MassLynx Quantitation (New Version)

©2005 Waters Corporation

- Determines the concentration of specific analytes within a sample
- Can be done on data acquired through a variety of Acquisition Modes:
 - Multiple Reaction Monitoring (MRM)
 - Single Ion Recording (SIR)
 - Full Scan Acquisition
- QuanLynx and TargetLynx with an EPCAS System is Designed to Be a Part of a 21 CFR Part 11 Compliant Environment.

©2005 Waters Corporation

How do we quantitate?

- In addition to unknown samples, a set of standards is also run to form a calibration curve.
- MassLynx analyzes the response of unknown samples and compares their response to that indicated by the calibration curve, then calculates the concentrations of the unknowns.

Vaters More

©2005 Waters Corporation

More on how do we quantitate?

Steps in Creation of a Calibration Curve for Quantitation

- Integrate peaks in chromatograms
- In each chromatogram, determine the location of the peak relating to a specific compound
- Calculate response factor for the located peak
- Create a Calibration Curve for that compound

©2005 Waters Corporation

Project = Quantify.pro

Set of analyses on samples using a MS method that had:

MRM of 3 channels

 Internal Standard
 Analyte 1 - Parent Drug
 Analyte 2 - Metabolite
 (274.1 > 182.1)

©2005 Waters Corporation

- Used to account for Experimental Drift
- Can be Added at Various Points in the Analysis
 - In the Original Sample
 - Before Injection by the LC
- Response of Analyte in a Sample is:

(Peak Area of Analyte)

(Peak Area of I.S.) / (Conc of I.S.)

For our Example: Quantification Steps

©2005 Waters Corporation

Naters

- 1. Enter Sample Types & Concentrations into Sample List
- 2. Determine Correct Integration Parameters for

Chromatogram Peaks.

- 3. Create Quantification Method.
- 4. Process Samples.
- 5. Check Results Adjust if Needed.
- 6. Print Out Results Save Results on in Report File.

1. Set up Sample List

©2005 Waters Corporation

🍸 м	assLynx - Quantify - Quantif	y.spl										
<u>F</u> ile	File View Run Help											
2	The second seco											
	Queue Is Empty											
X Ouzelyey Spectrum Chromatogram Map Edit - Samples -												
Ę	Qualicylix		File Name	File Text	MS File	Inlet File	Bottle	Inj	Sample Type	Conc A		~
et	STO	1	ASSAY01	plasma blank	DEFAULT	DEFAULT	1	10	Blank	0		
arg	Edit Mothod	2	ASSAY02	0.2pg/ml std	DEFAULT	DEFAULT	2	10	Standard	0.2		
⊢	Luit Method	3	ASSAY03	0.5pg/ml std	DEFAULT	DEFAULT	3	10	Standard	0.5		
ž	150	4	ASSAY04	0.75pg/ml std	DEFAULT	DEFAULT	4	10	Standard	0.75		
۲ ۲	*	5	ASSAY05	1pg/ml std	~							
ă	Process Samples	6	ASSAY06	1pg/ml std	Sam	ple L	.ISt f	ron	n			
×	O View Results	7	ASSAY06	2pg/ml std	Quantify pro project.							
۲ _۲		8	ASSAY07	5pg/ml std								
anl		9	ASSAY08	10pg/ml std								
5 G	C	10	ASSAY09	15pg/ml std								
J	2) <u>2</u>)	11	ASSAY10	0.3pg/ml QC	Quant vnx selected from							
ů,	Edit Quan-Optimize	12	ASSAY11	2pg/ml QC	Qualizynx Sciected Ironn					0111		
Ja	Method	13	ASSAY12	12pg/ml QC	Shor	tcut l	Bar					
b 0	Otto	14	ASSAY13	Hat sample U1	DEENUT	DEENUT	-	10	4 1 4		_	_
ਤ	(GP	15	ASSAY14	Hat sample U2	DEFAULT	DEFAULT	14	10	Analyte	U		
	Run Quan-Optimize	15	ASSAY IS	Hat sample 03	DEFAULT		15	10	Analyte	U	_	
ĥ	0	17	A33A116	Dat comple 04			10	10	Analyte	0		
SoL.		10	A33AT17	Pat cample 00			17	10	Analyte	0		
ž	View Optimization	20	ASSAT10	Rat sample 07			10	10	Analuta	0	_	
•	Results	20	AJJATTJ	rial sample 07	DEFAULT	DEFAULT	13	10	Analyte	0		~
-		<							_		2	_
Ready	/			Instrum	ient Not Prese	ent 0:0	0	Only Erro	or Shutdown E	nabled	*	

©2005 Waters Corporation

1. Set up Sample List

- Standard Sample list plus two additional categories:
 - Sample Type
 - Concentration A (B, C, D....)

			-					
	File Name	File Text	MS File	Inlet File	Bottle	Inject Volume	Sample Type	Conc A
1	ASSAY01	plasma blank	DEFAULT	DEFAULT	1	10.000	Blank	0
2	ASSAY02	0.2pg/ml std	DEFAULT	DEFAULT	2	10.000	Standard	0.2
3	ASSAY03	0.5pg/ml std	DEFAULT	DEFAULT	3	10.000	Standard	0.5
4	ASSAY04	0.75pg/ml std	DEFAULT	DEFAULT	4	10.000	Standard	0.75
5	ASSAY05	1pg/ml std	DEFAULT	DEFAULT	5	10.000	Standard	1
6	ASSAY06	2pg/ml std	DEFAULT	DEFAULT	6	10.000	Standard	2
7	ASSAY07	5pg/ml std	DEFAULT	DEFAULT	7	10.000	Standard	5
8	ASSAY08	10pg/ml std	DEFAULT	DEFAULT	8	10.000	Standard	10

