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Abstract—Low-cost network-connected smart outlets are now
available for monitoring, controlling, and scheduling the energy
usage of electrical devices. As a result, such smart outlets are
being integrated into automated home management systems,
which remotely control them by analyzing and interpreting their
data. However, to effectively interpret data and control devices,
the system must know the type of device that is plugged into each
smart outlet. Existing systems require users to manually input
and maintain the outlet metadata that associates a device type
with a smart outlet. Such manual operation is time-consuming
and error-prone: users must initially inventory all outlet-to-device
mappings, enter them into the management system, and then
update this metadata every time a new device is plugged in or
moves to a new outlet. Inaccurate metadata may cause systems
to misinterpret data or issue incorrect control actions.

To address the problem, we propose AutoPlug, a system that
automatically identifies and tracks the devices plugged into smart
outlets in real time without user intervention. AutoPlug combines
machine learning techniques with time-series analysis of device
energy data in real time to accurately identify and track devices
on startup, and as they move from outlet-to-outlet. We show that
AutoPlug achieves ∼90% identification accuracy on real data
collected from 13 distinct device types, while also detecting when
a device changes outlets with an accuracy >90%. We implement
an AutoPlug prototype on a Raspberry Pi and deploy it live in a
real home for a period of 20 days. We show that its performance
enables it to monitor up to 25 outlets, while detecting new devices
or changes in devices with <50s latency.

I. INTRODUCTION

The U.S. Energy Information Administration estimates that
commercial and residential buildings account for 41% of U.S.
energy usage, and over 75% of its electricity usage [1]. As
a result, gathering detailed energy usage from buildings to
optimize their energy consumption is critically important. Due
to the high price of networked sensors, prior researchers have
focused on analyzing power data from a single building-wide
energy sensor to disaggregate it and estimate the energy usage
of individual devices [2]. Unfortunately, such energy disaggre-
gation, which is also known as Non-Intrusive Load Monitoring
(NILM), is often highly inaccurate even in buildings with only
a small number of devices [3]. However, recently, low-cost
network-enabled energy sensors and switches have become
widely available to consumers. The presence of these sensors
can both aid in disaggregation or remove the need for it en-
tirely. For example, many commercially-available smart power
outlets cost <$50, including the Belkin WeMo [4], Insteon
iMeter [5], and Z-Wave Smart Energy Switch [6]. In addition,
research prototypes now exist that cost less than $20 [7]. These
“smart” sensors and switches have the potential to enable deep

visibility and control of the energy usage for each individual
electrical device in a building. Ultimately, smart sensors and
switches are the foundation of “smart” buildings that collect
energy usage data from devices, combine it with external data
on the environment, forecasts, energy prices, user occupanncy
and comfort, etc., and analyze it to coordinate control of
devices to optimize for energy usage, cost, user comfort, etc.

Smart energy sensors and switches may either be embedded
into a device itself, or be attached externally to the device, e.g.,
as part of a power outlet. Embedding sensing and switching
functions into devices enables users to perform a one-time
association between a device’s unique identifier, e.g., its MAC
or other layer-2 address, and its building management system
(BMS). While this association is often done manually, given
well-defined standards, resource discovery protocols could
also be developed to automate the device’s initial configu-
ration with the BMS. However, embedding such functions
into devices is likely only feasible for devices that are large
enough to warrant the additional complexity. The numerous
miscellaneous electrical loads (MELs), which comprise a
rapidly growing portion of building energy usage [8], are likely
too small and inexpensive to warrant their own embedded
sensing and control functions. In addition, existing appliances
that do not have smart functions will continue to operate for
many years. Further, this approach requires BMSs to interact
over the network with untrusted devices that visitors may bring
into the building, e.g., to register them with the BMS, which
is a security concern both for the BMS and for visitors.

