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Summary Many water quality models use some form of the Natural Resources Conserva-
tion Services (formerly Soil Conservation Service) curve number (CN) equation to predict
storm runoff in ways that implicitly assume an infiltration-excess response to rainfall.
Because of this, these models may fail to predict variable source areas (VSAs) correctly,
i.e. where runoff is typically generated in rural, humid regions. In this study, the Soil and
Water Assessment Tool (SWAT) model was re-conceptualized to distribute overland flow in
ways consistent with VSA hydrology by modifying how the CN and available water content
were defined; the new modeling approach is called SWAT-VSA. Both SWAT and SWAT-VSA
were applied to a sub-watershed in the Cannonsville basin in upstate New York to compare
model predictions of integrated and distributed responses, including surface runoff, shal-
lowly perched water table depth, and stream phosphorus loads against direct measures.
Event runoff was predicted similarly well for SWAT-VSA and SWAT. However, the distribu-
tion of shallowly perched water table depth was predicted better by SWAT-VSA and it is
this shallow groundwater that governs VSAs. Event based dissolved phosphorus export
from the watershed was also predicted better by SWAT-VSA, presumably because the dis-
tribution of runoff source areas was better predicted particularly from areas where man-
ure was applied. This has important consequences for using models to evaluate and guide
watershed management because correctly predicting where runoff is generated is critical
to locating best management practices to control non-point source pollution.
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Introduction

Water quality modeling is an important tool used by
researchers, planners, and government agencies to optimize
management practices to improve water quality. Many of
these water quality models use some form of the Natural
Resources Conservation Services (formerly Soil Conservation
Service) curve number (CN) equation to predict storm runoff
from watersheds. The way the CN is applied in these models
implicitly assumes an infiltration-excess (or Hortonian, i.e.,
Horton, 1933) response to rainfall (Walter and Shaw, 2005).
However, in humid, well-vegetated regions, especially
those with permeable soils underlain by a shallow restricting
layer, storm runoff is usually generated by saturation-ex-
cess processes on variable source areas (VSAs) (Dunne and
Black, 1970; Dunne and Leopold, 1978; Beven, 2001; Sriniva-
san et al., 2002; Needelman et al., 2004). Thus, many of the
most commonly used water quality models do not correctly
capture the spatial distribution of runoff source areas and,
by association, pollutant source areas (Qui et al., 2007).
Examples of models using a CN-type approach include the
Generalized Watershed Loading Function (GWLF) model
(Haith and Shoemaker, 1987), the Soil Water Assessment
Tool (SWAT) model (Arnold et al., 1998), the Storm Water
Management Model (SWMM) (Krysanova et al., 1998), the
Erosion Productivity Impact Calculator (EPIC) model (Wil-
liams et al., 1984), and the Long-Term Hydrologic Impact
Assessment (L-THIA) model (Bhaduri et al., 2000). Although
these models have routinely been calibrated to correctly
predict stream discharge and sometimes stream water qual-
ity at the watershed outlet this does not mean that distrib-
uted hydrological processes were correctly captured
(Srinivasan et al., 2005). Indeed, lumped models, which
implicitly ignore how intra-watershed processes are distrib-
uted, can predict integrated watershed responses like
stream flow as well as models that simulate a fully distrib-
uted suite of intra-watershed processes (Franchini and Pac-
ciani, 1991; Johnson et al., 2003).

Watershed managers tasked with implementing strate-
gies for controlling non-point source (NPS) pollution need
water quality models that can correctly identify the loca-
tions where runoff is generated in order to effectively place
best management practices (BMPs). Although, as discussed
earlier, most current water quality models do not have this
capacity, Lyon et al. (2004), building on Steenhuis et al.
(1995), showed how CN models can be used to predict the
distribution of VSAs. Schneiderman et al. (in press) were
the first to use this body of work to modify an existing water
quality model, namely GWLF (Haith and Shoemaker, 1987),
so that it explicitly simulated saturation excess runoff from
VSAs.

It is challenging to modify more complex models like
SWAT or EPIC because many of their sub-models, especially
those simulating various biogeochemical processes, have
been developed around the assumption that a watershed
can be characterized by an assemblage of non-interacting
landscape-units delineated by land use and soil type. While
this is perhaps a reasonable assumption when considering
deep soil profiles without restricting layers or shallow water
tables and, hence, areas where surface runoff is primarily
produced when the rainfall intensity exceed the infiltration

capacity of the soil (i.e., Hortonian or infiltration-excess
runoff), it may not prove accurate in VSA dominated areas.
In many areas, VSAs are formed when shallow ground water
flowing within the soil from upslope areas of the watershed
accumulates and saturates lower parts of the watershed.
These VSAs become ‘‘active’’ when groundwater flow ex-
ceeds storage or when precipitation falls on the saturated
area, causing saturation excess runoff. This concept neces-
sitates recognizing interactions throughout the landscape.
Thus, the challenge of incorporating VSA hydrology into
models employing CN-type functionality is to find ways of
capturing the spatial arrangement of saturation excess run-
off source areas while also retaining the soil and land use
information necessary to various nutrient and biogeochem-
ical subroutines.

