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Abstract
Distributed generation (DG) uses many small on-site en-

ergy sources deployed at individual buildings to generate
electricity. DG has the potential to make generation more
efficient by reducing transmission and distribution losses,
carbon emissions, and demand peaks. However, since re-
newables are intermittent and uncontrollable, buildings must
still rely, in part, on the electric grid for power. While DG de-
ployments today use net metering to offset costs and balance
local supply and demand, scaling net metering for intermit-
tent renewables to many homes is difficult. In this paper, we
explore a different approach that combines residential TOU
pricing models with on-site renewables and modest energy
storage to incentivize DG. We propose a system architecture
and control algorithm to efficiently manage the renewable
energy and storage to minimize grid power costs at individ-
ual buildings. We evaluate our control algorithm by simula-
tion using a collection of real-world data sets. Initial results
show that the algorithm decreases grid power costs by 2.7X
while nearly eliminating grid demand peaks, demonstrating
the promise of our approach.
Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Systems
General Terms

Design, Measurement, Management
Keywords

Building Energy, Smart Grid, Renewable Energy

1 Introduction
Buildings account for 40% of U.S. energy consump-

tion [2], with the residential sector accounting for 54% of
this total. The vast majority (70%) of this energy is from
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electricity, which, due to environmental concerns, is largely
generated at “dirty” power plants far from population cen-
ters. As a result, nearly half (47%) of residential energy con-
sumption is lost during transmission and distribution (T&D)
from power plants to distant homes [2]. One way to decrease
both T&D losses and carbon emissions is through distributed
generation (DG) from many small on-site energy sources
deployed at individual buildings and homes. However, in
practice, DG has drawbacks that have, thus far, prevented its
widespread adoption. For instance, DG uses renewable wind
and solar energy sources which buildings cannot dispatch
at any time to satisfy their energy demands. Since the en-
ergy consumption density (kwH/sqft) of buildings is higher
than the energy generation density of solar and wind deploy-
ments at most locations, buildings still must rely heavily on
the electric grid for power.

More importantly, large centralized power plants bene-
fit from economies-of-the-scale that cause their generation
costs, even accounting for T&D losses, to be significantly
lower than DG. As a result, today’s DG deployments rely
heavily on net metering—where consumers sell the unused
energy they produce back to the utility company—to offset
their cost relative to grid energy. DG is a much less attrac-
tive option where net metering is not available. Net meter-
ing laws and regulations vary widely across states; it is not
available in at least 4 states and the regulations are weak in
many others [6]. Unfortunately, even where available, states
typically place caps on both the total number of participat-
ing customers and/or the total amount of energy contributed
per customer [3]. After exceeding these caps, utilities are
no longer obligated to accept excess power from DG deploy-
ments. As one example, the state of Washington caps the
total number of participating customers at 0.25% of all cus-
tomers. One reason for the strict laws limiting DG’s con-
tribution is that injecting significant quantities of power into
the grid from unpredictable renewables at large scales has
the potential to destabilize it by making it difficult, or impos-
sible, for utilities to balance supply and demand.

Today’s energy prices do not make DG financially attrac-
tive enough to consumers to reach even these low state caps.
However, more widespread adoption is critical to meeting
existing goals for increasing the fraction of environmentally-
friendly renewable energy sources. For example, the Renew-
ables Portfolio Standard targets 25% of electricity generation
from intermittent renewables [5], while California’s Execu-



tive Order S- 21-09 in California calls for 33% of generation
from renewables by 2020 [4]. Given current laws, if DG be-
comes more widespread, residential consumers will have to
look beyond net metering to reduce costs and balance on-
site energy production and consumption. We envision con-
sumers using a combination of on-site renewables, modest
on-site energy storage, and the electric grid to satisfy their
energy requirements, while also balancing local supply and
demand. In parallel, we envision the adoption of market-
based time-of-use (TOU) electricity pricing for residential
consumers providing an opportunity to recoup the loss of net
metering revenue, while also introducing new financial in-
centives for DG where net metering is not available.

