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ABSTRACT

Bagley, §. T., M. T. Auer, D). A. Stern and M. ]. Babiera. Sources and fate of Giardia cysts and Cryptosporidium oocysts in
surface waters. Lake and Reserv. Manage. 14(2-3):379-392.

A literature review was conducted to evaluate the mechanisms mediating the fate of Giardia lamblia cysts and
Cryplosporidium sp. oocysts in surface waters, particularly in lakes and reservoirs. Emphasis was placed on quantification
of source and sink terms as applied in mass balance models. The literature review results indicated that cysts and oocysts
freferred to collectively as (oo)cysts] are commonly detected over a wide range of concentrations in a wide variety of
aquatic systems. Humans and other animals are considered to be the sources of (00) cysts introduced to aquatic systems,
Most studies included some measure of (0o) cyst viability but not necessarily infectivity. Sedimentation was identified as
an important loss mechanism for (oo)cysts in lakes and reservoirs. There were general indications that ambient
irradiation or pH levels would have little effect on {00} cyst viability or infectivity, while temperature, drying, and redox
levels riay have more varying effects, The {oo}cysts would be expected te remain viable for longer periods than for fecal
bacteria in similar circumstances. Kinetic submodels (as associated coefficients) required to quaniify these phenomena _
are generally unavailable.
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An extensive search of the literaturewasconducted  and treatment for protection from protozoan pathogens
inorder toobmininformationaboutthesourcesandfate  has developed in response toan increased incidence in
of Giardia lamblia cysts and Cryptosporidium sp. cocystsin -~ waterborne disease related to these organisms. The
surface waters. Interest in modeling, management,  review seeks to obtain quantitative information on the
sources and environmentally-mediated fate of cysts
and oocysts and to identify values for selected kinetic
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- coefficients which may be used in models describing
pathogen fate and transport {cf. Auer etal, 1998). Asa
case study, information on protozoan pathogens in
Cannonsville Reservoir (NewYork) anditswatershed is
presented and reviewed. ‘

Characteristics of Giardia
and Cryptosporidium

Gigrdiaand Cryplosporidiumare protozoa carriedin
the gastrointestinal tract of many animals and are
pathogenic for humans, causing gastrointestinal
disorders. Several species of Giardiaand Cryptosporidium
have been identified, with Giardia lamblia (synonym;
duodenalis) and Cryptosporidium parvumappearing tobe
the species responsible for most cases of disease in
humans {Hibler and Hancock 1990, Rose 1990). These
protozoa are known to infect a wide variety of other
animals, including cattle, dogs, beaver, rats, otter,
muskrats, rabbits, deer, and coyotes (e.g., Hansen and
Ongerth 1991, Hiblerand Hancock 1990, Isaac-Renton
etal. 1992, Ong etal. 1996, Ongerth etal. 1995, Roach
etal. 1993, Rose 1990, Webster and MacDonald 1995).
Cross-transmission of Giardia and Cryptosporidium
between humans and other animals has been reported
(as reviewed by Hibler and Hancock 1990, Rose 1990).

Bothspecies produce resistant, reproductive forms
that may be transmitted via the fecal-oral route, by
direct contact with contaminated fecal material or by
ingestion of contaminated food or water, These forms
represent the infective stages and are termed-cysts
(produced due to asexual reproduction) for Giardia
and oocysts (produced due tosexual reproduction) for
Cryptosporidium. For purposes of this discussion, the
term (oo)cysts will be used for both the Giardia cysts
and Cryptosporidiumoocysts. Ingestion of drinking water
containing (oo)cysts has been the reported cause of
many waterborne outbreaks of giardiasis or
cryptosporidiosis (Bridgman et al. 1895, Colbourne
1989, Craun 1988, Fox and Lytle 1993, Pett etal. 1993,
and asreviewed by Badenoch 1990, Hibler and Hancock
1990, Lisle and Rose 1995, Roach et al. 1993, Rose
1990, Solo-Gabriele and Neumeister 1997}, (Oo)cysts
are considered to have high probabilities of infection,
whether from exposure to one (0o)cyst or ingestion of
one glass of contaminated water (Medema et al. 1995,
Rose etal. 1991b, 1995). Dupontetal. (1995) reported
the median infective dose for C. parvum in healthy
adults to be 132 oocysts. The ovoid Giardia lamblia cysts
are approximately 8 to 14 um in diameter and the
typically spherical C. parvum oocysts are approximately
4 to 6 um in diameter. As will be described in more