1. Set up Sample List – Adding Extra Columns

© • • • • • • • • • • • • • • • • • • •								
matogram Ma	p Edit 🕶	Samples 🕶						
File Text	Sample Typ	Add			let File	Bottle	lnj μ	Use the " Samples /
plasma blank	Blank	Insert			ULT	1	10	Eormat / Load "
0.2pg/ml std	Standard	Delete			ULT	2	10	Format / Load
0.5pg/ml std	Standard	– :II			ULT	3	10	menu item and load
0.75pg/ml std	Standard				ULT	4	10	in a format that
1pg/ml std	Standard	Clear		•	ULT	5	10	already has these
2pg/ml std	Standard	Column		•	шт	6	10	difeady has these
5pg/ml std	Standard	Format		•	Cust	omize	10	TIEIOS.
10pg/ml std	Standard	Sort		•	Load	<u></u>	18	
15pg/ml std	Standard	Number of	Samples		Save	e	10	
0.3pg/ml QC	QC	Number of	Injections.		ULT	10	10	$\mathbf{\lambda}$
2pg/ml QC	QC	2	DEFAULT	DEF/	ULT	44	10	
12pg/ml QC	QC	12	DEFAULT	DEF4	VULT	Load Sar	nple Li	st Format 🛛 🔀

Alternatively, you can 'right click' on the sample list and use the "*Customize Display"* item on the 'pop-up' menu and add these columns.

C:\MASSLYNX\	(OK)
default.fmt diverse.FMT	Cancel
NeoLynx ProteinLynx.FMT proteinlynx_msms.fmt quantify.fmt	Browse

©2005 Waters Corporation	
--------------------------	--

Blank -	Solvent or matrix, insures that system is clean
	and/or shows endogenous material in sample.

Standard - Sample of a known concentration, used to form calibration curve.

Analyte - Sample of unknown concentration.

QC - Quality Control - Known concentrations, used to test the validity and accuracy of the calibration curve.

1. Specify Sample Types and Concentrations

©2005 Waters Corporation

 Pull Down menu within the sample list. Specify whether the sample is a Blank, Standard, Analyte or QC.

Alternatively, just type the first letter of the sample type (example for 'Analyte' type 'A') and hit enter. Concentration A or (B, C...)

The known concentrations of Standards or QC's must be entered into this column.

2. Determine Correct Integration Parameters for Chromatogram Peaks

©2005 Waters Corporation

Go to the Sample List and highlight a Standard in the middle of the concentration range. Click on the Chromatogram button.

🌱 Ma	ussLynx - Quantify - Quantify	/.spl									
<u>F</u> ile	<u>V</u> iew <u>R</u> un <u>H</u> elp										-Y
2	• 🗅 🗞 🔒 🎒 🕨		11 🖉 s	hortcut 🔓 🤇)ueue 🛛 💁 Sta	itus					
				Queue	Is Empt	у					
ž	QuanLynx 🕖	Sp	ectrum	Chromat	ogram Ma	ap Edit.	- Sar	nples	•		
2			File Narte	File Tout	MS	Inlet File	Bottle	Inj	Sample Type	Conc A	^
jet	50	1	ASSAY01	plasma blank	DEFAULT	DEFAULT	1	10	Blank	0	
arç	Edit Mathad	2	ASSAY02	0.2pg/ml std	DEFAULT	DEFAULT	2	10	Standard	0.2	
⊢	Eult Method	3	ASSAY03	0.5pg/ml std	DEFAULT	DEFAULT	3	10	Standard	0.5	-
ž	15to	4	ASSAY04	0.75pg/ml std	DEFAULT	DEFAULT	4	10	Standard	0.75	-
Ξ	₩ <u>-</u>	5	ASSAY05	1pg/ml std	DEFAULT	DEFAULT	5	10	Standard	1	-
in o	Process Samples	6	ASSAY06	2pg/ml std	DEFAULT	DEFAULT	6	10	Standard	2	-
~		7	ASSAY07	5pg/ml std	DEFAULT	DEFAULT	7	10	Standard	5	
ĥ	Q	8	ASSAY08	10pg/ml std	DEFAULT	DEFAULT	8	10	Standard	10	-
	View Results	9	ASSAY09	15pg/ml std	DEFAULT	DEFAULT	9	10	Standard	15	~
-	\mathbf{v}	<		1	1						>
Ready				Instrum	ent Not Preser	nt 0:0	0	nly Erro	r Shutdown E	nabled	۳.

2. Peak Integration-Display All Traces

©2005 Waters Corporation

- The TIC for the highlighted sample will be brought up.
- Click *Display, Mass* from the top of the chromatogram window.

click *Add Trace* and *Select All* to bring up all

of the transitions.

2. Three Ion Chromatograms Should Now Be Shown

2. Setup Peak Integration-Noise

©2005 Waters Corporation

To setup the Integration use the (*Process, Integrate*) menu item to get the 'Integrate Chromatograms' dialog box. First determine the baseline noise by grabbing some noise (right click and drag) over a quieter area of the chromatogram . (for example)

Waters 2. Setup Peak Integration-Smoothing ©2005 Waters Corporation Continue setting up Integration Process: After Clicking on **Smooth**, Right click and drag over the peak at half height. _ 8 × Edit Display Process Window Tools Help 🗩 A 🕞 🚰 🧭 🖓 🖓 🖓 🗖 Window Size A Þ Da Ma ا جُها ا 🕰 5pa/ml std Will Be ASSAY07 MRM of 3 Channels AP+ 2.77,2.81 294.1 > 64Filled In 5 65e3 Smooth chromatogram х 2.93 Window size (scans) ± 3 3.21 OK. MRM of 3 Channels AP+ Number of smooths 2 Cancel 2.81288.1 > 581 46e4 Smoothing method 🖲 Mean MRM of 3 Channels AP+ Savitzky Golay 2.612.65 274.1 > 182.17.85e3 **•** %· Use Mean Π Time 3.50 0.50 1.50 2.00 2.50 3.00 1.00 Method When Smoothing

Chromatograms

Remember the correct window size

2. Setup Peak Integration – Peak Detect

2. Setup Peak Integration – Peak Detection with Apex Integration

©2005 Waters Corporation

If Apex Peak Integration is selected, 'noise' is handled in the peak detect setup. Noise and Peak width can be entered or you can have them calculated for you.