This study specifically focused on SWAT, one of the most
commonly used and well supported water quality modeling
systems available. The strengths of SWAT are its use of
readily available input data and its process based nutrient
biogeochemistry sub-models (Santhi et al., 2001; van
Griensven and Bauwens, 2003; Borah and Bera, 2004;
Ramanarayanan et al., 2005). Storm runoff is predicted with
the CN equation, which we have already noted can be used
in a VSA context. SWAT divides sub-basins into hydrological
response units (HRUs) but currently does not allow water
flow among HRUs and, therefore, cannot simulate the for-
mation of VSAs. In this investigation we propose using a
topographic wetness index to redefine HRUs so that spatial
runoff patterns would follow those observed in VSA domi-
nated landscapes. Indeed, Lyon et al. (2004) found that
topographic indices described the evolution of a shallow
water table in the Catskill Mountain of New York and that
this shallow water table was the primary control on VSA for-
mation. One of the earliest uses of topographic wetness
indices to simulate VSA hydrology was TOPMODEL (Beven
and Kirkby, 1979) and the topographic index concept has
since been applied outside of TOPMODEL and found to
effectively predict VSAs for many watersheds dominated
by saturation-excess runoff (Western et al., 1999; Lyon
et al., 2004; Agnew et al., 2006; Schneiderman et al., in
press). This re-conceptualization of SWAT allows users to
model and predict saturation excess runoff from VSAs with-
out modifying the code base, and thus provides a simple
means of capturing spatially variant saturation excess run-
off processes from the landscape. The re-conceptualized
version of SWAT, referred to as SWAT-VSA, is tested using
integrated watershed responses at a watershed outlet and
spatially-distributed data from within a watershed. We also
compared SWAT-VSA predictions to those made by a stan-
dard implementation of SWAT.

Summarized SWAT description

The SWAT model is a river basin or watershed scale model
created to run with readily available input data so that gen-
eral initialization of the modeling system does not require
overly complex data gathering or calibration. SWAT was
originally intended to model long-term runoff and nutrient
losses from rural watersheds, particularly those dominated
by agriculture (Arnold et al., 1998). SWAT requires soils
data, land use/management information, and elevation
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data to drive flows and direct sub-basin routing. While these
data may be spatially explicit, SWAT lumps the parameters
into hydrologic response units (HRU), effectively ignoring
the underlying spatial distribution. Traditionally, HRUs are
defined by the coincidence of soil type (Hydrologic Soil
Group, USDA, 1972) and land use. Simulations require mete-
orological input data including precipitation, temperature,
and solar radiation. In the present study, model input data
and parameters were initially parsed using the AVSWATX
interface (Di Luzio et al., 2000). The interface assimilated
the soil input map, digital elevation model, and land use
coverage.

CN equation applied to VSA theory

SWAT-VSA capitalizes on the re-conceptualization of the CN
equation to capture VSA storm hydrology (Steenhuis et al.,
1995; Lyon et al., 2004; Schneiderman et al., in press),
which we will briefly summarize the background of here.
The CN equation was originally developed by Mockus (Ralli-
son, 1980) and estimates total watershed runoff depth Q
(mm) (both overland flow and rapid subsurface flow) for a
storm (USDA-SCS, 1972):

Q ¼ P2
e

Pe þ Se
ð1Þ

where Pe (mm) is the depth of effective rainfall after run-
off begins, i.e. rainfall minus initial abstraction, Ia (rainfall
retained in the watershed when runoff begins) and Se (mm)
is the depth of effective available storage in the wa-
tershed, or the available volume of retention in the wa-
tershed when runoff begins. Ia is estimated as an
empirically-derived fraction of available watershed storage
(USDA-SCS, 1972).

Steenhuis et al. (1995) showed that Eq. (1) could be
interpreted in terms of a saturation-excess process. Assum-
ing that all rain falling on unsaturated soil infiltrates and
that all rain falling on areas that are saturated becomes run-
off, then the rate of runoff generation will be proportional
to the fraction of the watershed that is effectively satu-
rated, Af, which can then be written as:

Af ¼ DQ
DPe

ð2Þ

where DQ is incremental saturation-excess runoff or, more
precisely, the equivalent depth of excess rainfall generated
during a time period over the whole watershed area, and
DPe is the incremental depth of precipitation during the
same period. Thus, by differentiating Eq. (1) with respect
to Pe, the fractional contributing area for a storm can be
written as (Steenhuis et al., 1995):

Af ¼ 1� S2

ðPe þ SeÞ2
ð3Þ

According to Eq. (3), runoff only occurs from areas that
have a local effective available storage, re (mm), less than
Pe. Therefore, by substituting re for Pe in Eq. (3) we have a
relationship for the fraction of the watershed area, As, that
has a local effective soil water storage less than or equal to
re for a given overall watershed storage of Se (Schneiderman
et al., in press):