Thus, a more general approach is to separate the energy
sensor/switch from the devices, often by embedding these
functions into each building outlet. This approach requires
instrumenting only a building’s outlets, rather than its devices.
As a result, the BMS need only be configured once based on
the unique identifier associated with each outlet, and also its
location (which is generally not available from device-level
sensors). In addition, since the outlets are part of the building’s
administrative domain, they can be trusted by the BMS,
alleviating it from interacting over the network with untrusted
devices from visitors. However, such external sensing poses
a significant metadata challenge: since the sensors are built
into outlets, rather than devices, users must manually associate
the outlet with the respective device that is plugged into it.
Further, users must alter this device-to-outlet mapping every
time devices are unplugged or move to a new outlet. While
some devices, such as a refrigerator, rarely if ever move, other
devices, such as laptops, frequently change outlets. Companies
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typically provide smartphone or desktop apps to configure and
monitor smart outlets, as well as schedule remote control of
devices, e.g., to turn them on or off at specific times or based
on custom triggers. These applications also provide basic
energy data analytics, such as a device’s energy consumption.
The market for smart outlets and other home automation
devices is expected to grow by 60% from 2012 to 2018 [9].

Energy data recorded by smart outlets is much less useful
to a BMS if the data is not correctly associated with a device,
as it prevents a BMS from providing an accurate per-device
breakdown of energy usage and also may result in incorrect
remote control actions, e.g., by switching the wrong devices on
or off. The configuration of current applications for controlling
smart outlets and collecting their energy data is manual, and
typically based on the outlet and not the device. Thus, users
can only view the energy usage of outlets or automate the
control of specific outlets, and not devices. Providing such
energy data and control for devices, regardless of the outlet
they are plugged into, is more natural for users, as energy-
efficiency optimizations are based on devices not outlets.

To address the problem, we design AutoPlug, an automated
metadata service for smart outlets, which can automatically
identify and track the devices plugged into smart outlets based
on their energy data in real time. We present our system as a
service, deployable in a wireless gateway that communicates
with smart outlets, and has the ability to identify the appliance
plugged into the outlets. This gateway maintains a record
of both previously identified devices, as well as a real-time
record of the smart outlet→device mappings. This gateway
could be incorporated into modems like Google Onhub [10],
or hubs like the Amazon Echo [11]. For example, the Amazon
Echo can already communicate with Belkin Wemo, ZWave,
and Zigbee sensors and switches. AutoPlug combines machine
learning techniques along with analytical time-series models
of device usage to accurately identify and track devices on
startup, and as they move from outlet-to-outlet in real time.

Compared with prior work [12, 13, 14, 15], which focuses
primarily on labeling devices based on their energy data offline
using machine learning techniques, AutoPlug is designed to
be a real-time system that identifies when a device moves
from one outlet to another. Our basic approach is to combine
time-series pattern matching techniques to recognize when the
pattern of energy usage for a device changes, which indicates
a new device has been plugged in. As we show, identifying
such changes can also improve the offline machine learning
techniques above by enabling them to accurately configure the
time period over which they analyze data. We implement an
AutoPlug prototype on a Raspberry Pi and deploy it live in
a real home for a period of 20 days. Our results show that
AutoPlug achieves ∼90% identification accuracy on real data
collected from 13 distinct device types, and is also able to
accurately detect when a device changes outlets with accuracy
>90%. In addition, we show that AutoPlug is able to monitor
up to 25 outlets on a Raspberry Pi 2, while detecting new
devices or changes in devices with only a 50s latency.

II. BACKGROUND

AutoPlug assumes a smart building that is equipped with
smart outlets capable of recording and wirelessly transmitting
their power consumption in real-time, e.g., at a 1Hz resolution,
to a centralized gateway. The outlets may also be remotely
controlled by the gateway, e.g., switched on or off. AutoPlug
differs from prior work on identifying devices based on their
energy data [12, 16] in that its goal is to operate online and
identify the presence of new devices in real time, and track
their movement from one outlet to another. Thus, in contrast
to prior work, we evaluate not only AutoPlug’s accuracy but
also its performance in terms of its latency to identify devices.
Problem Statement. We define AutoPlug’s outlet metadata
problem as a combination of two distinct, but interlinked sub-
problems. The first sub-problem is to identify the device D that
is plugged into a smart outlet Oi over a period [tstart, tend],
given time-series power data P (t) from [tstart, tend]. This
problem is similar to the machine learning classification
problem explored in prior work [12, 16], where the task is
to map a given feature vector, which is based on processed
time-series data, to a device label. As in prior work, AutoPlug
processes the time-series power data to form a feature vector
based on the data’s statistical metrics. We then use well-
known feature vectors from representative devices with known
labels as training data to the classifier. After building the
model, the classifier outputs a device’s label based on an input
feature vector. One notable difference between prior work and
AutoPlug is the selection of the interval [tstart, tend] over
which the classification occurs. Prior work generally performs
this classification over a static time period, e.g., every 24 hours,
which may result in inaccuracy if the device plugged into the
outlet changes one or more times within the 24 hour period.
In this case, the feature vector represents a variety of different
features from multiple different devices. Instead, AutoPlug
dynamically sets the interval based on the sub-problem below.