2. Quant Method Editor – Integration Parameters

©2005 Waters Corporation

Peak Threshold parameters can also be adjusted in the Method Editor. Specify Criteria to Discriminate Peaks from Noise.

For 'Relative' values, enter the percentage of the largest peak (base peak) a peak must exceed to be integrated.

For example, check 'Abs area' and enter 20% of the peak area for your lowest standard. Any peak with an area lower than this will be considered noise and not integrated.

©2005 Waters Corporation

- Click **OK**, the peak of interest will be integrated.
- Review the integration is it acceptable? If not, repeat the integration with different parameters (noise, peak detect, thresholding) until satisfactory results are obtained.
- Once an acceptable integration is attained, you may want to test it on a low range standard and a high range standard to insure that parameters are adequate for the full range of response.

2. Review Peak Integration

©2005 Waters Corporation

Here's an example of a well integrated peak and a poorly integrated peak.

2. Review Peak Integration- Example

3. Build Quantitation Method

©2005 Waters Corporation

3. Build Quantitation Method

©2005 Waters Corporation

The different compounds in the assay are listed on the left.

Click on a compound in the list and the parameters that describe how to quantitate that compound are listed on the right.

Qmeth1_QL.mdb - QuanLynx Method Editor									
<u>File Edit View Compound Help</u>									
🗋 🗳 🔒 🎒 🍫 😍	🗋 🚄 🚽 🦫 💠 🕶 🖳 🌞 🎸 🔲								
Compound List	船 🂦 🖾 🕰 🕰 📾								
1: I. Std	Property	Value							
2: Parent	Compound Name	I. Std							
3: Metabolite	Quantification Trace	294.10 > 64.00							
	Include Primary Trace in Response?	YES							
	Use absolute mass window?	YES							
	Chromatogram mass window (Da)	1.0000							
	Chromatogram mass window (PPM)	10.0000							
	Response Type	Internal (relative)							
	Response Uses	Area							
	Acquisition Function Number	One							
	Concentration of Standard: Level	Fixed							
	Concentration of Standard	1.0000							
	View Retention Time Parameters								
	Locate Peak Using	Retention Time							
	Predicted Retention Time	2.2000							

Naters

3. Build Quantitation Method

©2005 Waters Corporation

Use the buttons on the tool bar to decide which parameters for a compound you wish to view. 'Click' on the button on the left to display all of the parameters for a compound. 'Click' on one of the other buttons to display only a subset of the parameters.

<u>ZZ</u>	Qmeth1.mdb - 0	JuanLynx Metho	d Editor		
<u>E</u> ik	e <u>E</u> dit <u>V</u> iew <u>C</u> or	mpound <u>H</u> elp			
) 🗳 🔒 🗳 🖓	🎲 🤣 🗸 💩	* * 💷		
0	ompound List		2 🕰 🐴 🐔 🖬		
1:	I. Std	Prope			
2: 3:	Parent Metabolite	Con Qua Inclu Use	npound Name ntification Trace ude Primary Trace in absolute mass windo	Response? bw?	
All Params (Display all params)	Compound Params (e.g.Name, m/z Trace)	Calculation Factors (Line fitting params)	Integration Params (e.g. smoothing, peak detect)	Target Ion Params (confirma- tory ions)	Calculation Factors (e.g. S/N)

3. Build Quantitation Method

©2005 Waters Corporation

For this example, use the 'File/New' menu item and create a new method.

'Click' on the 'Compound Properties' button to display the name and 'trace' fields.

To add a compound use the drop down menu or use the 'Add' button on the tool bar.

Untitled - QuanLynx Method Editor								
File Edit View	Compound	Help						
🗋 🚄 🔒 🛛	Add	💩 🛷 🗞 🔲						
Compound List	Delete	2 2 2 2 2 2						
	Next	operty						
	Import	Compound Name Quantification Trace						
		Include Primary Trace in Response?						
Compound Buttons								

3. Quant Method Editor – Add Info on Compounds

©2005 Waters Corporation

For this example, we are going to first enter quant parameters for the internal standard, next enter quant parameters for the parent drug and take care of the metabolite last.

Hint. It will be easier if you:

©2005 Waters Corporation

Reduce the size of the Sample List window so this window along with the Method Editor dialog box occupies half of the screen and the chromatogram window occupies the other half of the screen.

3. Build Quantitation Method Add First Compound to a New method

©2005 Waters Corporation

Click on the 'Compound/ Add' menu item or the 'Add' button to add a compound to this method. Example of new method after clicking on 'Add'.

Untitled - QuanLynx Method Editor								
<u>File E</u> dit <u>V</u> iew <u>C</u> ompound <u>H</u> elp								
🗋 🚔 🔚 🎒 🍫 📌 🔻 💁 🖑 📾								
Compound List	船 诸 🖪 🗣 🖬							
1: New Compound	Property	Value						
	Compound Name	New Compound						
	Quantification Trace							
	Include Primary Trace in Response?	YES						
Use absolute mass window? YES								
	Chromatogram mass window (Da)	0.0200						

Next type in the name for your compound (we will do the "Int Std" first in this example)

Example after entering name for our compound.