As ¼ 1� S2e
ðre þ SeÞ2

ð4Þ

Note that that both Se and Ia are watershed properties while
reis defined at the local level. Solving for re gives the max-
imum effective local soil moisture storage within any partic-
ular fraction, As, of the watershed area (Schneiderman
et al., in press):

re ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1� AsÞ

s
� 1

 !
ð5Þ

For a given storm event with precipitation P, the fraction
of the watershed that saturates first (As = 0) has local
storage re = 0, and runoff from this fraction will be P � Ia.
Successively drier fractions retain more precipitation and
produce less runoff according to the moisture – area rela-
tionship of Eq. (5). The driest fraction of the watershed
that saturates during a storm defines the total contribut-
ing area (Af). As average effective soil moisture storage
(Se) changes through the year, the moisture-area relation-
ship will shift accordingly (Eq. (5)); Se is constant once
runoff begins.

According to Schneiderman et al. (in press), runoff for an
area, qi (mm), can be expressed as:

qi ¼ Pe � re for Pe > re; ð6Þ
For Pe 6 re, the unsaturated portion of the watershed,
qi = 0. To avoid changing any SWAT code, we propose
approximating Eq. (6) with the CN equation (Fig. 1):

qi ¼
P2
e

Pe þ re
ð7Þ

This approximation gives the same result when P! 1 satis-
fying the boundary condition. However, runoff starts earlier
as shown in (Fig. 1). Thus, unlike Eqs. (6) and (7) predicts
some flow before the local soil deficit is filled, which may
be interpreted as early, rapid subsurface flow or as an un-
even distribution of storages (re) within the runoff produc-
ing area.

Figure 1 Comparison between the saturation excess version
of the CN equation, Eq. (6) (Pe = P � 0.2re) (Schneiderman
et al., in press), and the SWAT-VSA approximation, Eq. (7).
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Implementation for variable source areas
(VSAs)

The most significant part of our re-conceptualization of
SWAT lies in re-defining HRUs. Following Schneiderman
et al. (in press), we use a topographic wetness index in com-
bination with land use to define the HRUs. Specifically, we
use a soil topographic index (STI) (e.g., Beven and Kirkby,
1979):

STI ¼ ln
a

T tan b

� �
ð8Þ

where a is the upslope contributing area for the cell per unit
of contour line (m), tanb is the topographic slope of the
cell, and T is the transmissivity (soil depth · saturated soil
hydraulic conductivity) of the uppermost layer of soil
(m2 d�1) (Lyon et al., 2004). The local storage deficit of
each wetness class (re,i) is determined by integrating Eq.
(5) over the fraction of the watershed represented by that
wetness index class (Schneiderman et al., in press):

re;i ¼
2Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� As;i

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� As;iþ1

p� �
ðAs;iþ1 � As;iÞ � Se ð9Þ

where the fractional area represented by each index class is
bounded on one side by the fraction of the watershed that is
wetter, As,i, i.e., the part of the watershed that has lower
local moisture storage, and on the other side by the fraction
of the watershed that is dryer, As,i+1, i.e., has greater local

moisture storage. Index classes are numbered from 1, the
driest and least prone to saturate, to n, the most frequently
saturated.

In the standard version of SWAT land use and soil type de-
fine the area of each HRU. In SWAT-VSA the area of each
HRU is defined by the coincidence of land use and wetness
index class determined from the STI (Eq. (8)); Fig. 2 shows
how HRUs are delineated in the SWAT-VSA framework.
The additional information necessary for SWAT’s nutrient
and biogeochemical subroutines, specifically, topology
(e.g. slope position and length, etc) and various soil physical
and chemical properties, are averaged within each wetness
index class. We do not anticipate serious problems due to
taking average soil properties within an index class because
there is evidence that soil variability roughly correlates with
topographic features, probably because soil genesis is to a
great extent driven by hydrology and topology (Page
et al., 2005; Sharma et al., 2006; Thompson et al., 2006).

In SWAT, runoff is calculated for each soil/land-use de-
fined HRU using Eq. (1). In SWAT-VSA, the runoff for each
wetness-index-class/land-use defined HRU is calculated
with Eq. (7), which is approximately equivalent to Eq. (1)
for large events. The difference is that in SWAT-VSA, the
effective storage is associated with each HRU’s wetness in-
dex (Eq. (9)) and in SWAT the effective storage is based on
land use and soil infiltration capacity. Note that in SWAT-
VSA, runoff depth within a wetness index class will be the
same irrespective of land use while nutrient dynamics will

Figure 2 Conceptual framework for implementation of saturation excess runoff from variable source areas into SWAT. Pertinent
SSURGO soil information were extracted with an aerially weighted soil topographic index (STI), and included in the index input table
by wetness class. Then the STI and land use rasters were intersected to form hydrologic response units (HRU).
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vary with land uses and, thus, can differ within index clas-
ses. Nutrient loads from each wetness-index-class/land-
use HRU are tracked separately in SWAT-VSA, but are other-
wise processed similarly to SWAT. For the entire watershed,
runoff depth is the aerially-weighted sum of local runoff
depths, qi, for all HRUs.