The primary contribution of this paper is a new system
architecture and control algorithm for managing on-site re-
newables, on-site energy storage, and grid energy in build-
ings to minimize grid energy costs for TOU electricity prices
at small scale. Our system determines both the fraction of
power to consume from the grid versus on-site battery-based
storage, as well as when and how much to charge battery-
based storage using grid energy. The primary inputs to our
control algorithm are 1) the battery’s current energy level,
2) a prediction of future solar/wind energy generation, 3) a
prediction of future energy consumption patterns, and 4) a
TOU pricing model. The output is the amount of power to
consume from the grid, as well as the power to discharge
or charge the battery from renewables or the grid, over each
TOU rate period. We evaluate our algorithm by simulation
using a collection of real data sets, including power con-
sumption data from a real home, energy harvesting data from
a solar panel and wind turbine deployment, National Weather
Service (NWS) forecast data, and TOU pricing data from
Ontario, Canada.

Our simulation results demonstrate the promise of our
approach, by showing that our control algorithm reduces en-
ergy costs by 3.9X compared to homes without DG and 2.7X
compared to homes with DG that do not control their renew-
able generation. Section 2 motivates our approach through a
simple example using real-world data, while Section 3 pro-
vides an overview of our system and presents our control
algorithm. Section 4 then evaluates our algorithm using the
data sources mentioned above. Finally, Section 5 discusses
related work, and Section 6 concludes.

2 Motivation
A key element of recent smart grid initiatives is the intro-

duction of variable market-based TOU pricing to residential
consumers. TOU pricing incentivizes consumers to lower
their consumption when demand is high by increasing the
price of electricity. While market-based pricing based on
instantaneous supply and demand is common in wholesale
electricity markets where utilities buy and sell energy, utili-
ties are only beginning to introduce such pricing to residen-
tial consumers. The primary goal of TOU pricing is to reduce
strain on the grid during demand peaks by incentivizing con-
sumers to shift their consumption in time. TOU pricing may
also lower generation costs, since they are disproportionally
affected by the peak, rather than the average, electricity de-
mand. As one example of TOU pricing today, the Ontario
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(c) Power Consumption Over 24 Hours

Figure 1. Electricity rates, solar harvesting, and energy
consumption over 24 hours.

Electricity Board (OEB) introduced a simple pricing model
for residential consumers in 2009.

Figure 1(a) shows one example of the electricity rates for
a particular month, which the OEB divides into three cat-
egories: on-peak, mid-peak, and off-peak. The highest (on-
peak) rate of 10.7 ¢/kWh is from 7am to 11am in the morning
and from 5pm to 9pm in the evening, while the second high-
est (mid-peak) rate of 8.9 ¢/kWh is from 11am to 5pm in the
middle of the day. The lowest (off-peak) rate of 5.9 ¢/kWh is
from 9pm to 7am in the late evening and early morning. The
pricing model is much simpler than in wholesale markets,
where spot prices are not pre-set and vary as often as every 5
minutes. The OEB sets a different fixed ratio for on-, mid-,
and off-peak rates in the summer (May 1st-October 31st) and
winter (November 1st-April 30th), and on weekends and hol-
idays. However, the exact rates change on a monthly basis
according to generation costs and demand.

For instance, Ontario’s electricity rate over the last two
years increased by as much as 15.7% over one particular
6 month period. While renewable energy sources are able
to offset rising costs, their power output also varies signifi-
cantly over time. For instance, Figure 1(b) shows the power
harvested from a solar panel over 24 hours during April in
Amherst, MA. (within 400 miles of Ottawa, Ontario). Addi-
tionally, the power consumption of a home also varies con-
siderably over time: Figure 1(c) shows a single day’s power
consumption for one 3-bedroom, 2-bath home at a nearby
location. The figures show that local power generation and
consumption is variable and not well-matched.

One way to reduce grid power costs is to change residen-
tial consumption patterns to align with low prices and plenti-
ful local generation. However, the price elasticity of electric-
ity demand is generally not high for residential consumers,
i.e., price fluctuations do not readily alter consumer demand,
in part, because consumers have little knowledge about how
much power they are consuming or how much it costs. A key
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Figure 2. System Architecture

goal of our approach is to minimize grid energy costs with-
out requiring a building’s occupants to change their energy
consumption patterns or even think about them. Prior stud-
ies have shown that compelling consumers to change their
routines is challenging [8]. Even for consumers that wish
to alter their consumption to decrease costs, choosing which
loads to disconnect and when is a complex decision that must
be continuously re-evaluated based on information, e.g., en-
ergy generation, prices, etc., that is constantly changing. For
Ontario, where price varies by a factor of 1.8 between the
off-peak and on-peak rates, there is a strong incentive to ad-
just electricity consumption to reduce costs.