A Untitled - QuanLynx Method Editor								
<u>File Edit View Compound Help</u>								
🗋 🚔 🚽 🦫 💠 🗝 🗟 🦑 🐇 🗐								
Compound List								
1: Int Std	Property	Value						
	Compound Name	Int Std						
	Quantification Trace							
	Include Primary Trace in Response?	YES						
	Use absolute mass window?	YES						
	Chromatogram mass window (Da)	0.0200						

3. Build Quantitation Method

©2005 Waters Corporation

J Untitled - QuanLynx Meth	od Editor		
<u>File Edit View</u> Compound <u>H</u>	<u>H</u> elp	Select Parameters to View	
🗋 🚔 🔒 🖾 🍫 📌 🗸	💩 🖑 😽 🔳	Select Parameters to view	
Compound List 1: Int Std	Property	 ☑ Compound Name ☑ Quantification Trace 	^
	Compound Name Quantification Trace	 ✓Include Primary Trace in Response? □Use absolute mass window? □Observate mass window? 	
To control the parameters that are displayed, 'Right Click' on the display. A window	Include Primary Trace in Response? Use absolute mass window? Chromatogram mass window (Da) Chromatogram mass window (PPM) Response Type Response Uses Acquisition Function Number Concentration of Standard: Level Concentration of Standard View Retention Time Parameters	 Chromatogram mass window (Da) Chromatogram mass window (PPM) Response Type Response Uses Acquisition Function Number Concentration of Standard: Level Concentration of Standard View Retention Time Parameters View Acceptance Flag Parameters 	
at the right will appear and you	Locate Peak Using Predicted Retention Time Predicted Relative Retention Time Relative Retention Time Reference Retention Time Window (mins) ±	OK Cancel	
can select which	Lower Retention Time Tolerance (%) Upper Retention Time Tolerance (%)		
parameters you want displayed	Flag RT Tolerance? Locate Peak Selection View Internal Standards	NO Nearest	
	Internal Standard: 1	None	

3. Build Quantitation Method

3. Quant Method Editor – Enter Compound Properties (Internal Standard)

©2005 Waters Corporation

Compound Properties

			_
	D Z	😤 🎥 🕰 🕰 🖷 🖷	
•	Response Type	Property	Value
	\mathbf{O} at the " $\mathbf{\nabla}$ stars at (also also)"	Compound Name	Int Std
	-Set to "External (absolute)"	Quantification Trace	294.1 > 64
		Include Primary Trace in Response?	VES
		use choolute mass window?	VES
		Chromatogram mass window (Da)	1
		Chromatogram mass window (FPM)	10.0000
•	Concentration of Standard	Response Type	External (absolute)
		Response Uses	Area
	-Set Level to "Fixed"	Acquisition Function Number	One
		Concentration of Standard: Level 🥏	Fixed
	Cat Concentration to "1"	Concentration of Standard	1
	- Set Concentration to 1	View Retention Time Parameters	
		Locate Peak Using	Retention Time
		Predicted Retention Time	2.7950
		Predicted Relative Retention Time	0.0000 None
		Relative Recention Time Reference	
•	Internal Standards	Recention Time Window (mins) \pm	0.0000
		Lower Recention Time Tolerance (%)	0.0000
	-Set to "None" for the internal	Elag RT Tolerance?	× NO
		Locate Peak Selection	Nearest
	standard	View Acceptance Flag Parameters	
		Maximum Blank Acceptance Response	× 0.0000
		Maximum Concentration Limit	× 0.0000
		Reporting Concentration Limit	× 0.0000
		Minimum Recovery Level (%)	0.0000
		Maximum Receivery Level (%)	100.0000
		Flag Recovery Level?	× NO
		 View Internal Standards 	
		Internal Standard: 1	None
		Internal Standard: 2	None
		Internal Standard: 3	None
		Internal Standard: 4	None
		Internal Standard: 5	None
		III Internal Standard: 6	INONE

3. Quant Method Editor – Enter **Calibration Parameters (Internal Standard)**

©200

5 Waters	Corporation		Calibration	Parameters
•	Calibration Reference Compound			
	 Select the reference compound to match the current compound 		2 🖬	
		Property		Value
•		Compound Name		Int Std
	-Select "Average RF"	Calibration Reference	Compound	1: Int Std
		Polynomial Type	$ \rightarrow $	Average RF
•	Origin, Weighting Function, Axis	Origin		Exclude
	Transformation	Weighting Function	<u> </u>	1/X
	-These settings are not applied if the	Axis Transformation		None
	the case for the internal standard)	Concentration Units		🕨 pg/ml
		User RE Value		0.0000
	Concentration Units	Propagate Calibration	Parameters 🚽 🚽	🗙 NO
	Standard (in this example it is pg/ml)			
	Propagate Calibration Parameters			
	-When using an Internal Standard, the			
	Propagate function is disabled			
	-Click on the box until a red "X" appears.			
	The Value should change to "No"			
	-			

3. Quant Method Editor – Enter Integration Properties (Internal Standard and Analyte)

©2005 Waters Corporation

Smoothing

-To apply smoothing, click on the box until a green "Check" appears. The Value should change to "Yes"

–Select the appropriate Smoothing Method, and enter the Smoothing Iterations and Width determined from the Peak Integration performed in the Chromatogram Window

Threshold Parameters

-To apply threshold, click on the box next to the appropriate threshold parameter until a green "Check" appears. Enter the threshold value to be applied

