

Operational Qualification for the QuanLynx Application of MassLynx V4.0

1. Contents

1.	Conter	nts	2
2.	Purpos	se	4
3.	Scope		4
4.	Revisi	on History	4
5.	Metho	d	4
6.	Accep	tance Criteria	4
7.	Result	S	4
8.	Test P	reparation	4
9.	Test P	rocedure	5
9	.1 Pro	ject Selection	5
9	.2 Imp	ort File	6
9	.3 Initi	al Data Values	7
9	.4 Cal	culations	8
9	.5 Res	sults	9
9	.6 Edit	ting Calibration Curves	12
9	.7 Edit	ting Chromatographic Peaks	17
9	.8 Moo	difying the Quantification Method	21
10.	1631	execution summary	24
10. 11. 1	Appe 1.1 Pea	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25
10. 11. 1	Appe 1.1 Pea 11.1.1	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response Absolute Response	on 25 25
10. 11. 1	Appe 1.1 Pea 11.1.1 11.1.2	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response Absolute Response External Response	on 25 25 25
10. 11. 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response Absolute Response External Response Internal Response	on 25 25 25 25 25
10. 11. 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir	execution summary endix - Algorithms used by MassLynx peak integration and quantitati ik Response Absolute Response External Response Internal Response nary / Secondary Peak Ratio	on 25 25 25 25 25 25 25
10. 11. 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali	execution summary endix - Algorithms used by MassLynx peak integration and quantitati ik Response Absolute Response External Response Internal Response internal Response internal Response ibration Curve Calculations	on 25 25 25 25 25 26 26
10. 11. 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1	execution summary endix - Algorithms used by MassLynx peak integration and quantitation k Response Absolute Response External Response Internal Response internal Response internal Response ibration Curve Calculations	on 25 25 25 25 25 26 26 26
10. 11. 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2	execution summary endix - Algorithms used by MassLynx peak integration and quantitation k Response	on 25 25 25 25 25 26 26 26 26
10. 11. 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3	execution summary endix - Algorithms used by MassLynx peak integration and quantitation k Response	on 25 25 25 25 25 26 26 26 26 26 26 27
10. 11. 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4	execution summary endix - Algorithms used by MassLynx peak integration and quantitation k Response	on 25 25 25 25 26 26 26 26 26 26 27 27
10. 11. 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5	execution summary endix - Algorithms used by MassLynx peak integration and quantitation k Response	on 25 25 25 25 26 26 26 26 26 26 27 27 28
10. 11. 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea	execution summary endix - Algorithms used by MassLynx peak integration and quantitati ik Response	on 25 25 25 25 26 26 26 26 26 27 27 27 28 28
10. 11. 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1	execution summary endix - Algorithms used by MassLynx peak integration and quantitation k Response	on 25 25 25 25 26 26 26 26 26 27 27 27 28 28 28
10. 11. 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 27 27 28 28 28 28 29
10. 11. 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 26 27 28 28 28 28 29 29 29
10. 11. 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 26 27 28 28 29 29 29 29 29
10. 11. 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 26 26 26 27 27 28 28 29 29 29 29 29 29
10. 11. 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali	execution summary endix - Algorithms used by MassLynx peak integration and quantitati Absolute Response	on 25 25 25 25 26 26 26 26 26 26 26 26 27 28 28 28 29 29 29 29 29 23
10. 11. 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 26 27 28 28 28 29 29 29 29 29 30
10. 11. 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1 11.5.1 11.5.2	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 27 28 28 28 28 29 29 29 29 29 30 30
10. 11. 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1 11.5.2 11.5.3	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 27 27 28 28 28 29 29 29 29 20 30 30 31
10. 11. 1 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1 11.5.2 11.5.3 1.6 Tota	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 27 27 28 28 28 29 29 29 29 20 30 30 31
10. 11. 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1 11.5.2 11.5.3 1.6 Tota 11.6.1	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response Absolute Response External Response Internal Response Internal Response mary / Secondary Peak Ratio ibration Curve Calculations Weighted Calibration Curves Include Origin Average RF Linear Quadratic and Higher Order Curves k Amount Calculations User Specified Response Factor Average RF Calibration Curve Linear Calibration Curve Quadratic and Higher Order Calibration Curves User Specified Response Factor Average RF Calibration Curve Linear Calibration Curve Quadratic and Higher Order Calibration Curves User Parameters. Ibration Curve Statistics Coefficient of Determination Curve Correlation Coefficient RRF mean, SD and %RSD for Average RF curves als Compounds Peak Response	on 25 25 25 25 26 26 26 26 26 26 27 27 27 28 28 28 29 29 29 29 30 30 31 31
10. 11. 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1 11.5.2 11.5.3 1.6 Tota 11.6.1 11.6.2	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 27 27 28 28 28 29 29 29 29 29 30 30 31 31 31
10. 11. 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1 11.5.2 11.5.3 1.6 Tota 11.6.1 11.6.2 11.6.3	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 25 26 26 26 26 26 26 27 27 28 28 28 29 29 29 29 29 29 30 30 31 31 31 31 31
10. 11. 1 1 1 1 1	Appe 1.1 Pea 11.1.1 11.1.2 11.1.3 1.2 Prir 1.3 Cali 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 1.4 Pea 11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 1.5 Cali 11.5.1 11.5.2 11.5.3 1.6 Tota 11.6.1 11.6.2 11.6.3 11.6.4	execution summary endix - Algorithms used by MassLynx peak integration and quantitati k Response	on 25 25 25 26 26 26 26 26 26 26 26 26 26 27 27 28 28 29 29 29 29 29 29 29 29 30 31 31 31 31 31 32 32

11.6.5	Peak Amount Calculations	32
11.7 Lin	nits of Detection (LOD) and Limits of Quantitation(LOQ)	33
11.7.1	Chromatogram Noise Calculation	33
11.7.2	Chromatogram Area Noise	34
11.7.3	Response Value for Noise	34
11.7.4	LOD and LOQ Concentrations	34
11.7.5	LOD and LOQ Flags	34

2. Purpose

This document describes a series of steps that when performed correctly will provide a means to ensure that the QuanLynx Application Manager is working as expected. Included in the Appendix are details of the actual algorithms employed by the application to calculate the results generated.

3. <u>Scope</u>

This document may be used by any QuanLynx Application Manager user to perform acceptance testing of the Application. It may also be used to derive user defined acceptance testing.