Rather than change consumption patterns, we propose
using a modest amount of local battery storage combined
with a control algorithm to minimize grid costs in the pres-
ence of an intermittent renewable energy source. To see how,
again consider Figure 1(a) and Figure 1(b), which show that
the highest electricity rates (from 7am to 11am) are within
the period where renewable energy is not sufficient to power
our example home. Thus, the building must use energy from
the electric grid when rates are highest. However, given a
modest size battery, the building is able to store and buffer
grid energy during low rate periods to supplement renewable
generation during high rate periods. The challenge is deter-
mining when and how much energy to store: if the building
stores more energy than required, it wastes renewable energy
due to limited battery capacity, while if it stores less energy
than required, it must purchase grid energy at high rates.

3 Design
Figure 2 depicts the general architecture of our smart

home energy management system. The heart of the system
is the control center, which periodically records the home’s
aggregate energy consumption and, based on historical use
patterns and other information, predicts the expected energy
consumption for the next 24 hours. Additional information
that could aid predictions include data from other in-home
sensors, e.g., occupancy or motion sensors, mobile phones,
e.g., occupant GPS coordinates, or the Internet, e.g., online
calendar programs. The control center also predicts the re-
newable energy the home expects to harvest over the next 24
hours based on the time of year and the next day’s weather

forecast. The control center then uses the predictions to de-
termine how much energy it should store in the on-site bat-
tery based on the current battery level, the expected renew-
able energy, and the expected energy consumption.

3.1 Renewable Energy Prediction
For renewable energy, we use a prediction model similar

to Sharma et al. [13] that translates a weather forecast from
the National Weather Service (NWS) into a solar or wind
energy harvesting prediction. We focus our experiments on
solar energy, since it is the predominant renewable energy
source in residential DG deployments, although the predic-
tion model applies equally well to wind energy. We briefly
summarize the model below, which uses the forecasted sky
condition—as a percentage of cloud cover between 0% and
100%—to predict solar energy harvesting. The NWS re-
leases a sky condition forecast, in addition to other weather
metrics, every hour for the next 24 hours. At any time in-
stance t, based on the sky condition percentage C(t), we
compute the solar array’s energy harvesting power PS(t) as:

PS(t) = Pmax · (1−C(t)) (1)

Where Pmax is the solar array’s maximum possible harvest-
ing power. Sharma et al. [13] quantify the accuracy of Equa-
tion 1 and show that it is more accurate than existing tech-
niques that use the past to predict the future. Thus, based
on Equation 1, at any time instance t, we predict the solar
energy harvesting within the next 24 hours as follows:

ÊS(t +T ) =

∫ t+T

t
PS(τ)dτ (2)

Where T equals 24 hours. Without loss of generality, we
assume that t = kT , since we run our algorithm every evening
at the start of the 9pm low rate period, rather than at midnight
t = 0. For simplicity, we use ÊS(k+ 1) to represent ÊS((k+
1)T ). Thus, we rewrite Equation 2 as follows:

ÊS(k+ 1) =

∫ (k+1)T

kT
PS(τ)dτ (3)

3.2 Energy Consumption Prediction
To predict the home’s energy consumption, we use a sim-

ple model based on an Exponentially Weighted Moving Av-
erage (EWMA). The EWMA exploits the diurnal nature of
home consumption, while also adapting to seasonal varia-
tions. On a typical day, we expect the total energy consump-
tion to be similar to the total energy consumption of previ-
ous days with slight deviations due to weather, e.g., a mild
day that does not require A/C, or daily activities, e.g., use of
the clothes dryer on laundry day. More sophisticated models
are possible that take into account changing weekend activity
patterns, weather conditions, or other information. One goal
of this work is to quantify how much cost reduction we are
able to achieve with a simple and straightforward prediction
model. Let EC(k) denote the amount of energy consumed

in the k-th day and ÊC(k + 1) denote the predicted energy
consumed on the (k+ 1)-th day, which is given by:

ÊC(k+ 1) = α · ÊC(k)+ (1−α) ·EC(k) (4)



Where α is a weighting factor based on the observed pre-
diction error over previous days. Since a TOU pricing model
has different electricity rates at different time intervals within
each individual day, we further predict the energy consump-
tion at the lower rate and higher rate in the (k+ 1)-th day by
using Equations 5 and 6, respectively.