Propagate Integration Parameters

–Under most conditions, the integration parameters can be propagated for all compounds
–To Propagate, click on the box until a green "Check" appears. The Value should change to "Yes"

Integration F	Parameters
船 🖧 🔁 🔒 🖬	
Property	Value
Compound Name	Int Std
Smoothing Enabled?	YES
View Smooth Parameters	
Smoothing Method	Mean
Smoothing Iterations	1
Smoothing Width	2
Apex Track Enabled?	× NO
View Peak Detect Parameters	
Apex Track Parameters	
Peak-to-Peak Baseline Noise	10.0000
Peak Width at 5% Height	✓ 30.00
Baseline Start Threshold %	0.05
Baseline End Threshold %	0.05
Detect Shoulder Peaks?	× NO
Standard Peak Detection Parameters	
Peak-to-peak noise amplitude	0.0000
Automatic Noise Measurement	YES
Palance	30
Splitting	90
Detect Shoulder Peaks?	× NO
Detect Shoulder Peaks Threshold	30
	100
Reduce Height	5
Thus shall Delative Usingh	
Threshold Adsolute Height	
Threshold Absolute Area	
Intreshold Absolute Area	0.0000
Propagate Integration Parameters?	
	- 1LJ
7	

3. Quant Method Editor – Enter Integration Properties (Internal Standard and Analyte)

©2005 Waters Corporation

Integration Parameters

Peak Detect Parameters –To enable Apex Track, click on the box until a green "Check" appears. The Value should change to "Yes" (In this example Apex Track is disabled)	Property Compound Nam Smoothing Enal View Smooth Pa Smoothing M Smoothing It Smoothing W Apex Track Ena View Peak Dete Apex Track F Peak-to-P Peak Widt Baseline S
 Apex Track Parameters: Typical setting are shown. These parameters are applied only when Apex Track is enabled 	Baseline E Detect Sh Peak-to-p Automatic Balance Splitting Detect Sh Detect Sh Reduce Ta
 Standard Peak Detection Parameters: Typical settings are shown. These parameters are applied when Apex Track is disabled 	Reduce H View Threshold Threshold Re Threshold At Threshold Re Threshold At Integration Wir Propagate Inte

% % % % %	
Property	Value
Compound Name	Int Std
Smoothing Enabled?	VES
🖃 View Smooth Parameters	
Smoothing Method	Mean
Smoothing Iterations	1
Smoothing Width	2
Apex Track Enabled?	× NO
View Peak Detect Parameters	
 Apex Track Parameters 	
Peak-to-Peak Baseline Noise	10.0000
Peak Width at 5% Height	✓ 30.00
Baseline Start Threshold %	0.05
Baseline End Threshold %	0.05
Detect Shoulder Peaks?	NO NO
Standard Peak Detection Parameters	
Peak-to-peak noise amplitude	0.0000
Automatic Noise Measurement	V YES
Balance	30
Splitting	90
Detect Shoulder Peaks?	× NO
Detect Shoulder Peaks Threshold	30
View Threshold Decemeters	<u> </u>
Threshold Delative Height	V 1 5000
Threshold Absolute Height	
Threshold Relative Area	× 2 0000
Threshold Absolute Area	
Integration Window Extent	
Propagate Integration Parameters?	VES
riopagaco megradorri aramotoro:	
3. Quant Method Editor – Enter Target (Confirmatory) Ion Parameters

3. Quant Method Editor – Enter Calculation Factors

©2005 Waters Corporation

Detection Limit Parameters -Signal-to-noise method: If RMS is used, then Noise calculation factor should be "3"; If Peak-topeak is used, then Noise calculation factor should be "1" - Noise window: Specify portion in chromatogram from which

in chromatogram from which noise will be calculated. If both fields are set to "0.0000", then the noise window will be determined automatically by the software

Detection/Quantification Limit
 Factor: User-defined
 parameters. Typical Values are
 shown

Ca	alculation Factors			
	K			
🔒 🚵 🖾 🗛 🖡				
Property	Value			
Compound Name	Int Std			
🕂 View Toxic Equivalence Facto	rs			
🛨 View Mole Ratio				
Detection Limit Parameters	Detection Limit Parameters			
Signal-to-noise method	RMS			
Noise calculation factor	3.0000			
Noise window start (min)	0.0000			
Noise window end (min)	0.0000			
Measure peak signal level f	rom			
Detection Limit Factor	3			
Quantitation Limit Factor				
Propagate Detection Limit Set	:tings? YES			
Use EMPC?	× NO			
User Peak Factor	0.0000			

- This can be:
- A single decimal number (m/z) for mass chromatograms (from SIR or Full Scan (continuum or centroid))
- Two decimal numbers separated by a ">" for an MRM function e.g. 609.2 > 195.1
- 'TIC' for total ion current chromatograms
- 'BPI' for base peak intensity chromatograms
- An1, An2, An3, or An4 for analog data
- The wavelength for DAD data.
- Ch1, Ch2 etc for SIR data to use one quantify method with multiple SIR functions. Where Ch1 is the first mass in the list, Ch2 is the second etc.

3. Quant Method – More on Trace & Peak Info

©2005 Waters Corporation

View Retention Time Parameters		Ċ
Locate Peak Using	Retention Time	
Predicted Retention Time	2.7950	
Predicted Relative Retention Time	0.0000	1
Relative Retention Time Reference	None	
Retention Time Window (mins) \pm	0.5500	
Lower Retention Time Tolerance (%)	0.0000	
Upper Retention Time Tolerance (%)	0.0000	
Flag RT Tolerance?	× NO	
Locate Peak Selection	Nearest	

Peak Location and Time Window Parameters can be entered from the keyboard if needed.