Our second sub-problem is to identify when a device is
newly plugged into an outlet or changes from one outlet
to another. MELs are often plugged into and out of out-
lets, especially in shared spaces such as living rooms or
kitchens. We call this sub-problem “swap” detection using
the same terminology from prior work, which first identified
this problem [16]. However, prior work only applied the
same classification techniques as above to detect such swaps.
Unfortunately, the machine learning classification problem
above is not well-suited to dynamically detecting such changes
in outlets in real time, as these classifications are trained based
on device features, rather than the “features” of a change.
That is, they attempt to simply map features over a given time
period to a single device label. Thus, prior approaches cannot
accurately detect the presence of multiple devices over a time
period. Given a smart outlet Oi and time series power data
P (t), swap detection is the problem of determining the time
tchange when a new device is plugged into an outlet and is
turned on. Swap detection has two key metrics: the accuracy
of tchange and the latency to detect a change has occurred.
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Fig. 1. AutoPlug Design Block Diagram

III. DESIGN

We distill AutoPlug’s two sub-problems of outlet metadata
maintenance—device classification and swap detection—into
the two design pipelines in Figure 1. The device classifica-
tion sub-problem includes feature extraction from time-series
power data, as a pre-processing step, followed by model
building based on training data from existing device energy
usage traces, and then load classification based on the learned
model, which provides the output AutoPlug uses to update its
device-to-outlet mapping, i.e., by modifying the database that
stores the mapping. In contrast, the swap detection pipeline
has only two stages: the active period extraction as a pre-
processing step followed by time-series similarity matching.
In active period extraction, AutoPlug divides the input time-
series power data into distinct device active periods, which
represent contiguous time periods where a device is active
and consuming electricity. Note that if there is no energy
consumption by an outlet, AutoPlug cannot determine whether
a device is unplugged or whether it is simply not turned on.

A. Device Classification and Labeling

For device classification and labeling, similar to prior work,
we first perform feature extraction by transforming a given
window of time-series power data into a reduced set of statis-
tical features, called a feature vector, that serves as input to a
classifier. AutoPlug extracts features from both the raw data,
as well as processed data consisting of a new time-series of
energy deltas that represent the difference between consecutive
power readings in the raw data. We use the latter time-series
because changes in power are often more identifiable than
the raw power level of a device. Below, we briefly review
the specific features AutoPlug’s classifier employs for model
training and device identification. Note that these features are
similar to features used in prior work [12, 16].

1) Statistical Features: We compute a simple set of statis-
tical features for the two time-series above. Common features
include the average, maximum, minimum, standard deviation
and variance over each input time-series. These statistical
features provide the classifier model characteristic and discrim-
inative information for a specific device. In addition, we also

compute an additional metric for our feature set: the number
of energy deltas greater than a threshold value ∆OSC . This
metric gives insight into the dynamic behavior of the device’s
energy consumption, i.e., the frequency and magnitude of its
variations in power, as shown in the equation below (where
pi is the average power of ith outlet, and δ>(x, y) = 1 if
|y − x| > threshold and 0 otherwise).

∆OSC =

N∑
i=2

δ>(pi(ti), pi(ti + 1)) (1)

2) Duty Cycle: The duty cycle is the fraction of time a
device has been active during a given window of time. This
feature is useful in distinguishing continuously running devices
from devices that run for shorter periods. The duty cycle
feature indicates if an outlet’s device is idle or active in the
recent time-series window. We compute the duty cycle as
the number of power readings greater than a threshold value
divided by the total number of readings. This threshold value
varies depending on the input time-series data.

