electric
or gas, at high resolutions in the order of minutes to seconds. Elec-
tric and gas utility companies have deployed an estimated 58.5 mil-
lion smart meters in the U.S., of which 88% have been deployed in
the residential sector [4]. By tracking energy usage at a fine gran-
ularity, data from smart meters can reveal numerous insights into
when and how a building and its occupants consume energy and
how its usage changes over time. Understanding these insights is
important for energy planning and management, as well as evalu-
ating potential for energy-efficiency improvements and optimiza-
tions.

Indeed, there have been several studies that have analyzed elec-
tricity data from smart meters across several homes [7, 8, 15]. Pub-
lic datasets, including Pecan Street, the ECO dataset, the UMass
Smart* are also available for research use. However, due to the
difficulty in instrumenting buildings and collecting data, most of
these studies and datasets span a few tens to a few hundred homes
within a region. Due to the relatively small size of these datasets
they provide limited insights into energy usage across a larger pop-
ulation or across a contiguous geographical region under a single
administrative domain, e.g., a city, town, or county.

With the increasing deployment of smart electric and gas me-
ters across their entire customer base, utility companies are well-
positioned to conduct more comprehensive larger scale energy data
studies. We argue that utility-scale studies can reveal more detailed
insights across a larger population. In addition, as a centralized
administrative domain, utilities have the ability to leverage these
insights to increase energy-efficiency at large scales, e.g., by im-
plementing energy-efficiency programs. In this paper, we present a
city-wide analysis of energy usage data from electric and gas me-
ters over a 15 month period. The anonymized dataset is gathered
from a small city in the New England region of the United States
using 14,836 electric and gas meters deployed across the local util-
ity’s entire customer base. In conducting our analysis, our goal is
to understand the type of information utilities and government can
learn from such large-scale smart meter deployments, which are
becoming increasingly common. Specific examples of questions
we seek to answer are below.

1. What is the distribution of electricity and gas usage across the
customer base? How is electricity and gas usage influenced
by weather, seasons, time of day and the day of the week?



2. What types of daily load profiles exist across the customer
base and how do these load profiles relate to the daily rou-
tines within households?

3. How does electricity and gas usage change with the size of
the home and age of the home? Are newer homes more en-
ergy efficient and, if so, by how much?

4. What is the distribution of energy-inefficient homes across
the customer base? What fraction of customer homes are
candidates for energy-efficiency improvements?

5. How do renewable sources, such as rooftop solar, impact the
demand seen by the grid, as well as the energy fed back into
the grid? How does the overall city-wide demand profile
change with increasing penetration of renewables?

Our analysis answers these questions and provides a represen-
tative example of how utilities can leverage smart meter data to -
i) improve their customer’s energy-efficiency, ii) access impact of
renewable integration, iii) discover specific customer load profiles
and iv) quantify impact of weather etc. For example, the distribu-
tion of electricity and gas usage across homes can determine energy
usage outliers, i.e. homes that use significantly more or less energy
than other homes. Homes that use significantly more energy can be
targeted for in-home energy audits or encouraged to participate in
energy-efficiency programs. Likewise, homes that use significantly
less energy can be inspected for malfunctioning meters or potential
energy theft. In conducting our city-scale data analysis, this paper
makes the following contributions:
Aggregate Demand Analysis. We first analyze the aggregate grid
demand across all homes and quantify how it correlates with changes
in weather, the seasons, and time-of-day. While these general trends
are well-known, we quantify their specific level of correlation on
our city-scale dataset. In addition, we also quantify the periodic-
ity of aggregate demand, and how demand deviates from expected
values during extreme weather events, e.g., hot and cold days.
Individual Home Demand Analysis. We next analyze the load
profiles of individual homes. Specifically, we decompose homes
into different groups based on the characteristics of their load pro-
file, which is based on the daily routines and patterns, as different
groups will be amenable to different energy-efficiency optimiza-
tions. We also quantify the impact of building age, size, and type
of heating system on energy usage. We then identify homes that
are good candidates for energy-efficiency programs based on its
variability in energy usage based on the weather. Such energy-
efficiency programs might offer financial assistance for improving
HVAC efficiency, e.g., by installing better insulation.
Impact of Renewables. Finally, we examine the impact of increas-
ing levels of solar penetration on the grid, including ramp-up flex-
ibility and the potential for over-generation. Specifically, we show
that increasing solar penetration will require a significant increase
in peaking power plant capacity (as much as 2.8⇥) and that solar
penetration rates higher than 25% of aggregate demand increases
the risk of over-generation and may impact utility operations.

2. BACKGROUND
Our paper focuses on analyzing and characterizing the energy

usage across an entire city, both at the level of individual homes
and at city-scale, using data collected from smart meters. A smart
meter is a utility-deployed meter that enables fine-grained metering
of energy usage and reporting in real-time—compared to traditional
meters that are read manually, and report consumption at a coarse-
grained level of once a month. Some smart meters have wireless

Num. of residential cusotmers 11,431
Electric meters 11,186
Gas meters 3,650
Electric meter granularity 5 minutes
Gas meter granularity 1 hour
Duration 15 months

Table 1: Key characteristics of the data set

reporting capabilities that enable real-time usage reporting, as well
as outage notifications.