detail below, the (oo)cysts have relatively high levels of
resistance tomany environmental parameters aswell as
to many water disinfection/treatment procedures,

Presence of Cysts and
Oocysts in Surface Waters

Many studies have been conducted over the past
several decades on the incidence of Gierdia cysts and
Cryplosporidium oocysts In surface and drinking waters
aswell as in sewage. A listing of some of these studies is
presented in Table 1, along with the methods used for
detection and viability /infectivity determinations,

Oneoftheuncertaintiesininterpreting the (0o)cyst
detection data, particularly for use in risk assessment
and modeling efforts, is whether or not the (oo)cysts
are viable and, more importantly, still infective. The
studies noted in Table 1 used the same general type of
sample concentration method (filter cartridge or
membrane filter) followed by an immunofluorescence
detection technique, similar to “standard” concen-
tration and detection methods (APHA 1894, ASTM
1992). This is the method that has been approved by
EPA for the Information Collection Rule (ICR), which
is part of the Safe Drinking Water Actregulations (Fout
et al. 1996). As reviewed in several recent articles
(Hoffman et al, 1997, Jakubowski et al. 1996, Klonicki
et al. 1997), studies are being conducted on a wide
variety of improvements on methods for (oo)cyst
concentration, recovery, and detection, as well as for
determinations of viability and infectivity. In general,
the presence of {oo)cysts is considered presumptive
based on immunofluorescence, size, and shape. It
should be noted that detection and confirmation offer
little information on the viability or infectivity of the
(oo)cysts. However, intuitively, presumed (oo)cysts
that can not be confirmed should be less likely to be
viable.

The abundance of (oo)cysts in surface waters,
treated drinking water, and sewage varies widely, in
some cases as much as 160-fold for a single sample
source (Table 2). It has been concluded overall that
{oo)cysts are quite common in surface waters, albeit
often at very low levels (e.g., LeChevallier 1992,
LeChevallier and Norton 1995, Rose 1990, Wallis et al.
1996). Significant correlations between presence of
cysts and presence of oocysts have typically been
reported for the studies listed in Table 2, The studies by
LeChevallier et al. (1991a,b) indicated that a high
percentage of the detected (00)cysts were nonviable
(based on morphologic observations), Some of the
studies have indicated that surface water {oo)cyst
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Table 2.-Survey of reported levels of Giardia cysts and Cryptosporidium oocysts detected in water samples.

Reference Pathogen Studied Source of Sample* Levels Detected (cysts or oocysts- L1)
Giardia Cryptosporidium Giardia Cryptosporidium

Glicker and Edwards yes no Raw water supply (69) 0.0034 - 0.0277 NA®

{1991)

Hansen and Ongerth no yes Watersheds

(1991) — High use NA 18.2¢
— Low use NA 0.2-24°

LeChevallier and yes yes Raw surface water

Norton (1992) - High turbidity/pollution 1.13-31.1 (9.1)° 0.82-71.9 (4.8)¢
— Moderate turbidity/pollution 0.14-64.2 (5.8)¢ 0.42-5.1 (2.5)*
- Low turbidity /pollution 2.16-3.76 (2.9 0.77 - 8.7 (2.5)°

LeChevallier and yes yes Raw water supply 0.02-43.8 (2.0)¢ 0.065 - 65.1 (2.4)°

Norton (1995) Finished water 0.98-9.0 {2.6)c 0.29-57 (3.3)¢

LeChevallier et al. yes yes Filtered drinking water (82) 0.0029 - 0.64 0.0013 - 0.48