3) Histogram Features: Devices also exhibit patterns of
energy usage that are not captured by aggregate statistical
metrics. Similar to prior work [12], to capture this, we separate
the energy delta values of a device’s time-series power data
into separate bins of a histogram, which indirectly captures a
device’s energy usage pattern as a set of features amenable to
classification. The selection of bin sizes is configurable, and
affects the model’s accuracy. We use 8 different overlapping
bins spanning from 10W to 2500W. Each overlapping bin
width is X to 5X, where X represents the starting power value
for a bin. For example, our first bin is 10W-50W. For each
bin, we calculate two features: a) a bin size, which represents
the number of values that have populated the respective bin
and b) an average time interval between the energy deltas in
each bin. Thus, for 8 bins, there will be a total of 16 features
that characterize the waveform of the time series data.

B. Detecting Outlet Changes

As discussed earlier, classification is not sufficient to accu-
rately identify devices that change outlets in real time. In this
case, the feature vector from an outlet’s time-series energy
data may represent a combination of two or more devices.
The classifier, however, will provide only a single label, which
may not match any of the devices plugged in, as the aggregate
features above may significantly diverge from the individual
features of any single device. Thus, detecting outlet changes
is critical to the consistent maintenance of outlet metadata.
Since standard classification is not well-suited to detect such
real-time swaps, we design the detection technique below.

1) Active Period Extraction: First, to detect a device change
in a smart outlet, we extract the active periods from the outlet’s
time-series power data. Each device alternates between active
periods, where it consumes significant energy, and inactive
periods, where it does not. Since some devices consume a
small amount of standby, or vampire, power when inactive,
we assume a device is inactive if its power usage falls below
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a small threshold. Based on empirical data across a wide set
of devices we set this threshold to 5W. The active period is
then a continuous time period where the device operates over a
power greater than this threshold. We delineate separate active
periods if the inactive period is greater than a separation time
threshold, e.g., one minute. That is, if there is an inactive
period of greater than one minute we consider there to be
two active periods before and after the inactive period. If the
inactive period is less than one minute, we discard the inactive
period and assume it was part of a brief lull in operation of
a device’s active period. Note that we tried more advanced
techniques for extracting the active period, such as changepoint
detection, but found that this simple technique performed
similarly and was much more computationally efficient.

2) Time Series Matching: After we extract each active
period from the input time-series power data in real time, we
then compare it with the previous active period to determine if
the device has changed outlets. In each case, AutoPlug signals
a change in the device if the new active period is significantly
different than the previous active period. We combine two
different approaches to perform this comparison.

Time-series Distance. There are multiple functions available
to compute the distance between two time-series, such as
Euclidean distance or Dynamic Time Warping (DTW) [17].
DTW improves on Euclidean distance, as it is less sensitive
to slight differences in the alignment and shape of the time-
series pattern, i.e., it is able to slightly “warp” each time-series
to better align them and reduce the distance. Thus, DTW
is robust to data sequences of different lengths unlike with
Euclidean distance [17], as traces are “warped” non-linearly
in the time dimension to compute a measure of their similarity.
However, the DTW algorithm is expensive, as it has O(n2)
time complexity, where n is length of longest data sequence.
Thus, the longer the sequence in length, the more time it
takes for AutoPlug to compute the DTW distance, which
may not scale well on embedded devices like a Raspberry
Pi or Arduino, commonly used as gateway devices. As we
show in our experiments, we coarsen our data (from 1Hz
resolution to 0.2 Hz resolution) before applying DTW to
improve performance. Thus, in this approach, we compute the
DTW distance between two consecutive active periods and
signal a change when it exceeds a specified threshold.