Although topographic wetness indices capture the spatial
patterns of VSAs, the SWAT code does not allow water flow
among HRUs. Thus, to compensate for this we propose
adjusting the available water content (AWC) of the soil pro-
file so that higher wetness index classes retain water longer,
and the lower classes dry quicker. In VSA theory runoff pro-
duction is related to saturation dynamics, accordingly there
needs to be higher water contents in high runoff producing
areas, thus we relate local soil water storage, re,i, to AWC
with the following relationship:

AWC ¼ 1� qb

2:65
� 0:05

� �
� 0:4 clayð Þqb

100

� �	 


� 254

re;i þ 24:5
� 0:01

� �
ð10Þ

where qb is the soil bulk density (g cm�3) and clay is the soil
clay content (cm3 cm�3). Eq. (10) makes conceptual sense
in the SWAT-VSA framework because re,i is directly related
to the saturated area by Eq. (4). Notice that the form of last
term of Eq. (10) is the same as the relationship between Se
and the CN. Using this relationship the soil moisture in run-
off producing areas is forced to a higher level. This calcula-
tion is derived and adapted directly from SWAT’s own soil
water calculations, its soil physics routine (AWC = field
capacity � wilting point).

HRUs dominated by impervious surfaces are simulated
identically and with the same infiltration-excess approach
as used in SWAT.

Watershed description and model applications

We applied both SWAT and SWAT-VSA in the test watershed
and compared model predictions to measurements of
stream flow and dissolved phosphorus in the stream (data
collected by USGS, via M. McHale, personal comm.) and dis-
tributed measures of shallow water table depth perched on
the shallow bedrock and fragipan restricting layers (Lyon
et al., 2006a,b). The USGS sampling protocol at the outlet
of the watershed includes both event-based and biweekly
(generally baseflow) samples, therefore we compare event
based model predictions with event based runoff estimates
obtained from baseflow-separation of daily stream hydro-
graph data (Arnold and Allen, 1999).

Watershed description

The test watershed is a 37 km2 rural watershed located in
the Catskill Mountains of New York State (Fig. 2). The region
is typified by steep to moderate hillslopes of glacial origins
with shallow permeable soils, underlain by a restrictive
layer. The climate is humid with an average annual temper-
ature of 8 �C and average annual precipitation of 1123 mm.
Elevation in the watershed ranges from 493 to 989 m above
mean sea level with slopes as steep as 43�. Soils are mainly
silt loam or silty clay loam with soil hydrologic group C rat-

ings (USDA-NRCS, 2000) (Fig. 2). Soil depth ranges from
<50 cm to >1 m and is underlain by a fragipan restricting
layer (e.g. coarse-loamy, mixed, active, mesic, to frigid Ty-
pic Fragiudepts, Lytic or Typic Dystrudepts common to gla-
cial tills) (Schneiderman et al., 2002). The lowland portion
of the watershed is predominantly agricultural, consisting
of pasture and arable land (20%), shrub land (18%), and
the upper slopes are forested (60%) (Fig. 2). Water and wet-
land comprise 2%, and impervious surfaces occupy <1% of
the watershed and thus both were excluded from consider-
ation in the model. Several studies in this and nearby water-
sheds have shown that variable source areas control
overland flow generation (Frankenberger et al., 1999; Mehta
et al., 2004; Lyon et al., 2006a,b; Schneiderman et al., in
press) and that infiltration-excess runoff is rare (Walter
et al., 2003).

Input data

Spatial Data: Required landscape data includes tabular and
spatial soil data, tabular and spatial land use information,
and elevation data. All soils data were taken from the SSUR-
GO soil data base (USDA-NRCS, 2000) (Fig. 3); arithmetic
means were used for all soils properties for which SSURGO
contained a range of values. For SWAT-VSA, we substituted
the STI for the soils map to create the HRUs. However,
since SWAT requires many soil properties for both the
hydrologic and biogeochemical sub-routines we areally
weighted the soils map with the STI using GRASS (US Army
CERL, 1997) and extracted the associated soils properties
from the SSURGO database. These values were then inte-
grated into look up tables and linked to the map in the AVS-
WATX interface. For SWAT-VSA, we lumped the watershed’s
STI into 10 equal area intervals ranging from 1 to 10, with
index class 1 covering the 10% of the watershed area with
the lowest STI (i.e. lowest propensity to saturate) and index
class 10 containing the 10% of the watershed with the high-
est STI (i.e. highest propensity to saturate) (Fig. 2). These
wetness index classes were intersected with the land use
to create 160 HRUs in three sub-basins (Fig. 2). Sub-basins
were defined in the AVSWATX interface by setting a mini-
mum area threshold of 10 km2 so that each sub-basin com-
promises an approximately equal area of the watershed
(Fig. 2). A digital elevation model (DEM) of the basin was
obtained from the New York City Department of Environ-
mental Protection (NYCDEP) with 10 m · 10 m horizontal
and 0.1 m vertical resolutions. Land use was remotely
sensed by medium resolution satellite data (Landsat 7
ETM+) (de Alwis, 2007) (Fig. 2).