{1991a)

LeChevallier et al. yes yes Surface water (85) 0.04-66.0 0.07 - 484.0

(1991b)

LeChevallier et al. yes yes Finished water reservoirs

(1997) - Inlet 0.7-24 (1.9)° 0.7 -24 (1.2)¢
—Outlet 1.2-107 (6.1)° 1.7-31 (8.1)c

Madore et al. no yes Raw sewage (4) NA 850 - 18.700

(1987) Treated effluent (11) NA 140 - 3,960
Surface water (6) NA 2.0-5,860

Medema et al. no yes Surface water (14) NA 0.31¢

(1995)

Ong etal. yes yes Watersheds®

(1996) — Above cattle ranch (32) 0.0005 - 0.0344 0.0003 - 0.0492
— Below cattle ranch (30) 0.0006 - 0.0429 0.0014 - 0.300
— Drinking water intake (27) 0.0046 - 1.880 0.0017 - 0.0443

Ongerth et al. yes no Watersheds

- (1995) - High use 0.01-0.15 NA
L - Low use 0.01-0.05
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abundance, as well as retention of viability, may vary
seasonally (Hibler and Hancock 1990, LeChevallier et
al, 1991b, Ongerth 1989, Rose etal, 1991a, Wallis et al.
1996}. Higherlevelsand/or greaterviabilties are usually,
but not always, found from fall 1o spring. Storm events
have also been proposed to affect changes in levels of
oocysts, with more land run-off during wet periods
(Hansen and Ongerth 1991); related changesin Giardia
cyst levels might also be expected to occur. The New
York City Department of Environmental Protection
hasreported higher concentrations of (0o) cysts during
storm events (Stern 1996¢).

LeChevallier and Norton (1995) published a
comprehensive review of their North American data
base for the incidence of (oo)cysts in surface water
samples. From 1988 to 1992, 347 surface water samples
from 72 sites were examined for cyst and oocyst levels
using essentially the same recovery and detection
techniques; individual sites were sampled from 1 to 29
times. The geometric means were 2.0 cysts/L and
2.4 oocysts/L for Giardia and Cryptosporidium,
respectively. (Oo)cyst detections were less frequent in
the last two years of the study (included in the 1995
review) than in earlier reports containing the data
from the first two years (LeChevallier et al. 1991a, b):
54% vs. 81% for cysts and 60% vs. 87% for oocysts.
Either cysts or oocysts were detected in 70% and 97%
of the samples included in the 1995 and 1991 reports,
respectively. LeChevallier and Norton (1995) noted
that the lower detection rates are comparable to those
reported from other studies (e.g., Hansen and Ongerth
1991, Ongerth 1989, Rose 1988, Suk etal, 1987, Tedd
etal. 1991). They suggested that the rate of detection
of (oo)cysts could reflect a consistent reduction in
incidence, but may also be part of cyclical, multi-year
variations in levels.

The NYC DFEP started monitoring for (oo)cysts
within its source waterin 1992 (Ashendorffetal, 1997).
A more comprehensive program that included
monitoring 50 sites within its water supply watersheds,
including the watershed reservoirs, started in 1993
(Stern 1996a,b). The ranges of cysts detected in 2,806
surface water, source water, and treated sewage samples
(Stern 1996a) are reported in Table 2 and are typically
at the lower end of the ranges of values presented in
this table. The NYC DEP hasalso obtained information
on presumed (00) cyst presence in urban, agricultural,
and undisturbed watershed samplesaswellasin treated
sewage samples (Stern 1996b), Based on 354 samples,
cysts were detected in 26% to 41.5% of the samplesand
oocystswere detected in 9.6% to 37.2% of the samples,
with the higher incidence in urban watershed samples.
These presumed (0o) cystdetection frequenciesarelower
than those reported by LeChevallierand Norton (1995).