ÊCL(k+ 1) = α · ÊCL(k)+ (1−α) ·ECL(k) (5)

ÊCH(k+ 1) = α · ÊCH(k)+ (1−α) ·ECH(k) (6)

Where ECL(k) and ECH(k) are the actual energy consumption
at the lower rate and higher rate on the k-th day, respectively.

Finally, we examine the lower rate and higher rate com-
pared with the energy conversion efficiency of our system,
which is the product of the battery’s charging efficiency and
the grid-tie inverter’s efficiency [1]. Our goal is to charge
the battery when the electricity rate is low, and discharge the
battery to power the home when the rate is high. However,
if the energy conversion efficiency is less than the ratio of
the low rate and high rate values, then storing energy in the
battery during low rate periods actually wastes more energy
than directly using it from the grid during high rate periods.

As an example, using Ontario’s TOU model, the ratio of
the lowest rate (5.9 ¢/kWh) and the second highest rate (8.9

¢/kWh) is 5.9
8.9 = 66.29%. If the energy conversion efficiency

is less than 66.29%, directly using grid energy during the 8.9
¢/kWh period is more efficient than charging the battery at
5.9 ¢/kWh and discharging the battery during the 8.9 ¢/kWh
time period. In this case, 8.9 ¢/kWh is not high enough to
incentivize battery-based storage during the high rate period.

Since most lead-acid batteries have charging efficiencies
greater than 85% [14] and most grid-tie inverters have ef-
ficiencies greater than 94% [1], the energy conversion effi-
ciency is greater than 85% · 94% = 79.9%, which is greater
than the ratio of the lowest rate (5.9 ¢/kWh) and the second
highest rate (8.9 ¢/kWh). Therefore, both the highest rate
and the second highest rate for Ontario’s model incentivizes
battery-based storage. We use ÊCH(k+1) as the expected to-
tal energy consumption in the (k+ 1)-th day when the elec-
tricity rates are 8.9 ¢/kWh and 10.7 ¢/kWh.

3.3 An Efficient Control Algorithm
Given the simple harvesting and consumption prediction

models above, we propose a simple control algorithm for
minimizing grid power costs in DG deployments that de-
cides how much energy to store in the battery based on the
battery’s remaining energy, predicted available environmen-
tal energy, and predicted energy consumption in the next 24
hours. Pseudo-code for the control algorithm, which we ex-
plain below, is shown in Algorithm 1. Here, Êr(k + 1) is
the expected energy remaining inside the battery that can be
consumed in the (k + 1)-th day. We compute Êr(k + 1) as
follows:

Êr(k+ 1) = η ·Er(k) (7)

Where η is the efficiency of the grid-tie inverter and Er(k) is
the remaining energy inside the battery at the beginning of
the lowest rate period of the k-th day.

To summarize, our control algorithm accounts for the fol-
lowing three cases to make charging decisions for each rate
period within each day.

Algorithm 1: Efficient Control

1 if Êr(k+ 1)+ ÊS(k+ 1)≥ ÊCH(k+ 1)+ ÊCL(k+ 1)
then

2 Directly use the battery to power the house;

3 else if Êr(k+ 1)+ ÊS(k+ 1)≥ ÊCH(k+ 1) then
4 while Êr(k+ 1)+ ÊS(k+ 1)− ÊCH(k+ 1)> 0 do
5 Directly use the battery to power the house;

6 else if Êr(k+ 1)+ ÊS(k+ 1)< ÊCH(k+ 1) then

7 while Êr(k+ 1)< ÊCH(k+ 1)− ÊS(k+ 1) do
8 Charge the battery;