Required Meteorological Data: Daily precipitation data
were collected from the four nearest weather stations, spe-
cifically, Stamford, Pratsville, Arkville, and Delhi, NY
(Northeast Regional Climate Center, NRCC). All weather sta-
tions were located outside of the test watershed. The input
precipitation for the watershed was determined using an in-
verse distance squared weighting procedure (distance to
watershed centroid) to create one time series. Daily mini-
mum and maximum temperature data were collected at
the NRCC station in Stamford, NY, the closest station to
the watershed. Daily solar radiation and wind speed data
were obtained from the NRCC station in Binghamton, NY.
Daily potential evapotranspiration rates were calculated in
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the SWAT model using the Penmen–Monteith method.
Meteorological stations were geo-referenced (latitude, lon-
gitude, and elevation) and the variables adjusted in SWAT
using lapse rates in the watershed.

Calibration

A two-step procedure was used to calibrate the CNII values
for SWAT-VSA’s wetness index classes based on 1998–2001
data. A basin wide storage (Se) of 16 cm (Lyon et al.,
2004) was used to distribute the re,i values in the basin
according to the wetness index (Eq. (9)), which results in

a basin-wide average CNII = 73 per the method outlined in
the model development section (i.e., VSA CNII method, Ta-
ble 1). This first step established the relative distribution of
re,i. Because the CN equation is non-linear, the flow pre-
dicted using a lumped Se will not necessarily be the same
as that predicted as the sum of multiple contributing areas,
even if the average storage in both cases is the same. There-
fore, we re-ran the calibration uniformly adjusting all the
CNII (by CN-units of 0.25) to minimize the RMSE between
predicted and measured runoff. The optimized average CNII,
over all wetness index classes, was 70, which was similar to
that found in an earlier study using GWLF for the same cal-

Figure 3 Location of capacitance probes, and elevation gradient in the watershed (right) (from Lyon et al., 2006a). Map on left
show the respective index classes spanned by the probes.

Table 1 Parameters adjusted for SWAT-VSA and SWAT

SWAT-VSA SWAT

Wetness index STIa CNII-VSA
b AWC (cm3 H2O cm�3) soil Soil hydrologic group Land use CNII

b

1 5.4 22.97 0.09 C Shrub 67.21
2 7.6 49.50 0.19 C Pasture 72.05
3 8.2 61.11 0.25 C Deciduous forest 70.30
4 8.6 69.56 0.29 C Evergreen forest 64.52
5 9.1 76.30 0.33 C Mixed forest 66.29
6 9.6 81.94 0.36 C Row crop 77.42
7 10.0 86.81 0.38
8 10.5 91.09 0.41
9 11.3 94.91 0.44
10 17.2 98.37 0.45

Average 9.8 VSA 73, Calibrated 70 0.319 70

Soil topographic index values (STI) for each class, curve number II (CNII) values calculated with the VSA methodology, available water
content (AWC), for the index classes used in the SWAT-VSA model CNII used for the standard SWAT model for each land use, and soil
hydrologic group (all other parameters were left as SWAT defaults derived by the AVSWATX ArcView Interface).
a Average soil topographic index for each wetness index class.
b The average CNII values were calibrated from the observed runoff/rainfall relationship at the watershed outlet.
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ibration period, CNII = 70.1 (NYCDEP, 2004). The differential
between the CNII value of 73, determined using the VSA
methodology described above, and the CNII value of 70,
determined using the minimization method, is due to the
different runoff calculations used (i.e., Eq. (6) vs. Eq.
(7)). To insure good calibration, we also made sure that
our calibrated result maximized the coefficient of determi-
nation (r2) and the Nash–Suttcliffe efficiency (E) (Nash and
Sutcliffe, 1970). Table 1 summarizes the calibrated CNII val-
ues for each wetness index class.

Accordingly, to determine the basin average CNII for
SWAT we used the same Se of 16 cm from Lyon et al.
(2004) and distributed the CNII values based on tabulated
ranges such that the aerially weighted average CNII value
was 70. The final CNII value for each HRU was calibrated
using the same approach as for SWAT-VSA, i.e., adjusting
all the CNII values uniformly to minimize RMSE between pre-
dicted and observed runoff (1998–2001) and maximize r2

and E. The calibrated average-over-all-HRUs CNII = 70, was
identical to the CNII for SWAT-VSA. Table 1 summarizes
the calibrated CNII values for each combination for soil
and land use. Both SWAT-VSA and SWAT were run on daily
time steps.