As part of this extensive study, the NYC DEP has

also been monitoring the water entering and leaving
Cannonsville Reservoir for {oo)cysts. As shown in Fig, 1,
sampling sites are located on the major tributary to the
reservoir (the West Branch of the Delaware River,
designated asWDBN), an elevation tap at the intake for
the WestDelaware Outlet Tunnel (designated as CRR2),
and the discharge of the West Delaware Outlet Tunnel
(designated as WDTO). Sampling occurs ona biweekly
to monthly frequency. When the reservoir is online
(supplying water to the NYC water supply), sampling
of the effluent of the reservoir occurs at the discharge
of the West Delaware Qutlet Tunnel, Otherwise, the
effluent of the reservoir is measured atan elevation tap.

The resulting database for Cannonsville Reservoir
includes 95 samples collected over 4 years. Over the
sampling period, seasonality has not been observed at
these sites. Based on an initial review of the data, there
is less detection of Giardia cysts leaving the reservoir
than entering. The total Giardia cyst detection level for
water entering the reservoir was 49.2% compared with
38.2% leaving the reservoir. The total Cryptosporidium
oocystdetection level did notindicate such areduction.
The total Cryptosporidiumoocyst detection level entering
the reservoir was 14.8% compared with 29.4% leaving
the reservoir. A similar pattern was observed with the
average concentration of (0o) cysts entering and leaving
the reservoir. [Note: a less than detection limit value
was treated as zero; the average detection limit was
1 {oo)cyst per 100L.] The average total Giardia cyst
concentration entering the reservoir was 2.577 cysts
per 100L compared with 2.359 cysts per 100L leaving
the reservoir. The average total Cryptosporidium oocyst
concentration entering the reservoir was 0.547 oocysts
per 100L compared with 0.576 oocysts per 100L leaving
the reservoir, However, one should be cautious todraw
conclusions on these summary data as the sample
values were combined without consideration as to
whether the same slug of water was sampled at the
outflow as was sampled at the inflow.

Inarecentstudyofsix openfinishedwater reservoirs
in New Jersey, LeChevallier et al. {1997) reported an
increase in the levels of both cysts and oocysts following
reservoir storage. (Oo)cysts were detected in 15% of
the inlet samples and 25% of the outlet samples; the
data reported in Table 2 represent values only for
samples found to contain (oo)cysts. Using morpho-
logical observations, over 85% of the {00)cysts were
considered to be probably nonviable. The authors
speculated that the nonpointsource contamination of
the finished water was indirectly or directly related to
wild animals in and around the reservoirs,

Many studies have been conducted on possible
sources for the {oo)cysts found in surface waters in
general. LeChevallier (1992) noted that increases in
the abundance of Giardia cysts appeared to be related
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Figure 1.—New York City Department of Environmental Protection pathogen monitoring sites, including sites associated with the Cannonsville

Reservoir and watershed.

to inputs of sewage or human fecal material, while
increases in the abundance of Cryptosperidium oocysts
appeared tobe associated with nonpointsource inputs,
such as land runoff and animal fecal material. NYC
DEP hasalsoreported that {(0o)cystsare mostcommontly
detected in effluent from wastewater treatment plants,
followed in frequency by discharges from urban,
agricultural, and undisturbed watersheds (Stern 1996c).

A possible relationship between various indicators
of surface water quality and the presence of (00) cysts
has been discussed in several studies. In some cases, no
relationship has been noted between levels of total
coliform (TC) bacteria, fecal coliform (fc) bacteria, or
turbidityand (oo)cystlevels (Chauretetal. 1995a, Rose
1988, Rose et al. 1991a, Willey et al. 1986). However,
others (LeChevallier et al. 1991b, LeChevallier and
Norton 1992) have reported significant relationships
between TC bacteria, FC bacteria, and turbidity and
{oo)cyst levels. They attributed the difference in
findings to the fact that their studies examined a wider
variety of source waters with more samples having
higher turbidity and TC and FC bacteria levels,

indicating increased pollution and an increased
probability of (0o)cyst presence. Using multiple linear
regression techniques, LeChevallier etal. (1991b) were
able to assign 49.1% of the variation in Giardia cyst
levels to variations in TC bacteria and turbidity levels
and the level of watershed protection {an estimate of
the amount of pollution in the watershed). In a like
manner, 51.9% of the variation in Cryptosporidiumoocyst
levels could be explained by the type of surface water,
TC bacteria levels, water temperature and pH, turbidity,
and level of watershed protection.