The dataset used in this study was gathered from a small city in
the New England region of the United States using a deployment
of 14,836 electricity and gas meters from 11,431 residential cus-
tomers; commercial customers are not included in the dataset and
are not part of our present study. The electricity meters monitor
and report usage at a resolution of 5 minutes, while the gas meters
monitor and report usage each hour1.

We analyze usage data for a 15 month period from October of
2014 to the end of 2015. Note that some customers have two me-
ters, one for gas and one for electricity. Consumers that depend
on other sources of fuel for heating (e.g. oil, propane, electricity)
have only one meter for electricity. The dataset is anonymized and
thus the mapping of usage data to specific customer addresses is
not known. However, the dataset includes anonymized information
about the approximate age of each residential building (e.g., decade
the home was built) and the approximate size of the home. Table 1
depicts the key characteristics of the data set.

In addition to electricity and gas data, we also supplement our
dataset with additional types of information.

1. Solar generation data. Some customers have rooftop solar
that can net meter their energy back to the grid. The utility
has deployed meters to monitor the electricity generated by
these solar installations. Our dataset currently includes solar
data for only two such anonymized homes.

2. Weather data. We gathered weather data at one-hour gran-
ularity for the city from the Weather Underground website2.

Below, we analyze this city-scale dataset to answer questions
about aggregate usage; the distribution of energy usage across cus-
tomers; the relationship of energy usage and weather and building
characteristics. Later, we discuss the different types of customer
segments that we observe in our dataset. Further, we study the
impact of age and size of the building on the energy consumption.
Following this, we present our analysis in finding energy inefficient
homes. Finally, we study the impact of locally generated renew-
ables on the energy demand.

3. ENERGY USAGE: TEMPORAL, SEASONAL
AND WEATHER IMPACTS

We begin our analysis by examining the energy usage of indi-
vidual customers en masse and the aggregate usage across all cus-
tomers. We specifically examine the impact of time of the day, the
day of the week, seasons, and the weather on energy usage.

3.1 Temporal and Seasonal Analysis
We first analyze the distribution of electricity and gas usage across

residential customers. Figures 1(a) and (b) depict the histogram of
1The gas meters have smaller batteries than the electricity meters,
such that more fine-grained metering is infeasible since it would
reduce the battery life to less than 7 years (life of the meter).
2Weather dataset API: https://www.wunderground.com/
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Figure 1: (a) and (b) Average electricity and gas consumption distribution of residential buildings in the year 2015. (c) and (d)
Aggregate load profile of electricity and gas meters during summer and winter.

(a) Electricity consumption (b) Gas consumption (c) Aggregate demand for a week

Figure 2: (a) and (b) Aggregate electricity and gas consumption from all residential buildings in the year 2015. (c) Periodicity in
aggregate demand at the grid level for a representative week in each season.

average electricity and gas usage. Figure 1(a) shows a mean power
consumption of 0.9 kW and the distribution shows a long tail where
the 99th percentile of the consumption is 3.1 times the mean. The
mean consumption is lower than the average usage of 1.24 kW re-
ported for a typical US household [4]. Figure 1(b) plots a similar
histogram for average gas power consumption and depicts an aver-
age consumption of 1.1 kW and the 99th percentile of consumption
is 2.9 times the mean. Figures 1(c) and (d) shows the aggregate en-
ergy demand of all customers for each hour of the day for the sum-
mer and winter seasons. In this, study, the months with most days
having an average daily temperature greater than 60�F are catego-
rized as summer, whereas the rest are categorized as winter. Thus,
unless stated otherwise, winter days are defined as the period from
Oct 2014 to Apr 2015, whereas summer days are defined as the
period from May 2015 to Sep 2015.

Figure 1(c) depicts the electricity demand which varies between
7.2 MWh and 13.8 MWh — approximately a factor of 2 difference
between off-peak and peak hours on average. The summer elec-
tricity demand shows two peak periods — a morning peak around
8 a.m. and an evening peak around 7 p.m. — presumably due to
higher occupancy during the hours and usage of cooling equipment.
The winter demand shows increases over the course of the day and
a peak around 7 p.m. — a 25% and 10% increase during morn-
ing and evening peak hours over the same for the summer peak
hours, respectively. This is because northeastern cities sometimes
have long and harsh winters and the temperature may go as low as
-25�F, triggering use of electric heaters for longer durations. How-
ever, due to the proliferation of gas in some homes, the increase
in electricity consumption is not markedly higher than the peaks
observed in summer.