Simulated phosphorus applications

We simulated P applications from fertilizer and manure in
the watershed using the nutrient management plan (NMP)
obtained from the Delaware County Watershed Agricultural
Council for the largest farm in the watershed, which ac-
counted for approximately 50% of the land where P was ap-
plied. We followed the rotational and application timing
recorded in the NMP, and assumed these applications were
representative for the remaining agricultural land in the wa-
tershed. Phosphorus application rates were, on average,
90–120 kg ha�1 yr�1 on agricultural land. Soil test P values
from the NMP were used to initialize the labile P in the first
soil layer where levels were high (i.e., row crop and pasture
land uses). The model was allowed to equilibrate by starting
the simulation 2 years before the observed data record be-
gan using measured weather data. Default values were used
for all P-simulation parameters within SWAT and not ad-
justed when implementing the NMP.

Validation

We validated SWAT-VSA and SWAT (2002–2004) by compar-
ing both integrated (event runoff and event stream P ex-
port) and distributed (distributed water table) predictions
to direct measurements. While the model was run on a daily
time step, integrated validation was performed on an event
basis. For each constituent, model performance was evalu-
ated with four methods: qualitatively using time series plots
and quantitatively using the coefficient of determination
(r2), the root mean square error (RMSE), and the Nash–Sut-
tcliffe coefficient (E). To test SWAT and SWAT-VSA’s abili-
ties to predict distributed hydrology correctly, we used
measurements by Lyon et al. (2006a) of water table height
above the restricting layer for a section of the watershed.
Briefly, 44 capacitance probes, installed to depths of
�50 cm, recorded the water table height in 15 min intervals

from April 2004 to September 2004 (Fig. 3). The field site
encompassed five wetness index classes (Fig. 3) and three
land use types, pasture, shrub, and mixed forest. To com-
pare the measured and SWAT-VSA water table heights the
capacitance probe data were averaged across index classes;
there were between two and 32 capacitance probes per in-
dex. To compare measured water table heights with SWAT
water table heights we averaged across land use; there were
four to 32 measurements per land use. SWAT (and SWAT-
VSA) reports soil water in mm of water integrated over
the soil profile (i.e. cumulative water depth for all soil lay-
ers). Thus, we converted the model predicted mm of soil
water to and equivalent depth by dividing by the SSURGO re-
ported porosity and assumed the SSURGO reported depth to
the restricting layer was accurate. According to the SSURGO
database, the depth to the local restricting layer at the
measurement site is 1.2–1.4 m.

Results and discussion

Stream flow

SWAT and SWAT-VSA simulated runoff did not differ signifi-
cantly (p-value < 0.05 paired t-test) as would be expected
using the same watershed CNII values (Fig. 4a and b, respec-
tively). Predicted and observed event runoff for both mod-
els resulted in Nash-Suttcliffe efficiency greater than 0.7 for
both calibration and validation periods (Fig. 4). No system-
atic bias was evident in the results, with predicted vs. ob-
served data evenly scattered around the 1:1 line (Fig. 4
insets). The largest deviation for both models was for an
April 2001 snowmelt event, which both models over pre-
dicted by approximately 15%. Fig. 4a and b show that that
distributing the Se differently had little impact on the inte-
grated runoff response. The adjustment of the AWC by in-
dex was the cause of the minor deviations between SWAT-
VSA and SWAT runoff in Fig. 4a and b.

The major difference is in how the runoff is distributed.
For example, Fig. 5 shows the distribution of runoff gener-
ation for a November 2003 event. As anticipated, the dis-
tribution of predicted runoff generation for SWAT-VSA
reflects the imposed topographical controls, with higher
runoff associated with HRUs with higher wetness index
classes, i.e. areas closer to the stream (Fig. 5a). SWAT’s
distribution of runoff generation reflects the underlying
soils and land use controls that the model assumes. Inter-
estingly, because the farm land in this watershed is located
in near stream areas and this land is associated with rela-
tively high infiltration-excess runoff (higher CNII value),
SWAT actually predicts its highest runoff from locations
similar to SWAT-VSA (Fig. 5a and b). However, SWAT-VSA
predicts large portions of the watershed as producing little
or no runoff, whereas SWAT predicts runoff from virtually
every place in the watershed (Fig. 5b). To illustrate the
differences in how SWAT-VSA and SWAT distribute runoff
we plotted the cumulative runoff from the different HRUs
with a pasture land use (Fig. 6a and b). By definition,
SWAT-VSA HRUs with the same wetness index class had
the same runoff, but among wetness indices cumulative
runoff over the simulation period varied from near zero
to >3000 mm (Fig. 6a). There were only three SWAT HRUs
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with pasture land uses, reflecting the three sub-basins in
the model initialization. Intuitively, the runoff from pas-
ture land use should not vary much among sub-basins, ow-

ing to the identical CNII values. Slight variations are
introduced due to different slopes and slope lengths in
the sub-basins (Fig. 6b).