4. Revision History

This is the first issue of this document for the MassLynx Version 4.0 software.

5. Method

Using the standard data set provided with the MassLynx installation follow the steps detailed in the Test Preparation and Test Procedure sections, signing off each test that conforms to the expected results. On completion of the test the results should then be compared to the Acceptance Criteria and an overall assessment made on these results.

6. Acceptance Criteria

The test results must exactly match the results shown in this document unless otherwise indicated. The display appearance may not be identical to that shown in this document, as this will depend on the version of Windows being used and its configuration. In particular the Calibration Window header will differ from that shown in this document.

7. <u>Results</u>

A test result may be any one or combination of the following.

- data produced during the test which is saved to disk.
- printed data produced during the test and filed with the Operational Qualification.
- an action occurring during the test which is observed by the tester.

8. Test Preparation

Install MassLynx on a suitable computer. Depending on the screen resolution selected on the PC the screen may look slightly different to those shown in this document, these should only be minor differences and will not affect the test results. Check that the project QUANTIFY.PRO is also available on the system. To ensure that a known starting point for the test to be carried out the QuanLynx default settings need to be restored. From the MassLynx directory delete the file quanLynx.~ql, this will delete the current format settings and returns these to the default values.

Start MassLynx as normal responding to any prompts until the MassLynx top level browser window appears. If Security is installed a MassLynx Administrator should ensure the User account used has the privileges required to complete this test.

9. Test Procedure

9.1 Project Selection

From the MassLynx main menu select **File|Open Project...** Choose the quantify.pro project that can be found in the MassLynx directory and click **OK**. Now from the **Sample List** menu **Samples** select **Format|Load...** and select quantify.fmt and click **OK**. Select the **QuanLynx** shortcuts.

The Sample List should look like the one shown in Figure 1 below.

View Dun Heln									
Tiew Rou Eab									
ا ا 😂 🖬 😂 🕨	🔄 🚺 🛛 🖉 Sho	rtcut 🐴 Queue 🚳 S	atus						
			Queue Is	Empty					
	Snectrum Ch	romatogram Man	Edit - Sample	5.					
QuanLynx	File Name	Sample ID File	Text MS File	Inlet File	Bottle	Inject Volume Sample Type	Conc A	Control	
A	1 ASSAY01	ID plasma	blank DEFAULT	DEFAULT	1	10.000 Blank	0		
	2 ASSAY02	ID2 0.2pg/	mistd DEFAULT	DEFAULT	2	10.000 Standard	0.2		
Edit Method	3 ASSAY03	ID3 0.5pg/	mistd DEFAULT	DEFAULT	3	10.000 Standard	0.5		
Eart Method	4 ASSAY04	ID4 0.75pg	/ml std DEFAULT	DEFAULT	4	10.000 Standard	0.75		
1570	5 ASSAY05	ID5 1pg/m	std DEFAULT	DEFAULT	5	10.000 Standard	1		
the T	6 ASSAY06	ID6 2pg/m	std DEFAULT	DEFAULT	6	10.000 Standard	2		
Process Samples	7 ASSAY07	ID7 5pg/m	std DEFAULT	DEFAULT	7	10.000 Standard	5		
	8 ASSAY08	ID8 10pg/r	nl std DEFAULT	DEFAULT	8	10.000 Standard	10		
	9 ASSAY09	ID9 15pg/r	nl std DEFAULT	DEFAULT	9	10.000 Standard	15		
C S	10 ASSAY10	ID10 0.3pg/	mIQC DEFAULT	DEFAULT	10	10.000 QC	0.3		
View Results	11 ASSAY11	ID11 2pg/m	QC DEFAULT	DEFAULT	11	10.000 QC	2		
	12 ASSAY12	ID12 12pg/i	nI QC DEFAULT	DEFAULT	12	10.000 QC	12		
9h	13 ASSAY13	ID13 Rat sa	mple 01 DEFAULT	DEFAULT	13	10.000 Blank	0		
	14 ASSAY14	ID14 Rat sa	nple 02 DEFAULT	DEFAULT	14	10.000 Analyte	0		
Edit Quan-Optimize Method	15 ASSAY15	ID15 Rat sa	mple 03 DEFAULT	DEFAULT	15	10.000 Analyte	0		
	16 ASSAY16	ID16 Rat sa	mple 04 DEFAULT	DEFAULT	16	10.000 Analyte	0		
Q	17 ASSAY17	ID17 Rat sa	mple 05 DEFAULT	DEFAULT	17	10.000 Analyte	0		
Bun Quan-Ontimiza	18 ASSAY18	ID18 Rat sa	nple 06 DEFAULT	DEFAULT	18	10.000 Analyte	0		
Run Quan-Optimize	19 ASSAY19	ID19 Rat sa	mple 07 DEFAULT	DEFAULT	19	10.000 Analyte	0		
Ø	20 ASSAY20	ID20 Rat sa	nple 08 DEFAULT	DEFAULT	20	10.000 Analyte	0		
	21 ASSAY21	ID21 Rat sa	nple 09 DEFAULT	DEFAULT	21	10.000 Analyte	0		
View Optimization Results	22 ASSAY22	ID22 Rat sa	nple 10 DEFAULT	DEFAULT	22	10.000 Analyte	0		
	23 ASSAY23	ID23 Rat sa	mple 11 DEFAULT	DEFAULT	23	10.000 Analyte	0		
	24 ASSAY24	ID24 Rat sa	mple 12 DEFAULT	DEFAULT	24	10.000 Analyte	0		
	25 ASSAY25	ID25 Rat sa	mple 13 DEFAULT	DEFAULT	25	10.000 Analyte	0		
	26 ASSAY26	ID26 Rat sa	mple 14 DEFAULT	DEFAULT	26	10.000 Analyte	0		
	27 ASSAY27	ID27 Rat sa	mple 15 DEFAULT	DEFAULT	27	10.000 Analyte	0		
	28 ASSAY28	ID28 Rat sa	nple 16 DEFAULT	DEFAULT	28	10.000 Analyte	0		
	29 ASSAY29	ID29 Rat sa	mple 17 DEFAULT	DEFAULT	29	10.000 Analyte	0		
	30 ASSAY30	ID30 12pg/i	N QC DEFAULT	DEFAULT	60	10.000 QC	12		
	31 ASSAY31	ID31 plasma	blank DEFAULT	DEFAULT	61	10.000 Blank	0		
	32 ASSAY32	ID32 0.2pg/	ml std DEFAULT	DEFAULT	62	10.000 Standard	0.2		
	33 ASSAY33	ID33 0.5pg/	mlstd DEFAULT	DEFAULT	63	10.000 Standard	0.5		
	4								

Figure 1 Quantify.pro sample list.