The gas demand shows the opposite behavior, as depicted in Fig-
ure 1(d). The winter energy demand shows the same morning and
evening peaks, as shown by the electricity demand in summer —

presumably due to the operation of heating equipment. Unlike the
electricity demand profile, the morning peak is more prominent
than the evening peak. Further, the winter demand varies from 6
MWh to 9.1 MWh and is nearly seven times that of an average
summer gas demand. Gas usage is low in summer months since it
is only used for cooking and hot water and not for heating homes.

Figures 2(a) and (b) are heat maps showing aggregate usage of
electricity and gas for each hour (shown on the y-axis) of each
day over the course of the year 2015 (shown on the x-axis), where
darker colors indicate higher energy usage. In Figure 2(a) the ag-
gregate electricity usage reveals the same morning and evening
peaks are seen in Figure 1(c). The figure also reveals high energy
usage in peak summer and winter months, which indicate the use
of air conditioners (ACs) and electric heaters, respectively. In Fig-
ure 2(b) reveals higher energy usage due to the use of gas heaters
in colder months (Oct to Apr).

Figure 2(c) demonstrates the aggregate electricity demand over
the course of an entire week for four seasons: winter, summer, fall,
and spring. The figure shows that time of day effects for each day
— the overall pattern repeats across seasons, although the magni-
tude of the peaks and the average usage is higher in warmer seasons
than in colder ones.

Figure 3(a) and (b) are heat maps showing electricity and gas us-
age from an individual home respectively. In Figure 3(a) electricity
usage pattern reveals clear peaks during morning and evening hours
over the entire year with somewhat higher usage during summer
evenings. Figure 3(b) reveals higher usage in winter months than
summer months. The figure also reveals higher usage during the
morning (around 7 a.m.) throughout the year — presumably due to
the need for hot water for showers.

Figure 3(c) depicts a home with no gas meters with electricity
providing heat during the winter. The figure shows higher elec-
tricity demand in winter for electric heating and also shows higher



(a) Home A: Electric meter data (b) Home A: Gas meter data (c) Home B: Electric meter data

Figure 3: (a) and (b) Energy consumption of a home using gas heater. (b) Energy consumption of a home using electric heater.

Day Type Summer Winter
(MWh) (MWh)

Electric
Business Days 246.2 260.47
Non Business Days 228.78 263.69
All Days 241.19 261.39

Gas Business Days 26.18 166.28
Non Business Days 26.13 177.55
All Days 26.16 169.5

Table 2: Summary of the average aggregate daily energy de-
mand at the grid level.

morning and evening peaks. It also reveals higher usage for a few
days in August — presumably due to higher cooling demand.

In summary: (1) Energy usage shows time of day effects with
morning & evening peaks as well as seasonal effects. (2) Electricity
demand is higher in summer and gas demand is higher in winter
due to the use of electric ACs and gas heaters, respectively.

3.2 Weather Influence Analysis
Next, we study the impact of outside temperature on the energy

usage — both during winter and summer. Figure 4(a) and (b) plot
the aggregate daily electricity demand over the course of a day
along with the average daily temperature for winter and summer,
respectively.

Figure 4(a) shows a strong negative correlation of -0.81 between
temperature and electricity usage in the winter — as the tempera-
ture falls, the electricity usage rises, due to increased heating costs
from heating water, space heaters and homes with electric heaters.

Figure 4(b) shows a moderate positive correlation of 0.54 be-
tween temperature and electric usage in summer. Since the sum-
mer of 2015 was mild with a mean temperature of 65�F (18.3�C),
there was less cooling demand. Further, due to generally milder
summers, many homes do not have AC or run them infrequently,
leading to a moderate (rather than high) correlation to outside tem-
perature. The figure also shows that winter demand varies from
165.4 MWh to 367.9 MWh, while summer demand varies from
158.5 MWh to 356 MWh. In addition, the average absolute day-to-
day change in the aggregate electricity demand is 5 MWh and 19.4
MWh in winter and summer, respectively.

Figure 5 shows similar results for gas — a strong negative corre-
lation of temperature and gas usage is observed in winter, while a
weak correlation is observed in summer. Since winters in the north-
east US are harsh, with an average temperature of -0.5�C, all homes
have heaters leading to the high correlation of gas energy usage to
the temperature in colder months. The gas demand varies from
27.4 MWh to 336.7 MWh in winter, while it is mostly flat with an
average demand of 26.1 MWh in summer. Further, the average ab-
solute day-to-day change in the aggregate gas demand is 25.7 MWh

Events Criteria
Hot days Daily average temperature above 90�F
Cold days Daily average temperature below 12�F
Snow days Days of snowfall

Summer days All Days in Jun, Jul, Aug, Sep
Winter days All Days in Dec, Jan, Feb, Mar

Table 3: Criteria for extreme weather events.
and 1.4 MWh in winter and summer, respectively. Table 2 summa-
rizes the average aggregate demand for both electric and gas meters
across the two seasons for business and non-business days.