Curve Fitting. Another approach is to fit a function to the
data, e.g., such as a logarithmic growth function, and then
compare the parameters of the best fit function for both active
periods. In this case, we signal a change if the percent-
age difference between the parameters exceeds a specified
threshold. Curve fitting is a method to construct the best
fit of a mathematical function for the input data sequence,
given the curve type or reference mathematical distribution.
In this approach, we compute the parameters of the best fit
logarithmic growth function to the active period, as prior work
shows that this function approximates the energy usage pattern
on startup for a wide range of devices [18].
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Fig. 2. Strip plot of DTW distances between sequences of the same appliance,
broken down by appliance

p(t) =

{
pbase + λ ∗ ln(t), 0 < t < tactive

poff , t > tactive

Using the logarithmic growth function, curve fitting on a
given data set computes two parameters pbase and λ. pbase is
the starting power level of the best curve fit and λ is growth
parameter. In our approach, we compute parameters for both
the active periods and then we compare the respective pbase
parameters, and finally compute similarity S as the percentage
difference in pbase of the both, where pbase1 and pbase2 are
parameters for the active periods, respectively.

S =
|pbase1 − pbase2|

max(pbase1, pbase2)
∗ 100 (2)

Approach Selection. We use the two approaches above in
different circumstances. Specifically, if the length of an active
period is short, e.g., less than three minutes in our experiments,
then we compare two sequences using the second approach,
since the logarithmic growth characteristic of many devices
is generally short-lived. In contrast, if the length of the active
period is long, e.g., greater than three minutes, we use DTW, as
longer active periods tend to exhibit more variations in power
usage that do not permit a single curve fitting.

AutoPlug signals a change if the similarity score or DTW
distance exceeds a threshold. As an example, we measure the
DTW distance between two active periods for four device
types and illustrate the results in a strip-plot in Figure 2.
The figure shows that the DTW distance for the refrigerator
and TV are well below 10 (with few exceptions), but that
the microwave and vacuum have DTW distances scattered
in the range of 0 to 50. Thus, selecting the DTW threshold
for the microwave and vacuum is more difficult than for the
refrigerator and TV. However, this is due largely to the shorter
operating cycle of the microwave and vacuum, which in this
case is below our threshold of three minutes. Thus, AutoPlug
uses curve fitting for these shorter active periods, as the DTW
distance threshold is more variable for these periods.

C. Window Size and Update Frequency

AutoPlug adapts the data window size and frequency at
which it runs the classification problem above. Prior work [12]
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uses a static window size of 24 hours and updated the
classification offline once per day. Instead, AutoPlug sets the
window size and update interval dynamically when it detects
a change in the outlet. That is, the window size for the
classification of an outlet starts from the last change detected
to the current time. In addition, after a change AutoPlug
periodically re-runs the classification, as the classification
accuracy increases as more data is collected after a device
swap. The period at which AutoPlug re-runs the classification
based on new data is frequent, e.g., every 15 minutes, as new
data significantly improves classification immediately after an
outlet change. AutoPlug stops re-running the classification
when the confidence in the labeling both reaches a specified
threshold and does not significantly improve with new data.
Note that this approach results in AutoPlug potentially mis-
labeling a device immediately after a change, as there is not
much data, and then correcting itself as it collects more data.

IV. IMPLEMENTATION

We have implemented Autoplug in python using the Scikit-
learn [19] and Scipy [20] stack. Scikit-learn is an open-source
machine learning library for python, which has a collection
of classification, regression and clustering algorithms. SciPy
has a collection of powerful scientific computing libraries
for data processing and visualization, as well as modules
for performing curve fitting. We use the implementation of
Dynamic Time Warping from a standard machine learning
library for python. AutoPlug maintains a simple database table
where each row stores a device label, an outlet label, a start
time for the association, and the duration of the association.

We have implemented an AutoPlug prototype system on a
Raspberry Pi 2, and deployed it in a real home. We instrument
the home with four Belkin Wemo Insight Switches [4]. The
Belkin Wemo Insight Switches are WiFi-enabled smart out-
lets, which are programmatically accessible via the ouimeaux
python API [21]. The Raspberry Pi acts as a gateway to gather
outlet power data, using the ouimeaux API to poll each
outlet for its energy usage at a 1Hz resolution, and implement
AutoPlug’s techniques from the previous section.