Note The actual items that appear on the QuanLynx shortcut will depend on the chosen installation options.

9.2 Import File

From the MassLynx top level with **QuanLynx** shortcuts selected, click **View Results** to open the QuanLynx Browser. From the **File** menu select **Import Quan Data...** Select the project.ini file from the quantify.pro folder found in the MassLynx directory and click **OK**. Whilst the project is being imported a progress bar will be displayed at the bottom right of the Browser window.

The QuanLynx Browser should now look similar to that shown in Figure 2 below.

Figure 2 Data import in QuanLynx

Note The window layout may differ if these have been altered since MassLynx was installed.

9.3 Initial Data Values

In the QuanLynx Browser ensure that **1. Std** is selected and check that the Results Summary contains the data as shown in Table 1 below.

#	Name	Sample Text	ID	Туре	Std. Conc	RT	Area IS Area	Response Fl	ags	ng/ml	%Dev
1	ASSAY01	plasma blank	ID	Blank	1.000	2.81	930.147	930.147	bd	1.3	26.3
2	ASSAY02	0.2pg/ml std	ID2	Standard	1.000	2.79	883.674	883.674	bb	1.2	20.0
3	ASSAY03	0.5pg/ml std	ID3	Standard	1.000	2.79	808.750	808.750	bb	1.1	9.8
4	ASSAY04	0.75pg/ml std	ID4	Standard	1.000	2.79	753.757	753.757	bb	1.0	2.3
5	ASSAY05	1pg/ml std	ID5	Standard	1.000	2.79	759.225	759.225	bb	1.0	3.1
6	ASSAY06	2pg/ml std	ID6	Standard	1.000	2.79	824.580	824.580	bb	1.1	11.9
7	ASSAY07	5pg/ml std	ID7	Standard	1.000	2.79	916.398	916.398	bb	1.2	24.4
8	ASSAY08	10pg/ml std	ID8	Standard	1.000	2.81	822.216	822.216	bb	1.1	11.6
9	ASSAY09	15pg/ml std	ID9	Standard	1.000	2.79	801.626	801.626	bb	1.1	8.8
10	ASSAY10	0.3pg/ml QC	ID10	QC	1.000	2.79	776.791	776.791	bb	1.1	5.5
11	ASSAY11	2pg/ml QC	ID11	QC	1.000	2.79	1063.683	1063.683	bb	1.4	44.4
12	ASSAY12	12pg/ml QC	ID12	QC	1.000	2.81	804.075	804.075	bb	1.1	9.2
13	ASSAY13	Rat sample 01	ID13	Blank	1.000	2.82	972.523	972.523	bb	1.3	32.0
14	ASSAY14	Rat sample 02	ID14	Analyte	1.000	2.82	868.267	868.267	bb	1.2	17.9
15	ASSAY15	Rat sample 03	ID15	Analyte	1.000	2.82	571.341	571.341	bb	0.8	-22.4
16	ASSAY16	Rat sample 04	ID16	Analyte	1.000	2.82	817.599	817.599	bb	1.1	11.0
17	ASSAY17	Rat sample 05	ID17	Analyte	1.000	2.82	817.181	817.181	bb	1.1	10.9
18	ASSAY18	Rat sample 06	ID18	Analyte	1.000	2.82	727.503	727.503	bb	1.0	-1.2
19	ASSAY19	Rat sample 07	ID19	Analyte	1.000	2.82	924.266	924.266	bb	1.3	25.5
20	ASSAY20	Rat sample 08	ID20	Analyte	1.000	2.82	641.667	641.667	bb	0.9	-12.9
21	ASSAY21	Rat sample 09	ID21	Analyte	1.000	2.82	690.912	690.912	bb	0.9	-6.2
22	ASSAY22	Rat sample 10	ID22	Analyte	1.000	2.82	692.057	692.057	bb	0.9	-6.0
23	ASSAY23	Rat sample 11	ID23	Analyte	1.000	2.82	890.020	890.020	bb	1.2	20.8
24	ASSAY24	Rat sample 12	ID24	Analyte	1.000	2.82	835.173	835.173	bb	1.1	13.4
25	ASSAY25	Rat sample 13	ID25	Analvte	1.000	2.82	372.693	372.693	bb	0.5	-49.4
26	ASSAY26	Rat sample 14	ID26	Analyte	1.000	2.82	816.763	816.763	bb	1.1	10.9
27	ASSAY27	Rat sample 15	ID27	Analvte	1.000	2.82	733.391	733.391	bb	1.0	-0.4
28	ASSAY28	Ratsample 16	ID28	Analvte	1.000	2.82	736.818	736.818	bb	1.0	0.0
29	ASSAY29	Rat sample 17	ID29	Analvte	1.000	2.84	782.950	782.950	bb	1.1	6.3
30	ASSAY30	12pa/ml QC	ID60	QĆ	1.000	2.81	1263.891	1263.891	bb	1.7	71.6
31	ASSAY31	plasma blank	ID61	Blank	1.000	2.82	13.485	13.485	bb	0.0	-98.2
32	ASSAY32	0.2pg/ml std	ID62	Standard	1.000	2.81	685.769	685.769	bb	0.9	-6.9
33	ASSAY33	0.5pg/ml std	ID63	Standard	1.000	2.81	683.362	683.362	bd	0.9	-7.2
34	ASSAY34	0.75pg/ml std	ID64	Standard	1.000	2.81	699.598	699.598	bb	0.9	-5.0
35	ASSAY35	1pg/ml std	ID65	Standard	1.000	2.81	417.738	417.738	bb	0.6	-43.3
36	ASSAY36	2pg/ml std	ID66	Standard	1.000	2.81	761.854	761.854	bd	1.0	3.4
37	ASSAY37	5pa/ml std	ID67	Standard	1.000	2.81	740.750	740.750	bb	1.0	0.6
38	ASSAY38	10pg/ml std	ID68	Standard	1.000	2.79	480.845	480.845	bb	0.7	-34.7
39	ASSAY39	15pg/ml std	ID69	Standard	1.000	2.81	745.369	745.369	bb	1.0	1.2

Table 1 Initial results summary

9.4 Calculations

From the QuanLynx options select **Process Samples** and set the parameters as shown in Figure 3 below.