Peak Location: Retention Time (RT) and Time Window

-Parameters were entered during the 'right click and drag' over the peak. <u>'RT'</u> is center of a time interval that the peak must appear in to be associated with this compound. <u>'Time Window'</u> is the width of this interval. So for this example, the peak must appear at 2.7950±0.55 min.

3. Quant Method Editor – Specify Concentrations

©2005 Waters Corporation

For 'Concentration of <u>S</u>tandards' select 'Conc A' (or 'Conc B', 'Conc C', etc.) from the drop down menu for the column in the sample list that has the concentration values for this compound.

If this compound is an internal standard you may select 'Fixed' (usually done for Int Std's). If you enter 'Fixed', you can enter the concentration of the Int Std or since it is the same concentration in all of the samples, simply enter 1.000 (usually done for Int Std's).

£ ≥ Z A € E		
Property	Value	
Compound Name	Int Std	
Quantification Trace	294.1 > 64	
Include Primary Trace in Response?	VES 🛛	
Use absolute mass window?	VES 🛛	
Stromatogram mass window (Da)	1	
Chromatogram mass window (PPM)	10.0000	
Response Type	External (absolute)	
Response Uses	Area	
Acquisition Function Number	One	
Concentration of Standard: Level 🦰 🌈	Fixed	
Concentration of Standard 🛛 🚽	1	

3. Quant Method Editor – Peak Selection

©2005 Waters Corporation

View Retention Time Parameters	
Locate Peak Using	Retention Time
Predicted Retention Time	2.7950
Predicted Relative Retention Time	0.0000
Relative Retention Time Reference	None
Retention Time Window (mins) \pm	0.5500
Lower Retention Time Tolerance (%)	0.0000
Upper Retention Time Tolerance (%)	0.0000
Flag RT Tolerance?	🗙 NO
Locate Peak Selection	Nearest

If your compound always has the largest peak in the chromatogram, select <u>'Largest'</u>.

 If more than one peak is detected in the 'Time Window', this designates

- The peak <u>Nearest</u> to the entered RT,
- the Largest peak,
- the <u>First</u> peak,
- the <u>Last</u> peak
- or <u>Totals</u> (sum up all of the peaks).

3. Adding to the Quantify Method

©2005 Waters Corporation

- This entire process now needs to be repeated for the two other compounds (for the Quantify.pro example).
- Things that may differ between compounds:
 - Transition (Quantify Trace)
 - Name
 - Integration Parameters
 - Internal Reference (Select Internal Standard if Used)
 - Concentration of Standards
 - Retention Time
 - Time Window
 - Response Type in General Parameters Window
 - Polynomial Type in the General Parameters Window

3. Quant Method Editor – Add Compound to List

File Edit

Compour

1: Int Std 2: New Co

- Click Add New Compound Icon to enter the compound into the Compound List (Shown is New Compound entered into the list)
- Note: Information from the previous compound has been propagated to the new compound. Check all parameters to ensure proper quantification of the new compound

<u>V</u> iew <u>C</u> omp	ound Help	
	🍫 🕹 - 🔍 💞 🗞 🔳	
List	🔒 🎥 🖾 🕰 🕰 📾	
noound	Property	Value
	Compound Name	New Compound
	Quantification Trace	294.1 > 64
	Include Primary Trace in Response?	VES
	Use absolute mass window?	VES
	Chromatogram mass window (Da)	1.0000
	Chromatogram mass window (PPM)	10.0000
	Response Type	External (absolute)
	Response Uses	Area
	Acquisition Function Number	One
	Concentration of Standard: Level	Fixed
	Concentration of Standard	1.0000
	View Retention Time Parameters	
	Locate Peak Using	Retention Time
	Predicted Retention Time	2.7950
	Predicted Relative Retention Time	0.0000
	Relative Retention Time Reference	None
	Retention Time Window (mins) ±	0.2300
	Lower Retention Time Tolerance (%)	0.0000
	Upper Retention Time Tolerance (%)	0.0000
	Flag RT Tolerance?	🗙 NO
	Locate Peak Selection	Nearest
	💽 View Acceptance Flag Parameters	
	🛨 View Internal Standards	
	1	

3. Quant Method Editor – Add Compound to List

- Right Click and Drag on the chromatogram for the new compound trace
- Rename the new compound

3. Quant Method Editor – Enter Compound Properties (Analyte)

Compound Properties

				•
	– –			
•	Response Type		Property	Value
	Cat to "Internal (relative)"		Compound Name	Parent
	-Set to "Internal (relative)"		Quantification Trace	288.1 > 58
			Include Primary Trace in Response?	VES
			Use absolute mass window?	VES
			Chromatogram mass window (Da)	1.0000
			Chromatogram mass window (PPM)	10.0000
•	Concentration of Standard		Response Type	Internal (relative)
		_	Response Uses	Area
	-Set Level to "Conc A (or		Acquisition Function Number	One
			Concentration of Standard: Level	Conc A
	B C)"		Concentration of Standard	1.0000
	D, O,)		View Retention Time Parameters	
			Locate Peak Using	Retention Time
			Predicted Retention Time	2.7950
			Predicted Relative Retention Time	0.0000
	Intornal Standards		Relative Retention Time Reference	None
	IIIternal Stanuarus		Retention Time Window (mins) ±	0.5500
			Lower Recention Time Tolerance (%)	0.0000
	-Select the compound from the		Size DT Televage2	0.0000
	'drop down' list that is the internal		Flag RT Tolerance?	No
	arop down list that is the internal		View Acceptance Flag Parameters	Nearest
	ctandard (In this case, Int Std)		Maximum Blank Accentance Response	× 0.0000
	\mathcal{S}		Maximum Concentration Limit	× 0.0000
			Reporting Concentration Limit	× 0.0000
			Minimum Recovery Level (%)	0.0000
			Maximum Recovery Level (%)	100.0000
			Flag Recovery Level2	× NO
			 View Internal Standards 	
			Internal Standard: 1	🔶 1: Int Std
			Internal Standard: 2	None
			Internal Standard: 3	None
			Internal Standard: 4	None
			Internal Standard: 5	None
			Internal Standard: 6	None