For AutoPlug’s initial training for classification, we use
device-level data from both the Tracebase public data set [22]
and data collected from a real home instrumented with
eGauges [23]. Tracebase includes 1Hz data resolution and
derives from 158 devices at different homes over a span of 158
days in Germany in 2012. The eGauge is a standard network-
connected power meter, which makes its data available through
a programmatic API. We train our classifier on 13 different
device types from these data sets, including a coffee maker,
dishwasher, freezer, lamp, clothes dryer, microwave, printer,
refrigerator, toaster, TV, washing machine, vacuum cleaner
and laptop charger. In addition to the real data above, we
also generate synthetic building datasets using Tracebase and
eGauge by replaying data from multiple devices, as if they
were present in a single home. Our virtual datasets assume the
refrigerator, TV, and microwave are static and do not change

Classifier Accuracy(%) Training-
Time(sec)

Naı̈ve Bayes 69.23 0.165
Support Vector Machine 76.60 260.23
Random Forest Classifier 89.94 1.670

TABLE I
ACCURACY OF DIFFERENT CLASSIFIERS ON OUR DATASET.

outlets, while devices, such as a lamp, laptop, and vacuum
cleaner, potentially do change outlets.

V. EVALUATION

We evaluate AutoPlug’s accuracy on our multiple public
data sets, on data collected during the live deployment, and
on the virtual datasets we construct from real data. In addition,
we also evaluate its performance, in terms of the average com-
putation time per update, i.e. latency, on multiple platforms,
including a Raspberry Pi and Macmini.

A. Accuracy

AutoPlug operates in an online fashion by continuously
polling each smart outlet every second, such that it updates
the smart outlet’s label at a dynamic interval based on the
detection of a swap. We evaluate both classification accuracy
and swap detection accuracy. As we discuss, there is a trade-
off between the latency of detecting a swap and its accuracy.

1) Classification Accuracy: We divide our dataset into
blocks of two hours each, and then we transform each data
block into a feature vector as described previously, which we
use for initial classification. Similar to prior work, we consider
two scenarios of evaluation for the classification: identifying
previously observed (or “seen”) devices and previously unob-
served (or “unseen”) devices. Identifying seen devices is the
case where respective device data is already in our training
data, where with unseen devices the classifier predicts the label
of a device whose data is not in the training data.

Identifying Seen Devices: We evaluate AutoPlug’s device
identification accuracy when we train and test the classifier on
the complete dataset. We use this experiment to evaluate the
accuracy of multiple classifiers, including Random Forest [24],
Support Vector Machine, and Naı̈ve Bayes. We perform 5-fold
cross validation on the complete dataset to measure the model
accuracy of above classifiers. Table I shows that the accuracy is
highest for the Random Forest Classifier. Its accuracy of 90%
is similar to the 93% accuracy presented in prior work on NILI,
which addresses a similar problem [12]. However, NILI only
works on a dataset size that includes 24 hours of energy data,
which results in more information in each instance. In addition,
NILI only updates each outlet’s label once per day, while our
approach performs an update at least once every 2 hours, and
is dynamically determined. Table I is for static devices that
do not change outlets. If we insert a change in outlet for each
device, AutoPlug with the Random Forest Classifier maintains
an accuracy of 89%, while NILI accuracy drops to 79%.

Identifying Unseen Devices: In general, training data for
devices is not known a priori, and thus identifying previously
unobserved devices is also important. For this experiment,
based on our results above, we train the Random Forest
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Fig. 4. Accuracy of AutoPlug’s time-series-based technique for detecting changes to outlets.
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Fig. 3. Detailed identification evaluation per device for devices not in the
training set with the Random Forest Classifier

Classifier on the complete dataset and then compute testing
accuracy for the data collected during the live deployment,
which includes devices not in the training data. Note that the
live deployment also included devices changing outlets. We
observe that overall AutoPlug accuracy in this live deployment
is close to 76% where the AutoPlug correctly labels 236
instances out of 310 instances. In comparison, the NILI
approach that assumes devices never change outlets yielded an
accuracy of only 64%. Figure 3 shows the per device break
down of the accuracy. Some devices exhibit worse accuracy
than others. For example, the labeling for the lamp is less
accurate because, in the live deployment, the lamp’s power
output was 70W, while in the training data set the lamp data
in some cases was 120W and higher. As a result, the Random
Forest Classifier fails to classify the 70W lamp correctly. Thus,
we expect these results to improve with more training data.