Update Method Times	Project [C:\MassLynx\Quantify.PR0	
🔢 🔽 Integrate Samples	Quantify From Sample 1 Io Samp	le [39
📰 🔽 Calibrate Standards	Method: Qmeth1	Browse
😹 🔽 Quantify Samples	Curve: Qmeth1	Browse
Print Quantify Reports	LIMS Export File: Lims.txt	Browse
Export Results to LIMS	ОК	Cancel

Figure 3 Create QuanLynx dataset

Click the **OK** button and then maximise the QuanLynx Browser. Click **Yes** to the prompt to Save changes to the untitled file. Then **Save As** test1.

Whilst the data is being processed a progress bar will be displayed at the bottom right of the Browser window.

9.5 Results

In the QuanLynx Browser the results displayed will automatically be **1. Std**, which is an internal standard. Check that the results summary contains the data as shown in Table 2 below.

#	Name	Sample Text	ID	Туре	Std. Conc	RT	Area IS Area	Response Fla	gs r	ng/ml	%Dev
1	ASSAY01	plasma blank	ID	Blank	1.000	2.81	930.147	930.147	bd	1.3	26.3
2	ASSAY02	0.2pg/ml std	ID2	Standard	1.000	2.79	883.674	883.674	bb	1.2	20.0
3	ASSAY03	0.5pg/ml std	ID3	Standard	1.000	2.79	808.750	808.750	bb	1.1	9.8
4	ASSAY04	0.75pg/ml std	ID4	Standard	1.000	2.79	753.757	753.757	bb	1.0	2.3
5	ASSAY05	1pg/ml std	ID5	Standard	1.000	2.79	759.225	759.225	bb	1.0	3.1
6	ASSAY06	2pg/ml std	ID6	Standard	1.000	2.79	824.580	824.580	bb	1.1	11.9
7	ASSAY07	5pg/ml std	ID7	Standard	1.000	2.79	916.398	916.398	bb	1.2	24.4
8	ASSAY08	10pg/ml std	ID8	Standard	1.000	2.81	822.216	822.216	bb	1.1	11.6
9	ASSAY09	15pg/ml std	ID9	Standard	1.000	2.79	801.626	801.626	bb	1.1	8.8
10	ASSAY10	0.3pg/ml QC	ID10	QC	1.000	2.79	776.791	776.791	bb	1.1	5.5
11	ASSAY11	2pg/ml QC	ID11	QC	1.000	2.79	1063.683	1063.683	bb	1.4	44.4
12	ASSAY12	12pg/ml QC	ID12	QC	1.000	2.81	804.075	804.075	bb	1.1	9.2
13	ASSAY13	Rat sample 01	ID13	Blank	1.000	2.82	972.523	972.523	bb	1.3	32.0
14	ASSAY14	Rat sample 02	ID14	Analyte	1.000	2.82	868.267	868.267	bb	1.2	17.9
15	ASSAY15	Rat sample 03	ID15	Analyte	1.000	2.82	571.341	571.341	bb	0.8	-22.4
16	ASSAY16	Rat sample 04	ID16	Analyte	1.000	2.82	817.599	817.599	bb	1.1	11.0
17	ASSAY17	Rat sample 05	ID17	Analyte	1.000	2.82	817.181	817.181	bb	1.1	10.9
18	ASSAY18	Rat sample 06	ID18	Analyte	1.000	2.82	727.503	727.503	bb	1.0	-1.2
19	ASSAY19	Rat sample 07	ID19	Analyte	1.000	2.82	924.266	924.266	bb	1.3	25.5
20	ASSAY20	Rat sample 08	ID20	Analyte	1.000	2.82	641.667	641.667	bb	0.9	-12.9
21	ASSAY21	Rat sample 09	ID21	Analyte	1.000	2.82	690.912	690.912	bb	0.9	-6.2
22	ASSAY22	Rat sample 10	ID22	Analyte	1.000	2.82	692.057	692.057	bb	0.9	-6.0
23	ASSAY23	Rat sample 11	ID23	Analyte	1.000	2.82	890.020	890.020	bb	1.2	20.8
24	ASSAY24	Rat sample 12	ID24	Analyte	1.000	2.82	835.173	835.173	bb	1.1	13.4
25	ASSAY25	Rat sample 13	ID25	Analyte	1.000	2.82	372.693	372.693	bb	0.5	-49.4
26	ASSAY26	Rat sample 14	ID26	Analyte	1.000	2.82	816.763	816.763	bb	1.1	10.9
27	ASSAY27	Rat sample 15	ID27	Analyte	1.000	2.82	733.391	733.391	bb	1.0	-0.4
28	ASSAY28	Ratsample 16	ID28	Analyte	1.000	2.82	736.818	736.818	bb	1.0	0.0
29	ASSAY29	Rat sample 17	ID29	Analyte	1.000	2.84	782.950	782.950	bb	1.1	6.3
30	ASSAY30	12pg/ml QC	ID60	QC	1.000	2.81	1263.891	1263.891	bb	1.7	71.6
31	ASSAY31	plasma blank	ID61	Blank	1.000	2.82	13.485	13.485	bb	0.0	-98.2
32	ASSAY32	0.2pg/ml std	ID62	Standard	1.000	2.81	685.769	685.769	bb	0.9	-6.9
33	ASSAY33	0.5pg/ml std	ID63	Standard	1.000	2.81	683.362	683.362	bd	0.9	-7.2
34	ASSAY34	0.75pg/ml std	ID64	Standard	1.000	2.81	699.598	699.598	bb	0.9	-5.0
35	ASSAY35	1pg/ml std	ID65	Standard	1.000	2.81	417.738	417.738	bb	0.6	-43.3
36	ASSAY36	2pg/ml std	ID66	Standard	1.000	2.81	761.854	761.854	bd	1.0	3.4
37	ASSAY37	5pg/ml std	ID67	Standard	1.000	2.81	740.750	740.750	bb	1.0	0.6
38	ASSAY38	10pg/ml std	ID68	Standard	1.000	2.79	480.845	480.845	bb	0.7	-34.7
39	ASSAY39	15pg/ml std	ID69	Standard	1.000	2.81	745.369	745.369	bb	1.0	1.2

Table 2 1 Std results summary

Now click on the **Next Compound** button **Grant** are displayed. Check that the data matches that shown in Table 3 below.