We also observe a strong positive correlation of 0.96 between the
gas and electric aggregate demand during winter. This is because
of low temperatures in winter that trigger use of electric and gas
heaters in different households. However, in summer, we observe a
moderate negative correlation of -0.63 between the gas and electric
aggregate demand.

Figure 6 compares average daily summer and winter usage to
“extreme" weather days (e.g. hot summer day to an average sum-
mer day). Table 3 defines the criteria for “extreme" weather events.
The scatter plots show the days selected using the criteria suggested
in the table, whereas the bar chart show their average energy de-
mand. Figure 6(a) shows demand can be 36% higher on a hot sum-
mer day than that on an average summer day — due to increased
AC usage. The significant rise in usage during hot summer day may
also be attributed to the relatively milder summer observed in that
region in the year 2015. The figure also shows 16.4% and 11.5%
higher demand for cold winter days and during snowfall events over
average winter days, respectively.

In summary: (1) There is a strong correlation of electricity and
gas usage with temperature in winter. (2) The demand on cold win-
ter and hot summer days can be 11.5% and 36% higher than the
average days in those seasons, respectively.

4. CUSTOMER SEGMENTATION: LOAD
PROFILE ANALYSIS

Having examined the temporal and weather influence on energy
use, we next study how different customers use energy on a day-to-
day basis in their homes. Our hypothesis is that the energy usage
within a home is largely determined by the daily routines and ac-
tivities within a household, and depending on the characteristics of
residents and their routines, different groups of customers will ex-
hibit similar types of usage patterns. For example, homes, where
everyone works during the day from 9am-5pm, will have a different
profile than a home with a retired person.

To validate this hypothesis, we perform customer segmentation
analysis on the daily load profile of homes across the entire cus-



(a) Winter (b) Summer

Figure 4: Variations in daily aggregated electricity consumption at the grid level for the entire year.

(a) Winter (b) Summer

Figure 5: Variations in daily aggregated gas consumption at the grid level for the entire year.

Figure 6: Electicity consumption for extreme weather events.

tomer base. Since we are primarily interested in the pattern rather
than the magnitude of the energy usage, we begin by normalizing
the average daily load profile, for the year 2015, for each home
between 0 and 1. We then use k-means clustering on these load
profiles. k-means is a widely used clustering technique that takes a
set of instances (individual homes) and their features (average en-
ergy consumption for each hour of the day) along with the desired
number of clusters, k, as input. It uses an iterative approach to par-
tition the data set into k groups such that the intra-cluster distance
is small and inter-cluster distance is high. For this experiment, we
used the sum of the squared distances between different load pro-
files. Typically, there exists statistical techniques to converge on the
number of clusters such as Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC). However, these are generic
model selection criteria and may not necessarily work well for all
domains. Thus, we decided to employ visual model selection. By
running k-means for different values of k, we found k=8 to be the
ideal choice for our dataset.

Figure 7 shows the 8 clusters (customer segments) that resulted

from our analysis. The lightly shaded lines are the profiles of each
home in present in that cluster and the bold line represents the cen-
troid of the load pattern within each cluster. Broadly, there are 4
clusters that are bimodal with 2 peak usage periods of varying de-
grees and 4 clusters that are unimodal with a single peak usage
period over the course of the day.

Table 4 summarizes the key characteristics of the customer seg-
ments within each cluster that include cluster type, peaks observed,
the number of homes along with mean and standard deviation of
daily energy consumption in kWh. As shown, around 6080 homes
(54.4% of total) exhibit bimodal usage, 2953 homes (26.5% of to-
tal) exhibit unimodal daytime peak usage while 2143 homes (19.1%
of total) exhibit “nocturnal" usage.

Figure 7(a)-(d) depict the four bimodal clusters. Figure 7(a) and
(b) are homes with a small morning peak and a more prominent
evening peak. These homes usually correspond to homes with
working/school routine. Figure 7(c) is the opposite with a greater
morning peak and a less prominent evening peak. Figure 7(d) de-
picts households with large morning and evening peaks. The nature
of the these peaks reflect appliance usage with homes at different
times of day. For example, a taller morning peak reveals greater ap-
pliance use in the morning (e.g. use of laundry machines). While
those with taller evening peaks reveal homes where more of these
activities are performed in the evenings. Figure 7(d) depicts a
more uniform distribution of activities in the morning and evenings.
These represent homes that are occupied during the day.

Figure 7(e)-(h) depict four clusters with unimodal usage char-
acterized by a single peak. Figure 7(e) depicts households where
energy usage peaks in mid-day — presumably due to occupancy
during daytime hours. Figure 7(f) depicts homes where peak us-
age occurring during evenings, with different peaks reflecting when
daily chores are performed. Figure 7(g) and (h) represents noctur-
nal homes where the off-peak period occurs in the late morning or
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Figure 7: Load profile clusters of buildings observed across the entire dataset. Clusters (a) to (d) show a bi-modal distribution with
two visible peak demand hours. Clusters (e) to (h) show a uni-modal distribution with peak at different time of the day.