3. Quant Method Editor – Enter Calibration Parameters (Analyte)

©2005 Waters Corporation

•

Calibration Parameters

Polynomial Type –For Analytes, "Linear" is the typical polynomial type. Other options include "Quadratic, Cubic, Quartic"

Concentration Units

-Type concentration unit of internal Standard (in this example it is pg/ml)

• Propagate Calibration Parameters

-When using an Internal Standard,^{*} the Propagate function is disabled

-Click on the box until a red "X" appears. The Value should change to "No"

Property	Value
Compound Name	Parent
Calibration Reference Compound	2: Parent
Polynomial Type	Linear
Origin	Exclude
Weighting Function	1/X
Axis Transformation	None
Concentration Units	🟓 pg/ml
User RF Value	× 0.0000
Propagate Calibration Parameters	× NO

3. Quant Method Editor – Enter Calibration Parameters (Analyte)

1.0

Calibration Parameters

©2005 Waters Corporation

Origin, Weighting Function, Axis Transformation

-Origin: Typically the origin is excluded as a point of the calibration curve

-Weighting Function: A weighting factor is appropriate for a calibration range that is greater than an order of magnitude. For this example, a weighting of "1/X" will be used

-Axis Transformation: When the weighting function is used, the Axis Transformation function is not applied.

Property	Value		
Compound Name	Parent		
Calibration Reference Compound	2: Parent		
Polynomial Type	Linear		
Origin	Exclude		
Weighting Function	1/X		
Axis Transformation	None		
Concentration Units	pg/ml		
User RF Value	× 0.0000		
Propagate Calibration Parameters	🗙 NO		

3. Quantification Method Editor – Relative R.T.

R.T. of Metabolite Relative to Parent (2.65) / (2.79) = 0.950

Example of Use of Relative Retention Time

the Method Editor.

User RF Value

If no calibration curve is available, then divide the peak area (response) by this factor to calculate the conc.'s.

User Peak Factor

All concentrations calculated will be multiplied by this factor.

3. Quant Method Editor-User RF/Peak

Property	Value		
Compound Name	Int Std		
Calibration Reference Compound	1: Int Std		
Polynomial Type	Average RF		
Origin	Exclude		
Weighting Function	1/X		
Axis Transformation	None		
Concentration Units	pg/ml		
User RF Value	🗙 0.0000		
Propagate Calibration Parameters	🗙 NO		

船 🔏 🗛 🗣 🖬	
Property	Value
Compound Name	Int Std
🕂 View Toxic Equivalence Factors	
🛨 View Mole Ratio	
Detection Limit Parameters	
Signal-to-noise method	RMS
Noise calculation factor	3.0000
Noise window start (min)	0.0000
Noise window end (min)	0.0000
Measure peak signal level from	
Detection Limit Factor	3
Quantitation Limit Factor	8
Propagate Detection Limit Settings?	🗹 YES
Use EMPC?	🗙 NO
User Peak Factor	0.0000

©2005 Waters Corporation

 Once the entire method is built, it's time to process the samples.

 Highlight the samples to quantitate. If the entire sample list is to be processed, click on the upper left box to activate the entire sample list

Click on QuanLynx, Process Samples.

4. Processing Samples – QuanLynx

Highlight the samples you wish to quantitate and then select 'Process Samples'

©2005 Waters Corporation

This window appears to confirm the specifics prior to processing samples. Double-check that the:

- 1) Designated samples are correct
- 2) That it is using the correct method.

For complete quantitation set this window to: 1) Integrate the chromatograms 2) Create a calibration curve 3) Calc the concentrations in each sample

©2005 Waters Corporation

5. Reviewing Results

After samples are done processing, a "*Quantify*" box will appear on the lower tool bar. Double click to bring up the results.

OR

Using the main toolbar, click on the View Results button.

5. Sample of QuanLynx Quantification Results

5. Some Features of the Menu of the QuanLynx Quantification Results Viewer

5. Manually Adjusting Integrations

©2005 Waters Corporation

Click on the Baseline & 'Grab' the End Point using the Pointer and Left Mouse Button & Move the End Point to the desired spot.

A faint line will show the position of the original baseline. Reports will now show that this baseline was manually adjusted.

5. Manually Adjusting Integrations

©2005 Waters Corporation

'Right Click' in the window and the 'pop up menu' shown to left will appear.

Select 'Save Peak Mod' from this menu to 'accept' and 'save' the changed baseline.

Go to another chromatogram to keep the original baseline.

5. Editing Calibration Curves

©2005 Waters Corporation

If you have the residuals displayed in your calibration window, you can also remove a point from the calibration by 'Right Clicking' on the 'bad' point.

'Right Click' on the point you wish to exclude here.

Excluding Points from the Calibration

5. Right Click on the Display and Select 'Display Options' to Customize the Display:

©2005 Waters Corporation

For Example the Chromatogram Display Can Be Changed:

©2005 Waters Corporation

1) Click on 'Change Column Order' and which columns are displayed in the table can be changed.