#	Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev
1	ASSAY01	plasma blank	ID	Blank				930.147				
2	ASSAY02	0.2pg/ml std	ID2	Standard	0.200	2.79	101.248	883.674	0.115	bb	0.2	6.3
3	ASSAY03	0.5pg/ml std	ID3	Standard	0.500	2.79	230.660	808.750	0.285	bb	0.5	3.9
4	ASSAY04	0.75pg/ml std	ID4	Standard	0.750	2.79	294.603	753.757	0.391	bb	0.7	-5.3
5	ASSAY05	1pg/ml std	ID5	Standard	1.000	2.79	415.267	759.225	0.547	bb	1.0	-0.9
6	ASSAY06	2pg/ml std	ID6	Standard	2.000	2.79	869.522	824.580	1.055	bb	1.9	-4.8
7	ASSAY07	5pg/ml std	ID7	Standard	5.000	2.79	2486.259	916.398	2.713	bb	4.9	-2.2
8	ASSAY08	10pg/ml std	ID8	Standard	10.000	2.81	4816.926	822.216	5.858	bb	10.6	5.5
9	ASSAY09	15pg/ml std	ID9	Standard	15.000	2.79	6389.434	801.626	7.971	bb	14.4	-4.3
10	ASSAY10	0.3pg/ml QC	ID10	QC	0.300	2.79	142.058	776.791	0.183	bb	0.3	11.8
11	ASSAY11	2pg/ml QC	ID11	QC	2.000	2.79	1089.498	1063.683	1.024	bd	1.9	-7.5
12	ASSAY12	12pg/ml QC	ID12	QC	12.000	2.81	4869.008	804.075	6.055	bb	10.9	-9.1
13	ASSAY13	Rat sample 01	ID13	Blank		2.82	7.917	972.523	0.008	bb	0.0	
14	ASSAY14	Rat sample 02	ID14	Analyte		2.82	1592.845	868.267	1.835	bb	3.3	
15	ASSAY15	Rat sample 03	ID15	Analyte		2.82	1166.141	571.341	2.041	bb	3.7	
16	ASSAY16	Rat sample 04	ID16	Analyte		2.82	1706.613	817.599	2.087	bb	3.8	
17	ASSAY17	Rat sample 05	ID17	Analyte		2.82	890.391	817.181	1.090	bb	2.0	
18	ASSAY18	Rat sample 06	ID18	Analyte		2.82	800.093	727.503	1.100	bb	2.0	
19	ASSAY19	Rat sample 07	ID19	Analyte		2.82	518.311	924.266	0.561	bb	1.0	
20	ASSAY20	Rat sample 08	ID20	Analyte		2.82	1461.135	641.667	2.277	bb	4.1	
21	ASSAY21	Rat sample 09	ID21	Analyte		2.82	2032.159	690.912	2.941	bb	5.3	
22	ASSAY22	Rat sample 10	ID22	Analyte		2.82	224.831	692.057	0.325	bb	0.6	
23	ASSAY23	Rat sample 11	ID23	Analyte		2.82	1986.594	890.020	2.232	bb	4.0	
24	ASSAY24	Rat sample 12	ID24	Analyte		2.82	1078.103	835.173	1.291	bb	2.3	
25	ASSAY25	Rat sample 13	ID25	Analyte		2.82	682.509	372.693	1.831	bb	3.3	
26	ASSAY26	Rat sample 14	ID26	Analyte		2.82	2963.864	816.763	3.629	bb	6.5	
27	ASSAY27	Rat sample 15	ID27	Analyte		2.82	1715.681	733.391	2.339	bb	4.2	
28	ASSAY28	Ratsample 16	ID28	Analyte		2.82	1774.026	736.818	2.408	bb	4.3	
29	ASSAY29	Rat sample 17	ID29	Analyte		2.84	2982.158	782.950	3.809	bb	6.9	
30	ASSAY30	12pg/ml QC	ID60	QC	12.000	2.81	7269.290	1263.891	5.752	bb	10.4	-13.7
31	ASSAY31	plasma blank	ID61	Blank				13.485				
32	ASSAY32	0.2pg/ml std	ID62	Standard	0.200	2.81	76.763	685.769	0.112	bb	0.2	3.9
33	ASSAY33	0.5pg/ml std	ID63	Standard	0.500	2.81	180.399	683.362	0.264	bb	0.5	-3.7
34	ASSAY34	0.75pg/ml std	ID64	Standard	0.750	2.81	281.372	699.598	0.402	bb	0.7	-2.6
35	ASSAY35	1pg/ml std	ID65	Standard	1.000	2.81	227.031	417.738	0.543	bb	1.0	-1.5
36	ASSAY36	2pg/ml std	ID66	Standard	2.000	2.81	850.115	761.854	1.116	bd	2.0	0.8
37	ASSAY37	5pg/ml std	ID67	Standard	5.000	2.81	2059.490	740.750	2.780	bb	5.0	0.2
38	ASSAY38	10pg/ml std	ID68	Standard	10.000	2.79	2870.795	480.845	5.970	bb	10.8	7.5
39	ASSAY39	15pg/ml std	ID69	Standard	15.000	2.81	6032.892	745.369	8.094	bb	14.6	-2.8

Table 3 Parent results summary

Finally click the **Next Compound** button set again to display the **Metabolite** Results Summary. Check that the data matches that shown in Table 4 below.