Cluster Type Peaks Homes Mean Std
a Bi 7am, 9pm 1847 21.17 20.8
b Bi 7am, 5pm 1773 22.24 22.06
c Bi 7am, 6pm 813 24.3 28.55
d Bi 12pm, 6pm 1647 25.35 24.63
e Uni 12pm 956 20.06 21.56
f Uni 9pm 2007 22.14 19.89
g Uni 11pm 1410 18.87 16.26
h Uni 12am 733 17.09 16.9

Table 4: Key characteristics of each customer segment.

mid-afternoon and peak usage occurs during night hours. Presum-
ably, these homes represent occupants who come late at night.

In summary: Our customer segmentation reveals how the energy
profiles correspond to their daily routines, with 54.4% of homes ex-
hibit bimodal energy usage, whereas, 26.5% and 19.1% of homes
exhibit unimodal daytime and nocturnal energy usage, respectively.

5. IMPACT OF AGE AND SIZE ON ENERGY
USAGE

The overall energy consumption of a residential building de-
pends on a variety of factors, such as the number of residents, the
number and type of appliances in the home, the size and age of the
building, the material used for construction, and so on. Typically,
larger a home, the more energy is needed for lighting, appliances
and to heat or cool its premises. Similarly, with improving building
construction technologies in recent decades, newer homes tend to
be more energy-efficient that older homes. Of course, these factors
may not always determine energy usage of a home. For instance,
two homes of the same size may have vastly different energy con-
sumption depending on the occupancy patterns and appliance usage
within them. An older home that has been renovated and modern-
ized may actually be quite energy efficient despite being an old
home. In this section, we study the correlation between the age and
size of a home and its overall energy usage to quantify how energy
usage rises with increasing home sizes and increasing age.

Although our data set is anonymized, only a subset of the dataset
includes coarse grained information on the age of the home, in
terms of the decade it was built, and the size of each home (e.g.,
less than 1000 sq. ft, 1000-1500 sq. ft, 1500-2000 sq. ft, 2000-
3000 sq. ft and greater than 3000 sq. ft). We use this data to study
how the energy usage varies with increasing age and size and also
how it varies within each “bucket”.

Figure 8(a) shows the annual energy consumed (Gas + Electric)
for the year 2015 by homes within each age and size group. As
shown in the figure, within each age group, as the house size in-
creases, so does its energy usage. We observe that a typical 2000-
3000 sq. ft. home consumes, on an average, 26.8% more energy
than a small 1000 sq. ft home. Each error bar in this bar graph
also depicts the variance in energy usage (95% confidence inter-
val) observed in each group. We note that the variance in very old
homes—those built in the 19th century, i.e., before 1900—exhibit
high variance. As some of these homes may have undergone exten-
sive remodeling, some of these old homes are substantially more
efficient than others that have not undergone such renovations.

The figure also depicts how energy usage of homes within the
same size group varies with age. Typically within each size group,
the energy usage reduces when we move from pre-1900 homes to
the 1950-1975 built homes, indicating that relatively newer homes
consume less energy than an older home within a size group. How-
ever, within each size group, there is an uptick in annual energy
usage in more after 1975. Although such an increase in energy
consumption for the newest homes may seem surprising, we at-
tribute it to newer homes having more electrical appliances than
older homes. For example, it is now typical for a new home in the
Northeastern U.S. to include air conditioning, while many older
homes lack an AC due to the mild climate. Thus, while the newest
homes are more energy efficient based on building construction
technology, they also have more appliances and HVAC systems that
contribute to an increase in their energy usage when compared to
similar sized homes that were built earlier.

Figure 8(b) the annual energy consumed (Gas + Electric) for the
year 2015 in homes that use gas or electricity for heating. Like
before, the figure shows that the average energy consumption, in
general, increases as the size of the home increases regardless of



(a) (b)
Figure 8: (a) Energy consumption with varying size and building age. (b) Energy consumption with electric or gas heating source.

Figure 9: Illustrative example to show variability of two homes
in comparison with the aggregate energy demand.
heating fuel type. Interestingly, the figure also reveals that homes
that use gas for heating consume more energy than homes that use
electric heaters — presumably because more homes that use gas
are centrally heated, while homes with electric heaters may use
room-specific heating rather than coarse-grain zone-specific heat-
ing. Other factors such as the efficiency of gas and electric heaters
may also contribute to higher consumption. The efficiency of elec-
tric heaters is higher than gas heaters, as they convert are 100% of
electric energy to heat.

In summary: (1) There is a higher variance in energy usage
within a particular size group for very old homes depending on the
amount of remodeling over the years. (2) Relatively newer homes
tend to consume less energy within each size group, but the newest
homes exhibit an increase in energy use presumably due to a larger
number of electrical loads and appliances. Within each age group,
energy consumption increases with home size.