Figure 4 Event runoff predicted by SWAT-VSA (a) and SWAT (b) plotted against the measured baseflow separated runoff at the
outlet of the watershed. Inset graphs show the linear 1:1 relationship.

Figure 5 SWAT-VSA (a) and SWAT (b) predicted runoff distribution for an event in November 2003.

Figure 6 Cumulative runoff for watershed pastures for SWAT-VSA (a) and SWAT (b). Lines in subfigure b represent the cumulative
runoff for pastures in each of the three sub-basins.
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Water table depth

SWAT-VSA predicted soil water table height (above the
restricting layer as indicated in the SSURGO database)
agreed with measurements across the monitored hillside
in the watershed with a R2 = 0.79 (Fig. 7a). There was a
slight tendency for SWAT-VSA to under predict water table
height for large water table heights (Fig. 7a). SWAT, how-
ever, systematically under predicted water table height
for all conditions (Fig. 7b). It should be noted that calibra-
tion of the AWC in SWAT could produce more accurate
water table height predictions. However, this contradicts
the idea that the model can be parameterized directly from
the soils database, and would require extensive calibration
that should, in general, be avoided. Under prediction by
both models are probably somewhat due to the restricting
layer depth being over estimated in the SSURGO data.
Ground penetrating radar and geophone studies at the site
(unpublished data, collected 2006–2007) show that the
restricting layer is as close to the surface as 80 cm in some
areas. Additionally, SSURGO porosity may be overestimated
for this hillslope, which would consequently decrease pre-
dicted soil water table height. Indeed, the SSURGO reported
porosity for the watershed soils was 50% for nearly all soils,
while samples showed lower and more variable porosity
(35–48%) (unpublished data, collected 2006).

Within a wetness index class, SWAT-VSA predictions
mimicked the observed data, but tended to be less variable.
Although this is noticeable in Fig. 7a, it becomes more
apparent when data are plotted as a time series (data not
shown). The lower variation in the SWAT-VSA predictions
may be a consequence of a lack of lateral routing among
HRUs or, conversely, the small time-scale variations in ob-
served water table height may be partially due to the accu-
mulation of upslope water and drainage to down slope
areas. Even so, the longer-term variations appear to be well
predicted by SWAT-VSA (Fig. 7a). In comparison, SWAT is
not able to predict the water table height as accurately
(Fig. 7b). For both the mixed forest and pasture the water
table height is significantly underestimated.

The soil moisture content distribution in the watershed
for SWAT-VSA and SWAT are shown in Fig. 8a and b. In

accordance with VSA theory (Hewlett and Hibbert, 1967;
Dunne and Black, 1970; Western et al., 1999; Beven, 2001;
Niedzialek and Ogden, 2004; Western et al., 2004) a com-
parison of Figs. 5a and 8a show a direct relationship be-
tween runoff potential (Fig. 5a) and moisture contents
(Fig. 8a). SWAT’s runoff and soil water predictions (Figs.
5b and 8b, respectively) are not well correlated. For exam-
ple, for the extreme west end of the watershed SWAT pre-
dicted its lowest runoff (the red area in Fig. 5b) and its
highest soil water (blue in Fig. 8b). For SWAT-VSA areas of
increased runoff necessarily have higher soil moisture levels
as dictated by the saturation excess runoff theory in VSA
hydrology.

Stream phosphorus

SWAT-VSA simulated event dissolved P fluxes substantially
better than SWAT, E > 0.75 vs. E < 0.5, respectively
(Fig. 9a and b). Furthermore, there was no obvious bias in
SWAT-VSA predictions (inset Fig. 9a), whereas SWAT
appeared to have a bias towards over-predicting dissolved
P in the stream (inset Fig. 9b). Cumulative P loss from the
basin was overestimated by 34% using SWAT vs. 10% with
SWAT-VSA.

Recall that identical P application rates were used in
SWAT-VSA and SWAT, and pasture and row crop generally
have the most P available for transport because of manure
and fertilizer applications. However, runoff patterns are
variable within these land uses and, thus, some areas of pas-
ture and row crop will contribute more and some areas less
to the P load. SWAT-VSA was able to capture this variability
and, presumably, this is why it predicted stream P loads,
particularly peaks, more accurately than SWAT. For SWAT-
VSA it is apparent that a relatively small portion of the wa-
tershed is responsible for the majority of the P loss while
much of the area contributes little P (Fig. 10a). The under-
lying spatial patterns of dissolved P loss for SWAT-VSA
(Fig. 10a) correspond to both the distribution of runoff pre-
dictions (Fig. 5a) and the areas of high P applications (i.e.
manured or fertilized fields). Conversely, SWAT predicts
most of the P loss originating from pasture or row crop
essentially equally across the watershed (Fig. 10b). This,

Figure 7 Relationship between SWAT-VSA (a) SWAT (b) predicted water table heights above the restricting layer by index class
(SWAT-VSA) or land use (SWAT) and the measured water table heights for March 2004–September 2004 from Lyon et al. (2006a).
Individual measured points within an index class or land use represent the average of the measurement within the respective classes
for a single day.
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Figure 8 SWAT-VSA (a) and SWAT (b) predicted soil water distribution for an event in November 2003.