				2								
#	Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev
1	ASSAY01	plasma blank	ID	Blank				930.147				
2	ASSAY02	0.2pg/ml std	ID2	Standard	0.200	2.63	55.113	883.674	0.062	bb	0.2	11.2
3	ASSAY03	0.5pg/ml std	ID3	Standard	0.500	2.65	132.166	808.750	0.163	bb	0.6	14.4
4	ASSAY04	0.75pg/ml std	ID4	Standard	0.750	2.65	146.236	753.757	0.194	bb	0.7	-9.6
5	ASSAY05	1pg/ml std	ID5	Standard	1.000	2.65	204.967	759.225	0.270	bb	0.9	-5.9
6	ASSAY06	2pg/ml std	ID6	Standard	2.000	2.65	479.941	824.580	0.582	bb	2.0	1.1
7	ASSAY07	5pg/ml std	ID7	Standard	5.000	2.65	1302.141	916.398	1.421	bb	4.9	-1.5
8	ASSAY08	10pg/ml std	ID8	Standard	10.000	2.65	2556.472	822.216	3.109	bb	10.8	7.7
9	ASSAY09	15pg/ml std	ID9	Standard	15.000	2.65	3423.765	801.626	4.271	bb	14.8	-1.4
10	ASSAY10	0.3pg/ml QC	ID10	QC	0.300	2.63	62.630	776.791	0.081	bb	0.3	-4.8
11	ASSAY11	2pg/ml QC	ID11	QC	2.000	2.65	552.174	1063.683	0.519	bb	1.8	-9.8
12	ASSAY12	12pg/ml QC	ID12	QC	12.000	2.65	2507.856	804.075	3.119	bb	10.8	-10
13	ASSAY13	Rat sample 01	ID13	Blank				972.523				
14	ASSAY14	Rat sample 02	ID14	Analyte		2.66	804.966	868.267	0.927	bb	3.2	
15	ASSAY15	Rat sample 03	ID15	Analyte		2.66	657.440	571.341	1.151	bb	4.0	
16	ASSAY16	Rat sample 04	ID16	Analyte		2.66	962.961	817.599	1.178	bb	4.1	
17	ASSAY17	Rat sample 05	ID17	Analyte		2.66	515.624	817.181	0.631	bb	2.2	
18	ASSAY18	Rat sample 06	ID18	Analyte		2.66	444.401	727.503	0.611	bb	2.1	
19	ASSAY19	Rat sample 07	ID19	Analyte		2.68	258.598	924.266	0.280	bb	1.0	
20	ASSAY20	Rat sample 08	ID20	Analyte		2.66	813.804	641.667	1.268	bb	4.4	
21	ASSAY21	Rat sample 09	ID21	Analyte		2.68	1184.878	690.912	1.715	bb	5.9	
22	ASSAY22	Rat sample 10	ID22	Analyte		2.68	113.328	692.057	0.164	bb	0.6	
23	ASSAY23	Rat sample 11	ID23	Analyte		2.68	1195.566	890.020	1.343	bb	4.7	
24	ASSAY24	Rat sample 12	ID24	Analyte		2.68	617.358	835.173	0.739	bb	2.6	
25	ASSAY25	Rat sample 13	ID25	Analyte		2.68	363.418	372.693	0.975	bb	3.4	
26	ASSAY26	Rat sample 14	ID26	Analyte		2.68	1683.629	816.763	2.061	bb	7.1	
27	ASSAY27	Rat sample 15	ID27	Analyte		2.68	1046.488	733.391	1.427	bb	4.9	
28	ASSAY28	Ratsample 16	ID28	Analyte		2.68	1040.561	736.818	1.412	bb	4.9	
29	ASSAY29	Rat sample 17	ID29	Analyte		2.68	1578.182	782.950	2.016	bb	7.0	
30	ASSAY30	12pg/ml QC	ID60	QC	12.000	2.66	2806.523	1263.891	2.221	bb	7.7	-35.9
31	ASSAY31	plasma blank	ID61	Blank				13.485				
32	ASSAY32	0.2pg/ml std	ID62	Standard	0.200	2.66	38.468	685.769	0.056	bb	0.2	0.4
33	ASSAY33	0.5pg/ml std	ID63	Standard	0.500	2.66	103.563	683.362	0.152	bb	0.5	6.2
34	ASSAY34	0.75pg/ml std	ID64	Standard	0.750	2.66	136.094	699.598	0.195	bb	0.7	-9.3
35	ASSAY35	1pg/ml std	ID65	Standard	1.000	2.65	115.758	417.738	0.277	bb	1.0	-3.4
36	ASSAY36	2pg/ml std	ID66	Standard	2.000	2.66	401.251	761.854	0.527	bb	1.8	-8.5
37	ASSAY37	5pg/ml std	ID67	Standard	5.000	2.66	1039.202	740.750	1.403	bb	4.9	-2.8
38	ASSAY38	10pg/ml std	ID68	Standard	10.000	2.65	1472.140	480.845	3.062	bb	10.6	6.0
39	ASSAY39	15pg/ml std	ID69	Standard	15.000	2.66	3080.854	745.369	4.133	bb	14.3	-4.6

Table 4 Metabolite results summary

Checked		Date	
---------	--	------	--

9.6 Editing Calibration Curves

With the **1. Std** compound selected in the QuanLynx Browser click on the **Toggle Chromatogram** button

to remove the Chromatogram window. Then maximise the Calibration window so that the Browser appears as in Figure 4 shown below.

💽 Quan	Lynx - untitled *																	_ [] ×
Ele Edit	t ⊻iew Display E	Processing Window	Help															
🛎 日	公園 國奥	+0 0+ - +>	🍫 🗕 +	{}⇒ - X		Σ		3 🗆 🧯	3 ?									
							1	. Std										
×	# Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev						
비 1	1 ASSAY01	plasma blank	ID	Blank	1.000	2.81	930.147		930.147	bd	1.3	26.3	8					
2	2 ASSAY02	0.2pg/ml std	ID2	Standard	1.000	2.79	883.674		883.674	bb	1.2	20.0	8					
3	3 ASSAY03	0.5pg/ml std	ID3	Standard	1.000	2.79	808.750		808.750	bb	1.1	9.8	8					
4	4 ASSAY04	0.75pg/ml std	ID4	Standard	1.000	2.79	753.757		753.757	bb	1.0	2.3						
5	5 ASSAY05	1pg/ml std	ID5	Standard	1.000	2.79	759.225		759.225	bb	1.0	3.1	2					
6	6 ASSAY06	2pg/ml std	ID6	Standard	1.000	2.79	824.580		824.580	bb	1.1	11.9	8					
1	7 ASSAY07	5pg/ml std	107	Standard	1.000	2.79	916.398		916.398	bb	1.2	24.4	2					
8	0 ASSAYU8	10pg/mi std	108	Standard	1.000	2.81	822.216		822.216	00	1.1	11.6						
9	9 ASSAYU9	i opgimi sta	109	standard	1.000	2.79	801.626		801.626	aa	1.1	8.8						
10	10 ASSAY10	U.apg/ml GC	ID10	QC OC	1.000	2.79	4000.000		4000.000	da	1.1	5.5						
11	11 ASSAY11	2pg/mi GC	1011	QC .	1.000	2.79	1053.583		1063.683	00	1.4	44.4	8					
12	12 ASSAT12	Det samula 04	1012	Disale	1.000	2.01	004.075		004.075	DD	4.0	3.2	8					
14	14 ACCAVIA	Rat cample 01	ID14	Apalute .	1.000	2.02	969.267		969.367	bb	1.3	17.0						
15	15 ASSAVIS	Ret sample 02	ID15	Analyte	1.000	2.02	571 341		571.341	hh	0.8	22.4						
16	16 ASSAV16	Ret sample 04	1016	Analyte	1.000	2.02	817 599		817 599	hb	11	11.0						-
11 1-10-1	10 ADDATTO	rior dempto ov	Tierre	Finalite	1.000	2.02	011.000		011.000		1 201	11.0						-
🚧 Calib	bration: Untitled 1	4 Jan 02 11:05:44	E.															- 🗆 ×
Compo	und name: L Std																	
Respon	nse Factor: 736.59	4																
RRF SE	D: 130.095, % Rel	ative SD: 17.6617																
Respon	nse type: External \$	Std, Area																
Curve ty	ype: RF																	
	(2)(¹)																	
1 3	4.4]																	×
	1																	×
																		-
Resid	dual																	×
	-																	
																		100
	12.2																	×
	0.0 111111		0.010					7.61.6.6		1.1.1.1			101121	COLUMN 1		10.101		ng/mi
	916-																	*
																		8
	1														-			×
	-																	X
Respon	nse-																	8
	-																	
	1				3.00													
	0																	ng/ml
	0.00 0.05	0.10 0.15	0.20	0.25	0.30 0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
Ready													(S	T Std		_	-	NUM