2) Detecting Outlet Changes: Since the output of swap
detection is a binary classification, e.g., either a swap is
detected or it is not, we evaluate its accuracy based on
the false positive rate, false negative rate and the Matthews
Correlation Coefficient (MCC) [25]. A false positive represents
the number of instances in which AutoPlug detects a swap
that is incorrect. Similarly, false negatives represent instances
where the AutoPlug fails to detect a swap. Similarly, the MCC
is a quality measure of binary classification that takes both the
false positives and false negatives into account, and represents
a balanced measure of a binary classifier’s performance. The
MCC’s value is between −1 and +1, where +1 indicates a
perfect prediction, 0 indicates a random prediction and −1

indicates a total mismatch of observations and predictions.
To evaluate swap detection, we compute the metrics above

for our live deployment data and virtual data sets assembled
from the Tracebase [22] and eGauge [23]. During the live
deployment, we plug in six different devices into smart outlets,
such that three of them operate in the living room and the other
three operate in the kitchen. We then swap one device with
other that operates in the same room.

Our false positive rate and false negative rate will depend
on the threshold values for swap detection. To find the optimal
threshold value for both of our swap detection approaches, we
consider our DTW approach’s threshold from 2.5 to 15 and
our curve fitting approach’s threshold from 2.5 to 15. We then
compute the MCC, false positive, and false negative rate for
each set of threshold values. Figure 4(b), and (c) shows that the
false positive rate increases as the threshold values decrease,
while the false negative rate decreases as the threshold values
decrease. Thus, a threshold combination of 10 and 10 for both
the approaches respectively is a suitable choice as this keeps
the false positive rate and false negative rate relatively low and
maximizes the MCC value, shown in (a). As the figure shows,
the false positive and false negative rates of AutoPlug with
optimal threshold values are 5.2% and 7.5%, which translates
to 92% swap detection rate.

Figure 4(a) shows that AutoPlug’s MCC for swap detection
is near 0.8. We also compared this with an approach that
detects changes solely based on classification, as in [16],
and not detecting changes in the pattern of time-series data.
For this classification-based approach, we compare the output
classification label of an outlet from the present data window
to previous data window. If the labels do not match then we
signal that a device has changed outlets; if they do match, then
we signal a device has not changed outlets. This classification-
based approach yielded an MCC of 0.31 and a false positive
rate of 16%. This approach differs from AutoPlug in that the
classification requires much more data to accurately re-classify
a device, while our time-series-based approach is able to re-
classify as soon as it recognizes that the pattern does not match
the data pattern. Since such classification is done over data
features that are aggregate statistical metrics of the data, more
data results in a higher classification accuracy.

3) Dynamically Setting the Window Size: Recall that, unlike
prior work, AutoPlug dynamically sets its window size and
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Fig. 5. AutoPlug’s overhead for different platforms and configurations (a), and its overhead for varying numbers of outlets (b).

update frequency for classification based on its swap detection.
AutoPlug automatically starts a new window after detecting
a swap and then continuously updates the classification as
new data becomes available. AutoPlug stops the classification
when the confidence level for the device reaches a threshold
and stops improving. The confidence level is the probability
assigned to the true label from the probability distribution over
the set of labels considered by the classifier. If the confidence
level is over 50%, then it indicates that the classifier output is
likely correct, and less likely if under 50%.

We compute the confidence levels for four devices: a lamp,
laptop, microwave oven and refrigerator over three data win-
dow sizes (0.5 hours, 1 hour, and 2 hours) after a change. We
then compute confidence levels over multiple active periods
of the device and average those values, respectively. Figure 6
shows the results, which indicate that the microwave oven can
be clearly labeled in 0.5 hours, but refrigerator and laptop
need more time for accurate detection. Note in the laptop
and refrigerator cases, when data window size was 0.5 hours,
the classifier failed to assign their correct label, but AutoPlug
corrects itself once more data becomes available.