6. ENERGY EFFICIENCY ANALYSIS
In section 3, we established the influence of weather on energy

consumption of residential buildings. However, the weather in-
fluence is variable across homes as its energy efficiency may dif-
fer due to the type of home insulation used, HVAC systems etc.
Also, inefficient homes are more sensitive to weather changes due
to poor heating/cooling in these homes. In this section, we study the

Inefficient homes

Figure 10: Frequency distribution of Beta for all the homes.
Homes with � > 2 show high variability compared to the ag-
gregate demand and can be targeted for energy audits.

variability in energy consumption of individual homes and suggest
methods to determine inefficient ones. Here, we compare energy
demand variability in individual homes with that of the aggregated
energy demand of residential homes. Comparing with the aggre-
gate energy demand gives us insight into how sensitive an individ-
ual home is to weather changes relative to an average home. Fur-
ther, this information can be leveraged to conduct targeted energy
efficiency audits of residential homes.

To measure the variability in energy usage of a candidate home
relative to that of the aggregate energy demand, we introduce a
metric: Beta (�candidate) given by the equation below:

�candidate =
Cov(�Ecandidate,�Eaggregate)

V ar(�Eaggregate)
(1)

where, function Cov and V ar are the covariance and variance,
respectively; �Ecandidate and �Eaggregate are the relative dif-
ference in energy usage of the candidate home and the aggregate
demand between subsequent days.

The Beta (�candidate) is a standard metric used in time-series
analysis and commonly used in the finance domain to measure the
correlated relative variability. In particular, the � metric is used to
measure the volatility of stocks (individual homes, in our context)
with respect to a benchmark index (aggregate demand, in our con-
text). For instance, a � = 1.5 of a home suggests that when the



aggregate energy demand increases by 10%, the demand from this
home increases by 15%. Similarly, a � = 0.5 of a home suggests
that when the aggregate energy demand increases by 10%, the de-
mand from this home increases by only 5%.

Here, we focus on the months with higher temperatures, i.e. May
to Sep. During these months, variation in daily energy use of a
home is dominated by HVAC systems such as ACs, AHUs, etc. We
do not consider data from gas meters, as their consumption during
these months is not influenced by weather (see Figure 5(b)). Fig-
ure 9 illustrates the effectiveness of � in identifying homes with
larger variability. This figure shows the normalized energy demand
for the (i) aggregate of all homes, and (ii) two candidate homes
from May to Sep 2015. As shown in the figure, Candidate1 is less
volatile over the period compared to the aggregate demand with
�candidate1 = 0.5. Thus, we conclude that Candidate1 is less sen-
sitive to weather changes (and thus more efficient) compared to the
average aggregate energy profile. Conversely, we find that Candi-
ate2 follows the grid usage more closely albeit with a slightly larger
variation. With �candidate2 = 1.35, Candidate2 is a relatively inef-
ficient home. Although, it must be noted that this metric may not
identify all inefficient homes. For example, in summer, an ineffi-
cient home without an AC will have a lower Beta than an efficient
home with one. However, a very high Beta (> 1) indicates that a
home is more sensitive than an average home.

Figure 10 shows the frequency distribution of Beta for all the
homes in the dataset. We find that more 1850 homes have a � > 1.5
and more than 700 homes have a � > 2. Higher the � value, greater
the sensitivity of the home to outside weather conditions. Essen-
tially, these homes have a higher potential for energy efficiency
improvements through actions such as custom retrofits, changing
HVAC systems etc. A similar analysis for winter months would in-
volve using the aggregate demand from the gas and electric meters.

In summary: With �>2, over 700 homes have twice the variabil-
ity than the aggregate energy demand and can possibly benefit from
energy efficiency programs.

7. IMPACT OF RENEWABLE SOURCES
We examine the intermittency from rooftop solar installations

from electric meters in our dataset across different seasons. Further,
we illustrate the impact on daily electricity profiles of a household
due to solar adoption. Finally, we present a case-study where we
report the impact of increased solar penetration on grid stability.

7.1 Rooftop Solar generation analysis
Figure 11(a) shows the power generation trace for a day in April

2015 from one of the solar energy smart meters. During this week,
we observe three days (April 16, 17 and 20) when the PV panel
generates power at its max capacity of 8 kW due to clear sunny
weather conditions. However, on April 18, 19, and 22, we observe
that the solar energy is highly variable due to frequent cloud cover.
During these days, we observe the solar power generated varying
between 2 kW to 8 kW. We also observe little solar generation on
April 21 due to an overcast weather. The maximum power recorded
on this day is lower than 1kW. Thus, even for days in the same
season, the power generation can be highly variable.