Figure 4 QuanLynx calibration

Note: The Calibration Window title will not be identical to this example.

Checked	Date
---------	------

Click on the **Next Compound** button with the **Metabolite** compound is displayed. Right click on the Calibration Graph and select **Display Options...** Set the display settings to those shown in Figure 5 below. Then click **OK**.

☑ Heade	r					
Show F	Residuals					
Display	RF Calibratio	on By Points				
Show (QC Points					
₩Highlig	ht Calibration	Point Associ	ated with the	Current Sample	•	

Figure 5 Calibration display settings

Checked _____ Date _____ Operational Qualification for the QuanLynx Application of MassLynx V4.0. Now in the Results Summary right click on ASSAY08 and select **Show Chromatograms**. The corresponding calibration point will now be highlighted on the Calibration Graph. Right click on the point and select **Exclude**. A dialog asking if you wish to add an Alteration Comment will appear as shown in Figure 6 below. Click **No** to dismiss this dialog.

A	Do you wish to ad	d a comment?
' Canc	el No	Yes

Figure 6 Alteration comment

Note the appearance of this dialog (Figure 6) will depend upon whether security is installed with MassLynx and if so what level of security is enabled. In these instances take appropriate actions to accept the changes.

If MassLynx Security is installed, depending on the security level, it is not be possible to modify the results until the Dataset has been saved to disk. In this case use the File Save command to save the Dataset, before performing the exclude operation. The QuanLynx window title will then reflect the name of the saved file.

Checked _____ Date _____

Repeat this for ASSAY38 so that the QuanLynx Browser appears as shown in Figure 7 below.

💽 Quan	Lynx - untitled *													
Ele Edi	it ⊻iew <u>D</u> isplay	Processing Window	Help											
🛩 🖬	1/2 📩 🔯 📮	2 +8 8+ + +>	🤆 🗸 (+	{ }+ - X		Σ	0 📀	3 🔟 🗧) ?					
							Me	tabolite						
×	# Name	Sample Text	ID	Type	Std. Conc	RT	Area	IS Area	Response	Flags	na/mi	%Dev		
U 8	8 ASSAY08	10pg/ml std	ID8	Standard	10.000	2.65	2556.472	822.216	3.109	bbX	11.1	11.1		_
9	9 ASSAY09	15pg/ml std	ID9	Standard	15.000	2.65	3423.765	801.626	4.271	bb	15.3	1.8		
10	10 ASSAY10	0.3pg/ml QC	ID10	QC	0.300	2.63	62.630	776.791	0.081	bb	0.3	-7.0		
11	11 ASSAY11	2pg/ml QC	ID11	QC	2.000	2.65	552.174	1063.683	0.519	bb	1.8	-7.6		
12	12 ASSAY12	12pg/ml QC	ID12	QC	12.000	2.65	2507.856	804.075	3.119	bb	11.1	-7.1		=1
13	13 ASSAY13	Rat sample 01	ID13	Blank				972.523						
14	14 ASSAY14	Rat sample 02	ID14	Analyte		2.66	804.966	868.267	0.927	bb	3.3	2		
15	15 ASSAY15	Rat sample 03	ID15	Analyte		2.66	657.440	571.341	1.151	bb	4.1			
16	16 ASSAY16	Rat sample 04	ID16	Analyte		2.66	962.961	817.599	1.178	bb	4.2	2		
17	17 ASSAY17	Rat sample 05	ID17	Analyte		2.66	515.624	817.181	0.631	bb	2.2			
18	18 ASSAY18	Rat sample 06	ID18	Analyte		2.66	444.401	727.503	0.611	bb	2.2			
19	19 ASSAY19	Rat sample 07	ID19	Analyte		2.68	258.598	924.266	0.280	bb	1.0			
20	20 ASSAY20	Rat sample 08	ID20	Analyte		2.66	813.804	641.667	1.268	bb	4.5			
21	21 ASSAY21	Rat sample 09	ID21	Analyte		2.68	1184.878	690.912	1.715	bb	6.1			
22	22 ASSAY22	Rat sample 10	ID22	Analyte		2.68	113.328	692.057	0.164	bb	0.6			
23	23 ASSAY23	Rat sample 11	ID23	Analyte		2.68	1195.566	890.020	1.343	bb	4.8	1		•
Correla Calibra Respor Curve ty	ation coefficient: r ation curve: 0.2799 nse type: Internal ype: Linear, Origin	= 0.999390, M2 = 0. 529 * x + 0.0026435 Std (Ref 1), Area * n: Exclude, Weightin	998781 4 (IS Conc g: 1/x, Ax	: / IS Area) is trans: None										
1	15.0 × ×										888			
Resid	dual	×			×									×
	-8.7 ×	× × ×			*									×
	4 27-													A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC
'														×
	1												and the second se	
Respo	nse-													
	1				×									
	no xxx	*												
	0.00 1	1.0 2.0	3.0	4.0	5.0	6.0	7.0	8	0	9.0	10.0	11.	0 12.0 13.0 14	4.0 15.0
													X Metabolite	NUM //
													March 1	1

Figure 7 ASSAY08 and ASSAY38 excluded

Checked	Da	ate
---------	----	-----

Operational Qualification for the QuanLynx Application of MassLynx V4.0.