B. Performance

We next measure the average computation time per update
i.e. latency, to evaluate AutoPlug’s performance. Since Auto-
Plug stores only recent two hour power data per outlet, I/O is
negligible, and computation time will depend on a) the number
of outlets being monitored and b) the computational overhead
of the swap detection process, especially the DTW approach
given its high overhead. Here, we configure AutoPlug in two
configurations—A and B—such that A is the default configu-
ration and B adds a processing step that reduces the resolution
of the active periods by a factor of five before applying DTW,
e.g., from 1Hz resolution to 0.2Hz resolution. Note that, we
have evaluated accuracy of system in configuration B.

We first investigate how the latency varies for AutoPlug
running on different platforms. For this experiment we imple-
ment AutoPlug on a Raspberry Pi 2 running Ubuntu Linux,
as well as a Macmini running OSX. From Figure 5(a) we
see that the latency is modest in the case of Macmini, but
increases for Raspberry Pi 2, particularly when AutoPlug is in
configuration A, due to the computational overhead of DTW.
Next, we measure the latency of the AutoPlug for varying
number of smart outlets. We conduct this experiment with
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Fig. 7. Accuracy and latency for two AutoPlug configurations.

AutoPlug in simulation (using configuration B) implemented
on a Raspberry Pi 2. Also, for this experiment we assume that
all the outlets are active. From Figure 5(b), we see that the
latency increases as the number of outlets increases. When the
number of active outlets increases beyond 25, there is a sharp
increase in latency, due to the CPU nearing saturation.

Finally, Figure 7 shows the trade-off between AutoPlug’s
latency and swap detection accuracy. Here, we configure
AutoPlug on a Raspberry Pi 2 monitoring four smart outlets.
We see that latency varies by a large margin from configuration
A to B, but accuracy in both the configurations is above 92%
with configuration A being marginally higher, as expected due
to the higher data resolution. However, the increase in accuracy
over configuration B, which reduces the resolution of the data
to reduce DTW overhead, is not significant, indicating the
benefit of this optimization.

VI. RELATED WORK

While prior work [12, 13, 14, 15] has investigated classi-
fication techniques for device identification from energy data
it does it offline at a static interval and does not i) adaptively
determine the interval over which to classify devices, which
decreases its accuracy if devices change outlets, and ii) detect
and report in real time when such a device change occurs.
AutoPlug applies time-series techniques to detect such changes
in real time, and then feeds this information back to the
classifier to determine when to re-classify an outlet (and
the interval of classification). AutoPlug is able to quickly
recognize outlet changes with little data, and feed these times
back to the classifier to determine the period over which
to classify data. Thus, AutoPlug partially focuses on system
performance and the latency of detection, in addition to
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Fig. 6. Confidence Level versus data window size for different devices.

classification accuracy, while the prior work above focuses
only on accuracy. A. Leonardi et al. [16] also take a similar
approach for labeling smart outlets using classification, and
extend it to detect changes in outlets. We show that AutoPlug
outperforms such a classification-based approach in Section
V.A.

Related work also focused on analyzing existing metadata in
BMSs to discern the types of devices, largely in the context of
commercial buildings [26]. This work differs from our work in
that the labels in the BMSs already exist, but their encoding is
not known, e.g., due to ad hoc encoding rules for labels being
manually entered by an operator, and must be derived automat-
ically. The work above has led to efforts to standardize naming
conventions for metadata in commercial buildings. AutoPlug
does not focus on how to name the devices once identified,
and could use such standardized naming conventions.

VII. CONCLUSION

In this paper, we present AutoPlug, a system for identifying
and tracking devices plugged into smart outlets in real time.
Similar to prior work, AutoPlug transforms the given input
time-series energy data into a compact set of features and then
uses an off-the-shelf classifier to identify the loads. However,
AutoPlug employs time-series pattern matching, e.g., using
DTW and curve fitting, to detect changes in devices in real
time and to track loads as they move from one outlet to
another. AutoPlug is then able to feed this information back
to the classifier to determine when to re-classify a device and
over what time period. Our results show that we can achieve
∼90% load identification accuracy using the data from the 13
device types collected from various real homes and is also
able to detect device changes with accuracy >90%. Further,
our results show that our AutoPlug prototype deployed live on
a Raspberry Pi is able to monitor as many as 25 outlets and
support a 50s identification latency.
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