Figure 9 Event stream dissolved phosphorus export predicted by SWAT-VSA (a) and SWAT (b) plotted against the measured event
stream dissolved phosphorus load. Inset graphs show the 1:1 relationship.

Figure 10 SWAT-VSA (a) and SWAT (b) predicted dissolved phosphorus (P) runoff loss distribution for an event in November 2003.
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of course, follows from the fact that the original SWAT uses
CNII values that correlate runoff response to land use and
soil type, and thus the only variation in P loss would be
introduced by management practices.

An issue disputed between watershed modelers and field
researchers is that nutrient loads predicted at small scales
by models such as SWAT commonly underestimate the loss
measured at the small scales (plot) and yet, in many cases,
predictions match measured losses at the basin scale (Dr.
Ray Bryant, USDA-ARS personal comm.). Indeed, several
researchers have noted scale dependent effects when com-
paring results of lumped models with results measured at
the plot scale (Amore et al., 2004; Miehle et al., 2006; Sri-
vastava et al., 1998). Our results perhaps provide some
anecdotal explanation of the phenomena. As noted earlier,
in many regions runoff production is concentrated in rela-
tively small fraction of a watershed, i.e., VSAs, and it is
from these areas where concentrated pollutant losses are
occurring. CN models like SWAT distribute the same volume
of runoff over a much larger area and, thus, if they correctly
predict the watershed scale P loss, they must generally
underestimate losses from contributing areas and overesti-
mate from non-contributing areas (Lyon et al., 2006b). Be-
cause SWAT-VSA appears to be more realistically capturing
runoff producing areas, i.e., runoff is lost from small parts
of the landscape, its predicted small-scale loads are likely
in better agreement with those observed in plot-scale
studies.

Implications

Accurate prediction of the spatial extent of runoff produc-
ing areas has consequences for simulation of pollutants that
are transported by runoff. Many water quality protection
strategies have been developed based on results from mod-
els like SWAT, which link runoff and pollutant concentra-
tions almost solely to land use. As a result, we have
sometimes dogmatically developed nonpoint source pollu-
tion control practices based too much on specific land uses
and largely ignored the interaction between land manage-
ment and physical, landscape scale processes like those that
drive VSA hydrology. Garen and Moore (2005) explicitly
noted this problem for current models that use the CN
method. For example, our SWAT simulations suggest that
landscape management of pollutants should be focused en-
tirely on pastures and row crop (Fig. 10b). However, SWAT-
VSA indicates that control of nutrients from areas near
streams might be more logical locations to focus water qual-
ity protection efforts (Fig. 10a). Indeed, these results may
help explain why riparian buffers are so effective, i.e., they
keep potentially polluting activities out of areas most likely
to generate runoff (Dosskey et al., 2002: Walter et al.,
2005).

Summary and conclusions

Although the CN method is commonly used in ways that im-
ply infiltration-excess runoff, previous work has shown that
the method can be used in ways that describe saturation ex-
cess runoff processes from VSAs. In reality, the CN-equation
is not based on any particular runoff generation mechanism.

Mockus notes that Se is either ‘‘controlled by the rate of
infiltration at the soil surface or by the rate of transmission
in the soil profile or by the water-storage capacity of the
profile, whichever is the limiting factor’’ (Rallison, 1980).
Interestingly, in later years he reportedly said ‘‘saturation
overland flow was the most likely runoff mechanism to be
simulated by the method. . .’’ (Ponce, 1996). We used this
information to re-parameterize SWAT to account for runoff
from VSAs, a re-conceptualization we call SWAT-VSA. We
found that SWAT-VSA predicted distributed soil water and
dissolved P loads leaving the watershed better than the ori-
ginal SWAT.

Ultimately, this re-conceptualization of SWAT provides a
valuable tool for water resource planners and managers in
regions with runoff from VSAs. For instance, many farms
in the NYC water supply system in the Catskill Mountains
are implementing BMPs to improve water quality, and mod-
els are currently being used to assess the current and future
impact of the practices (Schneiderman et al., 2002, in
press). In accordance with Schneiderman et al. (in press),
we have shown that considering saturation excess runoff
from VSAs provides a more realistic picture of the effective-
ness of BMPs and, ultimately, produces more valid results.
Thus, SWAT-VSA gives water resource managers another
tool with which to assess and ultimately improve water
quality practices.
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