Environmental Fate of Cysts
and Oocysts |

From a water supply perspective, the key difficulty
in dealing with the Giardia cysts and Cryptosporidium
oocysts is that they are, by nature, much more resistant
to changes in environmental conditions than are the
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vegetative forms. This, coupled with uncertainty in
determining (oo)cyst viability and infectivity, makes
prediction of the fate of these protozoan pathogens in
natural systems difficult. Factors potentially lowering
the levels of viable {o0)cysts in surface waters include
temperature, pH, solar radiation, and predation.

A survey of studies examining the effects of solar
radiation, pH, and temperature on (00)cyst inactiva-
tion, along with the methods applied in these studies
for enumeration and viability determinations, is
presented in Table 3, More detailed results relating
environmental factors and (oo) cystviabilityare detailed
in Table 4. Unlike bacteria, such as the TC and FC
studied by Auer and Niehaus (1993), solar radiation
effects on {oo)cysts may be minimal to nonexistent,
Carrington and Ransome (1994) reported that
continuous exposure to daylight conditions (pH 7.0;
10 °C) for up to 2 months had virtually no effect on
oocyst viability. Lorenzo-Lorenzo et al. (1993) deter-
mined that 150 minutes of exposure to ultraviolet
{UV) radiation (15,000 mW-sec) wasrequired to com-
pletely eliminate oocyst infectivity. Chauret et al.
(1995b) also found no difference in oocyst viability
with exposure to sunlight (as compared to dark
conditions); black light was found to be more effective
than UV radiation in affecting survival (Table 4), In
general, a pIl of less than 4 {and close to 2.0) is
optimum for (oo)cyst excystation (Meyer 1979,
Carrington and Ransome 1994). Studies on the effect
of pH alone indicated no relationship between pH
(24) and changes in excystation Ievels (Carrington and
Rangome 1994, Chauret et al. 1995b, deRegnier et al.
1989, Fayer and Leek 1994), However, pH may be a
significant factor in combination with other environ-
mental parameters (Chauretetal. 1995b, LeChevallier
etal. 1991b}. In their review of factors influencing TC
and FC mortality, Chamberlin and Mitchell (1978)
classified predationasa minor factor. Badenoch (1990)
suggested that predation would not be expected to be
a significant removal mechanism for (00) cysts.

Temperature is the major environmental factor
affecting (oo0) cystviability in surface waters. Numerous
lab and field studies (see Tables 3 and 4) have shown
thatviability decreases with increasing temperature, As
indicated in Table 4, (0o)cysts retain viability longer at
temperatures from 0 to 10°C than at 20 to 30°C;
(0o)cysts most readily excyst, producing more valner-
able vegetative forms, at 37°C. Temperatures above
50 to 60°C caused rapid decreases in (00)cyst viability
and infectivity. Freezing (-13 to -70 °C) typically
produced the most rapid loss of viability and infectivity,
although Robertson et al. (1992) reported that some
oocysts remained viable up to 775 hours after slow,
rather thansnap, freezing (i.e., freezingina refrigerator
setat-22 °Crather than immersion in liquid nitrogen).