Case 1: If the sum of the battery’s expected remaining en-
ergy Êr(k + 1) and the predicted solar energy ÊS(k + 1) is
greater than or equal to the total expected energy consump-
tion during both the high rate and low rate periods, the home
does not need to use any grid power. Instead, the control
center uses the energy stored inside the battery, which in-
cludes the harvested solar energy, to directly power the home
(lines 1 and 2). This case is unlikely, since our solar array is
nowhere near large enough to power the home, and the ma-
jority of the harvesting occurs during a high rate period.
Case 2: If the sum of the battery’s expected remaining en-
ergy Êr(k + 1) and the predicted solar energy ÊS(k + 1) is
greater than or equal to the expected energy consumption
during the high rate period ÊCH(k+ 1), then the battery has

extra energy after the period ends, i.e., Êr(k + 1) + ÊS(k+
1)− ÊCH(k+ 1). The control center uses the extra energy to
power the house during the low rate period (lines 3 to 5). We
note that the home only uses battery power during the low
rate period, if it is able to power the home during the high
rate periods.
Case 3: If the sum of the battery’s expected remaining en-
ergy Êr(k + 1) and the predicted solar energy ÊS(k + 1) is
less than the expected energy consumption during the high
rate period ÊCH(k + 1), then the control center charges the
battery during the low rate periods until the charged power
and the predicted solar energy equals the expected consump-
tion, i.e., Êr(k+ 1)+ ÊS(k+ 1) = ÊCH(k+ 1) (lines 6 to 8).

While there are numerous ways to improve the simple
control algorithm above, our goal in this paper is to quan-
tify a lower-bound for potential cost reductions using simple
approaches for prediction and control.

4 Implementation and Evaluation
We evaluate the performance of our control algorithm by

simulation using empirical traces of (i) a solar array’s har-
vesting power, (ii) a real home’s power consumption, (iii) lo-
cal weather forecasts, and (iv) Ontario’s TOU pricing model.
We set up and recorded the solar harvesting power using
solar panels shown in Figure 3(a), which has a maximum
power output of 185 watts in full sunlight. We measure
the power consumption of the home by installing a TED
5000 in the home’s electrical panel. The TED 5000 wraps
200Amp current transducers (CTs) around each leg of the
home’s split-phase input power from the grid (shown in Fig-
ure 3(b)), and records consumption every second. The man-
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Figure 4. Energy Harvesting Power over 5 days
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Figure 5. Power Consumption over 5 days

ual states that measurements are accurate to within 2% of
the aggregate power down to a single watt. The measure-
ment units in the panel transmit power data over the home’s
power network to a server that stores and publishes it to a
web interface. Our setup has been collecting consumption
data for over a year.

In our evaluation, we compare our efficient control (EC)
algorithm with the following two approaches:
No Renewable Energy (NRE): In this approach, the home
purchases all of its energy from the grid, and does not use any
renewable energy sources. This approach represents today’s
homes without DG.
No Efficient Control (NEC): In this approach, the home
uses renewable energy only as a supplement to the grid,
by consuming it whenever it is available. The home stores
any extra renewable energy in its battery, but never charge
the battery from the grid. This approach represents today’s
homes with DG, but without net metering available.

Figures 4 and 5 show the environmental energy harvested
by the solar array, as well as the home’s power consumption,
respectively, over a 5 day period. In our simulation, we scale
up the solar generation from our small-scale deployment by
17 to closely align its aggregate energy consumption with
that of the home. We choose a battery capacity of 12kWh,

0 12 24 36 48 60 72 84 96 108 120
0

2

4

6

8

10

12

14

 Time (Hour)

 U
ti

li
ty

 C
o

st
 (

$
)

 

 

NRE
NEC
EC
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Figure 7. Remaining Energy inside Battery over 5 days
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Figure 8. Power Requested from Grid (NEC)
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Figure 9. Power Requested from Grid (EC)

which equals half the battery capacity of the recently intro-
duced Nissan Leaf plug-in electric car. Our simulator as-
sumes the initial energy inside the battery is zero.

Figure 6 compares the cumulative utility cost over
time using the Ontario TOU pricing model for the three
approaches—EC, NRE, and NEC—for the same 5 day pe-
riod. Note that since our algorithm only considers a low and
high rate period, we classify Ontario’s mid-rate period the
same as high rate period. The figure shows our main result,
which is that the control algorithm reduces grid power costs
over the period by a factor of 3.9X, compared to the NRE
approach that does not use renewable energy, and by a factor
of 2.7X, compared to the NEC approach that does not con-
trol the use of renewable energy. Since a 12kWh lead-acid
battery (with a 5 year warranty) costs roughly $2,000, at cur-
rent electricity rates the savings from our system recoups the
battery’s cost in less than three years. Further, the long-term
rising trend in electricity rates ensures that the savings will
increase in the future.