Column Order			
Available Columns Absolute Response Acquired Date Acquired Time Adjusted RT Blank Sub. Conc Cal.RRF %Rel.SD Cal.RRF Mean Cal.RRF SD Calibration Date Calibration Date Calibration Tile Calibration Tile Calibration Time Chrom Noise Chrom. Trace Found Peak RRT Found Peak Scan Inj. Vol Ion Ratio IS Abs.Resp IS Area IS Compound #	Add Remove Add All Remove All	Column Order Sample Entry Sample Name Sample Text Sample Type Std. Conc Found Peak RT Peak Area Detection Flags Calculated Conc Conc. Deviation	Cancel Properties

5. 'Right Click' On the Summary Table and ...

2) Click on 'Edit Column Properties' and the properties of which ever column you 'right clicked' on can be changed.

Property	Value	OK
Name	Peak Area	
Visible	Yes	Cancel
Heading	Area	
Heading Alignment	Right	
Width [inch(es)]	0.69	
Alignment	Right	
Decimal Places	3	

6. Change How the Report Will Be Printed Out

©2005 Waters Corporation

From the 'File' Menu, Select the 'Report Format' Item:

Report Format O	ptions						×
General Compo	ound Summary Report Samp	le Summary Report	Totals Report	Calibration F	Report Sa	amples Report	
🔽 Enable							
Orientation —	Options			٦			
A°.	Portrait Landscape ☐Allow	ration Information pound Per Page v Split Compounds					
Column Forma	t			_			
# Name	Sample Text	Туре	Std. Conc	RT /	Area Flag	gs Conc.	
					OK	Cancel	

For Example the Compound & Sample Summaries Can be Formatted Differently From How They Appear on the Screen

6. How the Chromatograms Are Printed Out Can Also Be Adjusted

©2005 Waters Corporation

General Compound Summary R ✓ Enable Orientation ▲ ● Portrait ● Landscape Chromatogram Properties Heading Order Compounds ▼ Report	eport Sample Summary Options Sample per Pag Allow Split Samp	e e	tals Report Ca	alibration Rep Graph Size ☐ <u>F</u> it Gra <u>W</u> idth ☐ Fit <u>G</u> ra Heigh	ph To Page : 5.0 ph To Page : 3.5	es Report width inch(es) e Helght inch(es)	
# Name	Trace	RT	Area	Flags	Conc. %	Dev	
						Cancel	

Customized Display and Report Formats Can Be Saved For Later Use

- Printing Reports (*File, Print Report*). Besides a full report, results from a set range of samples can be printed.
- Screen and Report Format. A customized format can be saved in a *.fmt file for later use.
- The Quantify Method used with a report can be changed using (*Edit, Quantify Method*)
- Editing of Calibration Curve (*Edit, Calibration Curve*) allows excluding of specific data points. ('Right Click' on a point in a Calibration Curve and select 'Exclude Point').
- Reprocessing samples after editing Quantify Method (*Process, Calculate*)

6. When Finished QuanLynx Quantification Results Can Be Saved in a File

- Everything is in One File
- This file can be viewed and reports printed at a later date without reprocessing data
- This File Will Contain:
 - Compound and Sample Summaries
 - Calibration Curves
 - Chromatograms
 - Experimental Record for Each Analysis Run
 - Quantitation Method

©2005 Waters Corporation

Linear Least Squares Line Fitting and 1/X Weighting Factors

4G27

Least Squares Fit of a Line to a Set of Data

Example of Data and a Possible Fitted Line

©2005 Waters Corporation

Conc	Meas.	Fitted	Diff	Diff ²
2	200	200	0	0
3	300	300	0	0
4	400	400	0	0
5	540	500	40	1600

Sum of Diff 2 = 1600

Conc= Std Concentration Meas=Measured Peak Area Fitted=Peak Area from Fitted Line at given Conc Diff= Meas – Fitted Diff2= Diff Squared

Example of Data and a Least Squares Fitted Line

©2005 Waters Corporation

Conc	Meas.	Fitted	Diff	Diff ²
2	200	192	8	64
3	300	304	- 4	16
4	400	416	- 16	256
5	540	528	12	144

Conc= Std Concentration Meas=Measured Peak Area Fitted=Peak Area from Fitted Line at given Conc Diff= Meas – Fitted Diff2= Diff Squared

Comparison of Suggested 'Possible' Fitted Line and Least Squares Fitted Line

©2005 Waters Corporation

Using 'Possible' Fitted Line

Conc	Meas.	Fitted	Diff	Diff ²
2	200	200	0	0
3	300	300	0	0
4	400	400	0	0
5	540	500	40	1600

Sum of Diff 2 = 1600

Using Linear Least Squares Fitted Line

Conc	Meas.	Fitted	Diff	Diff ²
2	200	192	8	64
3	300	304	- 4	16
4	400	416	- 16	256
5	540	528	12	144

Sum of Diff $^2 = 480$

Example of Data from Analysis of Standards and Quantitation Calibration Curve

Closer Look at 'Ideal' Fitted Line

©2005 Waters Corporation

Example of Line Fitted with No Weighting and Line Fitted with 1/X Weighting

Closer Look at Linear Least Squares Line Fitted with 1/X Weighting

©2005 Waters Corporation

©2005 Waters Corporation

		Line	Fitted	Line	Fitted
		w/ No	Weighting	w/ 1/X	Weighting
Nom	Peak	Calc	Rel	Calc	Rel
Conc	Area	Conc	Error	Conc	Error
1	10	1.45	45.0%	1.12	12.4%
3	30	3.35	11.7%	3.05	1.6%
10	100	10.00	0.0%	9.78	-2.2%
30	300	29.01	-3.3%	29.01	-3.3%
100	1000	95.53	-4.5%	96.33	-3.7%