Fayerand Nerad (1996) also found thatoocystsretained
infectivity longerat higher freezing temperatures (e.g.,
-10°C). Repeated freezing and thawing, as might occur
in many surface water systems, reduced viability faster
than freezing alone for both cysts and oocysts
{Carrington and Ransome 1994, Meyer 1979). (Oo) cyst
levels and viability and surface water temperatures
appear to be highly correlated, with higher (0o)cyst
levels and viabilities found at lower temperatures
(deRegnier et al. 1989, LeChevallier et al. 1991b,
LeChevallier and Norton 1992). Temperatures nearer
37°C appear to increase (oo)cyst permeability and
make them not only more likely to excyst butalso to be
more sensitive to other environmenial factors,

Several studies have examined the in situsurvival of
(oo)cysts. Hansen and Ongerth (1991) reported that
Giardia cysts suspended in a lake (at two depths) ora
river retained viability for 1 to 2 months compared to
only 14 days in tap water. Of all the water quality data
examined, including dissolved oxygen, ammonia,
nitrate, phosphorus, turbidity, and pH, only lower
temperature {<10 °C) was significantly correlated with
longer viability, In a series of studies conducted over a
nearly 1-year period, Carrington and Ransome (1994)
observed the levels and retention of viability of
Cryptosporidium oocysts when suspended in ponds;
environmental parameters such as light, temperature,
pH, and dissolved oxygen content were monitored
over the course of the study. Oocyst levels and viability
were higher for studies extending from November to
April (22 week study) than for those extending from
April to January (six studies varying from 9 to 31
weeks). Theauthorsattributed the longerwintersurvival
tolower temperaturesand/or light intensities, although
differencesin pHand dissolved oxygen levels were also
noted. Inastudy of a more limited scope, Robertson et
al. (1992) found that oocysts from one Cryptosporidium
isolate retained viability longer in river water than in
tap water (89% vs. 96% inactivated after 176 days,
respectively), while there was no difference in viability
for a second isolate (99% inactivated after 176 days).
No measurements were made of any environmental
parameters, but the results do indicate the potential
for different oocyst responses to environmental
conditions,

The effects of factors such as desiccation, redox
levels, and association with feces from warm-blooded
animals on (00) cysts have also been examined. Kasprzak
et al. (1980) reported that about 80% and 100% of
detected Giardiacysts were apparently inactivated after
1and 24 hours, respectively, of air-drying at 24 °C.Ina
similar study with Cryptosporidium oocysts, Robertson et
al.{1992) found that97% and 100% of the oocysts were
inactivated after 2 and 4 hours, respectively, of air-
drying at 24 °C. Fayer and Leek (1984) tested for the
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Table 4.—Survey of reported effects of environmental factors on Giardia cysts and Cryptosporidium oocysts.

Reference Pathogen Studied Environmental Factor Studied Effect
Giardia Cryptosporidium Light pH Temperature ('C)
Carrington and no yes 950 lux 4,7, 10 -25, 4, 10, 20, 30 No effect of light
Ransome (1994)* {continuous Little effect of pH (= 14 wks)
daylight) Viability greatest at 4 and 10 °C;
fastest inactivation at -25°C
Chauret et al. No yes sunlight, 599 4,20 No effect of temperature or pH
(1995b) black light/UV Little effect of sunlight
(~500 (Wcm %) 20% (UV) and 0% (black light)
excystation after 54 days
deRegnier et al. yes no NAP 50-84 8-37 Viability greater at lower temperatures
(1989) No effect of pH
Fayer (1994) no yes NA NA 72.4 {for 1 min.) Infectivity lost
64.2 (for 5 min.) Infectivity lost
Fayer and Leek no yes NA 6.0,7.6 20, 37 38% (at pH 6.0) and 54% (at pH
(1984) 7.6) excystation
8.0% (at 20 °C) and 91.3% (at
37°C) excystation
Fayer and Nerad no yes NA NA 5,-10, -15, -20, -70 Infectivity highest at 5 and -10 *C
(1996) no infectivity loss after 168 hrs)
Infectivity lowest at -70 °C
(all nfectivity lost after 1 hr)
Kasprzak et al, yes noe NA NA 20, 4, 24, 37, 50 50% viable at 4 °C (after 18 wks)
(1980) and 24 °C (after 7 wks)
0% viable a1-20 °C (after 24 hrs),
87 °C (after 8 wks),and 50 °C
(after 12 hrs)
Meyer (1979} yes no NA 05,2, 4,62 -13,8,21, 37 Optimuin excystation - pHs 0.5
and 2; little at pHs 4 and 6.2
Cyst viability retained up to 77
(8 °C), 24 (21°C), 4 (37 °C),and 1
(-15 °C) days
Robertson etal no ves NA NA -22 100% inviable - snap-freeze
(1992)< 79% inviable (114 hr) - slow-freeze
Yozwiak et al. no yes NA NA 5 Viability reduced 4.9% (10 wks)
(1998) 15 Infectivity decreased 99.6% (21 wks)
25 Infectivity decreased 98.5% (4 wks)