To better understand how our EC algorithm attains these



cost reductions, consider Figure 1(a), which shows the
change in the price of grid power over 1 day window, and
Figure 7, which compares the battery’s remaining energy
when using the NEC and EC approaches. The figures show
that by pre-charging the battery at the lowest rate, the energy
stored in the battery combined with the harvested energy is
capable of powering the house for significant periods of time
during the high-rate periods. As a result, the home does not
pay for grid power when it is most expensive. Figures 8 and 9
show the effect on the grid by comparing the grid power con-
sumed using NEC and EC approaches.

By using the battery as an energy buffer, the EC ap-
proach requests zero energy from electrical grid during most
of the high rate period. Additionally, the EC approach dra-
matically reduces the number of power consumption peaks.
These peaks have a disproportionate effect on generation
costs. Thus, reducing them has the potential to reduce prices
across the entire the grid by reducing the cost to generate
electricity. The peaks that the EC algorithm does allow are
a function of the limited battery capacity in our simulation.
The result shows that not only does EC have the potential to
lower the cost of power for individual homes, but it also has
the potential to lower generation costs across the entire grid.

5 Related Work
Using energy storage to reduce generation costs is nor-

mally conducted at large scales. Utilities use pumped-
storage hydroelectricity, where they pump water uphill dur-
ing periods of low demand and release it to generate elec-
tricity during periods of high demand. Pumped-water stor-
age enables utilities to decrease the operating time and cost
of the most expensive and inefficient generators, which only
run during times of peak demand. While similar in principal,
using energy storage at individual buildings to reduce costs
presents different challenges than utility-scale systems.

Demand Forecasts. Across many homes electricity de-
mand is highly predictable: utilities are able to develop ac-
curate demand forecasts based on historical demand data and
weather conditions. Individual homes exhibit more stochas-
tic behavior based on the actions of a small group of occu-
pants. There is room for significant improvement to the sim-
ple day-ahead demand forecasts we use in this paper. Devel-
oping accurate forecasts requires monitoring both building-
wide and per-load power usage. Much prior work exists on
load monitoring for a variety of building types [11, 12]. De-
mand forecasts may also incorporate auxiliary data from oc-
cupancy and other types of sensors [9, 10] to aid prediction.

Energy Harvesting Forecasts. Weather differs significantly
at individual homes based on localized weather conditions.
Thus, automatically developing per-site models that translate
weather forecasts into energy harvesting predictions is im-
portant. We use a model by Sharma et al. [13] that predicts
solar harvesting using the next day’s sky condition forecast.
Since today’s residential TOU pricing models only change
price 2 or 3 times per day (8 to 12 hours), buildings must be
able to accurately predict energy harvesting at hour-to-day
time-scales to significantly reduce costs.

Control Algorithm. Finally, large pumped-water storage
has larger capacities and is more efficient than battery-based

storage. As a result, storing too much energy in batteries at
the wrong time may actually increase costs. In general, a
home control algorithm is more challenging than a utility-
scale algorithm, since it must operate at finer time-scales,
using more stochastic data sources, and with less margin for
error. Additionally, the same approach must be applicable
to homes of varying sizes and demand profiles, as well as
different harvesting capabilities and TOU pricing models.

Our results show that our techniques are capable of re-
ducing power drawn from the grid on average and during
times of peak demand. Related work achieves similar goals
by automating home energy management [7] using program-
matic switches that disconnect devices during times of peak
use. However, this requires new intelligent devices that com-
municate with the utility to determine their duty cycle. Our
approach only uses local battery storage and renewables, and
does not require replacing or augmenting existing loads.

6 Conclusions
In this paper, we propose a novel system architecture and

control algorithm to efficiently manage renewable energy,
battery storage, and grid power for DG deployments. Given
a TOU pricing model, our control algorithm makes the de-
cision based on the predicted future renewable energy gen-
eration and energy consumption. We evaluate our algorithm
in simulation using real-world data sets, and show that the
approach reduces grid power costs 3.9X relative to homes
without DG deployments and 2.7X relative to today’s homes
with DG deployments (but without net metering).
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