As discussed earlier, the average load profiles for homes have
similar energy usage patterns, albeit the magnitude of the energy
consumption varying on a day-to-day basis. Further, the load pro-
files of residential buildings with a rooftop PV installation have
higher variations due to the added stochasticity in solar generation.
We illustrate this through Figure 11(b), which shows the electricity
consumption along with solar generation for a household on Jan
6, 2015. The house has a relatively stable power consumption of

around 2-4 kW for most of the day. The spotted region in the figure
exhibit the net demand seen by the utility. We observe that solar
energy is primarily generated between 8 a.m. to 5 p.m. Further, we
notice that from 11 a.m. to 4 p.m., the home, for the most part, is a
net supplier of energy with a peak net generation of around 4 kW.
The area marked in gray exhibits the solar energy net metered to
the grid. Again, the amount of energy net metered is quite variable
for the reasons discussed earlier in this section.

Figure 12(a) and (b) shows the average daily energy generated by
the same PV panel installation. The scatter plots show all the sam-
ples for select days. Figure 12(a) compares the energy generated
during all the summer days with rainy summer days. In summer,
the daily energy generated vary between 8 kWh to 58 kWh with an
average of ⇡38 kWh. On rainy summer days, the daily energy gen-
eration is between 9 kWh to 32 kWh with an average of 23 kWh.
Figure 12(b) shows the average daily energy consumption for the
different set of months in a year representing each season. Due to
inclement weather in the Northeast U.S. during winter months of
Dec-Feb and shorter day lengths, the average energy generated is
12 kWh with quite a few days recording lower than 5 kWh. During
autumn (Sep-Nov), the average daily energy generation is around
27 kWh and is more than double the winter months. During spring
(Mar-May) and summer (Jun-Aug) months, the PV panel generates
a daily average of 36 kWh and 39 kWh respectively. However, the
range of energy generation during spring is higher than that of sum-
mer. This is because of late winter weather with shorter day lengths
that contribute to lower energy generation in March. On the other
hand, longer day lengths with moderately lower temperatures con-
tribute to a higher energy generation in May.

7.2 Case Study: Impact of distributed solar
generation

Utility companies have greater operational control over the power
supply using traditional sources of power generation such as hydro
and thermal generators. However, variability and high-penetration
of solar have introduced new challenges in maintaining the power
output. Using this case study, we seek to address the following
questions: (i) How does net demand change with varying levels of
solar integration? (ii) How quickly will the utility need to ramp-up
to meet the demand? (iii) Does the utility run the risk of overgen-
eration at current demand levels?

To simulate the impact of increased solar penetration on the power
grid, we combine our solar power trace for the entire year and as-
sume its average to be the solar output from a single home. We then
compute the net energy demand after addition of solar for varying
levels of solar penetration in residential homes. Figure 13 shows
the net demand with solar energy observed on an average day. As
seen in the graph, the shape of the net energy demand, known as
the duck curve, resembles a sitting duck for a high solar penetration
level. The duck curve can be divided into four regions, with two al-
ternating periods of ramp up and ramp down of power supply. Due
to the shape of the energy demand, utility companies run into two
problems: ramping-up of power when solar power is unavailable,
and overgeneration of solar power in the afternoon.

Ramp-up flexibility. Usually, peaking plants are provisioned af-
ter exceeding base load power capacity to meet the peak demand.
Integrating solar to the grid adds additional load to peaking plants
that it may not be provisioned for. The figure shows the ramp-
up capacity needed for different solar penetration levels when the
grid is integrated with solar. We observe two ramp-up periods, the
first starting at 4:00 a.m and the other at 1 p.m. Further, the ramp-
up capacity needed in the first period (between 4am and 7am) is
much lower than the second half (between 1pm to 7pm), and re-



(a) Solar generation trace for a week (b) Solar generation and electricity consumption trace for a day

Figure 11: Solar generation trace from one of the solar meters from the data set.

(a) During summer (b) Each group represents a season

Figure 12: Solar energy generated on (a) an average day in
summer and (b) during different seasons in the year 2015.

Figure 13: Impact of solar penetration on power grids.

quire higher capacity peaking plants. In particular, with 5% solar
penetration in homes, the capacity of peaking power plants needed
to serve the first ramp-up period almost doubles during the second
ramp-up period. Also, when solar penetration level increases from
0% to 2%, the ramp-up capacity increases by 29.1%. With a high
solar penetration of 20%, the increase in ramp-up capacity is almost
2.8 times that of current ramp-up capacity.

Overgeneration. The risk of overgeneration occurs during the
periods of high solar output when the supply exceeds the net de-
mand causing an imbalance in the grid. Further, most power gener-
ators (such as hydro and thermal) have minimum operating levels
worsening this imbalance. Intervention in real-time energy market

may balance out the surplus energy by dropping spot prices to low
or even negative values. In the past, prices of spot prices were neg-
ative for a short period in Denmark and Germany due to surplus in
solar energy [9]. Depending on the utilities’ minimum operating
levels and distribution portfolio, the graph indicates that it may run
the risk of overgeneration in the afternoon. Since the solar output
is maximum in the afternoon, it is expected to observe a drop in the
net demand. With a solar penetration of approx. 25%, if the current
demand continues for the next few years, the net demand runs the
risk of being negative.