“Repeated freezing and thawing (cycle of 22 °C for 30 min. and 19 -20 °C for 30 min) reduced viability from 88.9% to 25.5%.

* ¥NA = not applicable.

Alsc examined the effects of air drying (10 viable but deformed cysts after 24 hours).

"“Repeated freezing and thawing reduced cyst viabilities to near zero.
*Also examined the effects o air drying (97% and 100% inviable cysts after 2 and 4 hours, respectively) and survival in river water cnnqnmmn from 22.3% to 57.0% inviable cysts by day 47).
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effects of reducing conditions (50% CO, at 20 or 37°C
for 18 hours) on cocyst excystation; excystation was
greater after incubation at 37 °C (56% t0 91% compared
to about 8% to 13% at 20 °C). However, they did not
report results for exposure to air alone due to
“inconsistent results.” Anaerobic conditions produced
greater reductions in oocyst survival in water (pH 7.0)
at4and 20 °C (compared to aerobic incubation), with
the greater reduction found at the higher temperature.
Instudieswith ananaerobicsludge digester, Van Praagh
etal, (1993) found that the time required to achieve
99.9% Giardia cyst inactivation varied with temper-
ature, i.e., about 15 days, 21 hours, and 11 minutes at
21.5, 37, and 50 °C, respectively. Studies conducted
with Cryptosporidium reported high levels of ococyst
inactivation after 24 to 48 hoursat37 °Cinan anaerobic
sludge digestion system (Stadterman et al. 1996,
Whitmore and Robertson 1995). Several studies have
alsobeen conducted on {oo) cystsurvivalin association
with warm-blooded animal fecal material {Carrington
and Ransome 1994, Kasprzak et al. 1980, Robertson et
al. 1992). It is possible that survival may be greater
when in association with fecal material because feces
could reduce cyst or oocyst permeability, making them
less susceptible to other environmental factors and
thus prolonging their viability. In a study simulating
environmental conditions in a drinking water
distribution system, Rogers et al. (1996) found that
oocysts associated with biofilms retained viability and
infectivity for several weeks.

Besides inactivation losses, (0o)cysts may be
removed from the water column by settling or
sedimentation. Loss of {oo)cysts due to sedimentation
in reservoirs or lakes has been suggested to have occur-
red in several watershed studies (Hibler and Hancock
1990, Ongerth 1989). The NYC DEP reported that
(oojcyst detection was greater for waters entering
reservoirs than for water leaving the system (Stern
1996¢). Settling velocities have been calculated for
individual (oo)cysts (Badenoch 1990) yielding values
of 0.18 and 0.35 em-h' (0.04 and 0.08 m-d') for
Cryptosporidium (different assumptions regarding cyst
diameter and density and water temperatures) and
1.98 cm- ! {0.48 m* d?) for the larger Giardia cysts.
. Chapra (1997) calculated similarvalues based on Stokes’
law. These estimated velocities are significantly less
than those estimated for FC bacteria (~1.4 m-d*} by
Nichaus and Auer (1993) using sediment traps. This
disparity is understandable given the fact that (oo) cyst
velocities were calculated for individual, discrete
particles, while FCvelocities were measured in the field
on large aggregates of sedimenting material which
contained bacterial cells. Such aggregation may be
expected for (0o) cysts in lakes and thus sedimentation

loss may be significant. A 10-oocyst Cryptosporidium
aggregate, containing no other material, would settle
atacalculatedrate of 0.58 cm'h* (0.14m-d} (Badenoch
1990). This is still considerably less than the rate
observed for FC bacteria in the field.

{Oo)cysts lost from the water column by setthng
maylater be resuspended and returned to the overlying
water. Thus the fate of (oo)cysts in the sediments is of
importanceaswell. Possiblefactors influencing (oo)cyst
fate in the sediments include: temperature, pH, redox
conditions, and desiccation (during periods of
drawdown}. Although no published studies were found
on (oo)cyst survival in sediments, the persistence of
viable FC and other bacteria of warm-blooded animal
fecal origin in sediments has been well-documented
{Howell etal, 1995, LaLiberte and Grimes 1982, Matson
et al. 1978, Sherer et al. 1988, 1992, Stephenson and
Rychert 1982). In general, fecal bacteria were present
in higher levels in the sediments than in the water
column and resuspension of viable bacteria could be
demeonstrated. Matson et al, (1987) suggested several
mechanisms for resuspension, including increased river
discharge, wind-induced turbulence (for shallow
systems), activity of aquatic macroorganisms, and
human-related water resource use. Resuspension was
demonstrated to occur in Cannonsville Reservoir in
1995, a major drawdown year (Effler et al. 1998). This
phenomenon probably occurs widely in other reservoirs
that experience periods of fluctnating water levels.

Giardia cysts and Cryptosporidium oocysts are
relatively resistant to the effects of disinfection
procedures as well as to environmental factors,
Traditional chlorination proceduresare considered to
be relatively ineffective against the oocysts, in particular.
Both Hoff (1990) and Hibler and Hancock {1990)
found that Giardia cysts were relatively resistant to
chlorination at water temperatures between 0.5 and
5°Cand free chlorine levels of up to 4 mg-L, Chlorine
has been found to be even less effective against oocysts
(e.g., Korich et al. 1999, Carrington and Ransome
1994), with 0.5 to 80 mg L chlorine residuallevelsand
30-minute contact times resulting in less than 50%
oocyst inactivation levels. Ozonation (typically applied
at from 1 to 3 mg ' L*) has been found to render nearly
100% of the (00)cysts non-viable and /or non-infective
with contact times of two to five minutes, with the
oocysts appearing to require higher ozone residuals or
contact times than the cysts (Carrington and Ransome
1994, Finch et al, 1993, Korich et al. 1990, Labatiuk
et al. 1992, Parker et al. 1993, Wallis et al. 1990). A
variety of factors have been found to influence ozone’s
effectiveness, including temperature, pH, and turbidity
(Labatiuk et al. 1992, Parker et al. 1993, Wallis et al.
1990).




Summary

A review of the literature pertaining to the
environmental fate and transport of Giardia cysts and
Cryptosporidiumoocysts in freshwater systems, including
lakes and reservoirs, has demonstrated the embryonic
nature of this topicarea. Awide range of (0o)cystlevels
has been reported for a wide variety of surface waters,
although relatively little information is available on the
actual viability or infectivity of the detected (oo0)cysts.
In contrast, muchless published informationisavailable
on (oo)cyst loading levels, sources, and sinks within
watersheds, with the NYC DEP having one of the most
extensive ongoing programs to obtain such infor-
mation. Knowledge of the environmental dynamics of
protozoan (oo)cysts is generally poorly developed, in
contrast to that for FC bacteria. The effects of low
temperatures (0 to 10 °C) on prolonging (oo)cyst via-
bility have been well documented. Effects of other
environmental parameters have generally not been
conclusively determined; however, parameters such as
pHandredoxlevel could playrolesin affecting (oo) cyst
viability and infectivity either alone or in combination
with other parameters, Any loss of {oo)cysts from the
water column due to seitling would likely occur in
association with larger aggregates of particles, rather
than by individual (0o) cysts or aggregates of (00) cysts.
No specific kinetic coefficients for use in modeling
studies were found in any of the studies described in
this literature review,
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