8. RELATED WORK
In this section, we present some related work in the areas of load

modeling, load profiling and grid integration with solar. However,
most of the work discussed below do not analyze a city-scale data
from multiple aspects.

Load Modeling. From the utility’s perspective, load modeling
is necessary to systems planning, operations and maintenance [11].
From a user’s perspective, modeling energy consumption enables
decision making on energy usage and help reduce their energy con-
sumption. Prior work on load modeling include both — a user’s
energy consumption and aggregated load at the grid level. Kolter
et. al. used monthly data from 6,500 buildings to model and pre-
dict energy usage using features of the buildings [7]. Niu et. al.
presented load forecasting model for electric utility companies us-
ing 7200 power load recorders in the year 2004 [11]. However, our
work analyzes the load both at the grid and individual level with the
data from 14,836 electric and gas meters to provide insights into the
energy consumption of residential buildings.

Load Profiling. Prior work on customer segmentation include
studies to determine classes of load profiles. Techniques such as
k-means, artificial neural networks, hierarchal clustering, HMM,
self-organizing map etc. have been used to cluster load profiles [8,
6, 3, 1, 14]. Our technique is similar to the one discussed in [8],
which selects appropriate number of clusters through an adaptive
k-means approach. As discussed in section 4, we employ visually
model selection to arrive at an optimal number. Load profiling is
determined for a variety of applications in utility companies. One
of the common application of load profiling is determining power
tariff structures [12, 13]. Other applications of load profiling in-
clude consumer-specific demand-response programs [15], creating
in-depth customer portfolio [6] and so on. Apart from the load pro-
filing analysis on 220k smart meters installed in California [8] that



used hourly data, most datasets used for load profiling are in the
hundreds [13]. In contrast, our dataset comprises energy readings
from over 14,836 electric and gas meters and at a much finer gran-
ularity of 5 minutes.

Grid Integration with Solar. Numerous studies have been done
to analyze the impact of renewable integration with grid [9, 10, 5].
Lew et. al. studied the imbalance in voltage due to a high level of
rooftop PV penetration for a city [10]. Prior studies also include
analysis of transient stability and steady-state stability in the grid
due to rooftop PV penetrations [5].

9. DISCUSSION AND FUTURE WORK
Our paper differs from prior studies discussed above in terms of

- i) the number (>14k) and types (Electric and Gas) of smart me-
ters, ii) location (Northeast US), and iii) the breadth of analysis
(energy efficiency, customer segmentation, renewable integration)
etc. Our work, larger than most studies on electric metric data, also
presents an analysis of gas consumption that is primarily used in
homes for providing heat during winter. Further, the geographical
region of our study (Northeastern US) is climatically quite different
than many other regions where a similar study (e.g California [8])
has been conducted. Northeastern US experiences extreme winter
temperatures that could be as low as �25�F with mild summers.
Consequently, the daily load profiles and yearly consumption pat-
terns differ significantly. However, the techniques used in this pa-
per are not tuned to work with just our dataset and thus can be
leveraged for similar studies for datasets from other geographies.

As discussed in section 8, there exist multiple papers studying
smart meter data. However, most studies restrict their analysis to
just a specific problem such as identifying distinct load profiles,
studying the impact of renewables etc. Nonetheless, the breadth of
analysis discussed in the paper is not only more comprehensive but
also presents the interplay of different factors (impact of weather on
renewable energy or energy consumption; or impact of renewable
adoption on customer and utility load profiles). Thus, a compre-
hensive analysis, like ours, is more insightful.

In future, we plan to conduct a deeper analysis involving demo-
graphic information, appliance usage etc. We would like to com-
pare and augment the research work with similar studies presented
in the literature [1, 2].

10. CONCLUSION
In this paper, we conducted a wide-ranging analysis on electric

and gas consumption of a city-scale dataset. We identified and
quantified the general trends/patterns observed in individual homes
and the city as a whole. We also studied the impact of weather,
age and size of the building on the aggregate energy demand. We
observed that extreme weather events significantly increase energy
usage e.g. by 36% and 11.5% on hot summer and cold winter days,
respectively. Further, we decomposed homes into different groups
based on the characteristics of their load profile to identify daily
routines and patterns. Our analysis reveal that 54.4% of homes
with bimodal energy usage and 26.5% and 19.1% of homes exhibit
unimodal daytime and nocturnal energy usage, respectively. We
also observed that while bigger homes exhibit higher energy usage,
older homes show higher variance in energy usage depending on
the renovations done over the years. In addition, our analysis show
that 700 homes are highly energy inefficient as its energy demand
variability is twice that of the aggregate energy demand. We also
studied the impact of increasing level of solar penetrations in homes
and show that the rates higher than 20% of demand increases the
risk of over-generation and may impact utility operation.
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