Now click on the Maximise button for the Results Summary located in the top left corner of the window. The display should now appear as shown in Figure 8 below.

Q	uan	Lynx - untitled *													
Ele	Edit	t <u>V</u> iew <u>D</u> isplay	Processing Window	Help											
6		公園園県	2 +0 0+ - +>	<+ +	{}⇒ - 🗙		Σ	W 🔗 I	3 00 4	3 <mark>8</mark>					
								Met	tabolite	2					
×Г		# Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev		
-11		1 ASSAY01	plasma blank	ID	Blank				930.147				2		
2		2 ASSAY02	0.2pg/ml std	ID2	Standard	0.200	2.63	55.113	883.674	0.062	bb	0.2	6.8		
3		3 ASSAY03	0.5pg/ml std	ID3	Standard	0.500	2.65	132.166	808.750	0.163	bb	0.6	15.0		
4		4 ASSAY04	0.75pg/ml std	ID4	Standard	0.750	2.65	146.236	753.757	0.194	bb	0.7	-8.7		
5		5 ASSAY05	1pg/ml std	IDS	Standard	1.000	2.65	204.967	759.225	0.270	bb	1.0	-4.4		
6		6 ASSAY06	2pg/ml std	ID6	Standard	2.000	2.65	479.941	824.580	0.582	bb	2.1	3.6		
7	_	7 ASSAY07	5pg/ml std	ID7	Standard	5.000	2.65	1302.141	916.398	1,421	bb	5.1	1.5		
8	-	8 ASSAY08	10pg/ml std	ID8	Standard	10.000	2.65	2556.472	822.216	3.109	bbX	11.1	11.1		
9		9 ASSAYU9	15pg/ml std	ID9	Standard	15.000	2.65	3423.765	801.626	4.271	bb	15.3	1.8		
1	-	10 ASSAY10	U.3pg/mLGC	ID10	QC .	0.300	2.63	62.630	//6./91	0.081	dd	0.3	-7.0		
		11 ASSAY11	2pg/ml QC	1011	QC .	2.000	2.65	552.174	1063.683	0.519	da	1.8	-7.6		
1	2	12 ASSAY12	12pg/ml GC	ID12	QC	12.000	2.65	2507.856	804.075	3.119	dd	11.1	-/.1		
	5	13 ASSAY13	Rat sample U1	1013	Blank		0.00	004.000	972.523	0.007	1.1.				
	+	14 ASSAY14	Rat sample 02	ID14	Analyte		2.66	804.966	655.257	0.927	da	3.3			
		15 ASSAT15	Rat sample 03	ID15	Analyte		2.00	007.440	047.500	1.151	00 http	4.1			
1	,	17 ASSATIO	Rat comple 04	1016	Analyte		2.00	545 604	017.099	0.624	bb	9.2			
		10 ACCAV40	Rat comple 05	1017	Analyte		2.00	444.404	707 602	0.031	bb	2.2			
1	<u>.</u>	10 ASSATTO	Ret cample 00	1010	Analyte		2.00	259 509	924.266	0.001	bb	1.0			
1		18 ASSATT8	Rat comple 07	1013	Analyte		2.00	230.330	644 CC7	4 169	bb	1.0			
2		21 ASSAV21	Rat sample 09	ID21	Analyte		2.68	1184 878	690.912	1 715	bb	61			
2		22 ASSAY22	Rat sample 10	ID22	Analyte		2.68	113 328	692.057	0.164	hh	0.6			
2		23 ASSAV23	Ret sample 11	1022	Analyte		2.68	1195 566	890.020	1 343	bb	4.8			
2	1	24 4554724	Rat sample 12	ID24	Analyte		2.68	617 358	835 173	0.739	hh	2.6			
2	5	25 ASSAY25	Rat sample 13	ID25	Analyte		2.68	363,418	372 693	0.975	hh	35			
2	5	26 ASSAY26	Rat sample 14	ID26	Analyte		2.68	1683 629	816 763	2.061	bb	7.4			
2	7	27 ASSAY27	Rat sample 15	ID27	Analyte		2.68	1046.488	733.391	1.427	bb	5.1			
2	3	28 ASSAY28	Ratsample 16	ID28	Analyte		2.68	1040.561	736.818	1.412	bb	5.0			
2	3	29 ASSAY29	Rat sample 17	ID29	Analyte		2.68	1578.182	782.950	2.016	bb	7.2			
3)	30 ASSAY30	12pg/ml QC	ID60	QC	12.000	2.66	2806.523	1263.891	2.221	bb	7.9	-33.9		
3		31 ASSAY31	plasma blank	ID61	Blank				13.485						
3	2	32 ASSAY32	0.2pg/ml std	ID62	Standard	0.200	2.66	38.468	685.769	0.056	bb	0.2	-4.4		
3	3	33 ASSAY33	0 Social std	LID63	Standard	0.500	2.66	103 563	683 362	0 152	hh	0.5	6.5		_
1	alit	bration: Untitled	14 Jan 02 11:05:44												
Cor	npo	und name: Metak	polite	0.50											_
Cor	rela	tion coefficient: r	= 0.999390, r^2 = 0.	998/81											
Cal	prat	non curve: 0.2795	029 " X + 0.0026435	4 (IR Cons	(IC Area)										
In the s	pur	vne: Linear Origin	otu (Rei T), Afea *	CIS CUNC	trane: Nene										
	ve ty	rpe. Linear, Origin	n. Exclude, weightin	ig. 10, 700	a adria, indife										
															-1
	<i></i>														
kead.	(Mecabolice	NUM //

Figure 8 Results summary maximised

Check that the data matches that shown in Table 5 below.

#	Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev
1	ASSAY01	plasma blank	ID	Blank				930.147				
2	ASSAY02	0.2pg/ml std	ID2	Standard	0.200	2.63	55.113	883.674	0.062	bb	0.2	6.8
3	ASSAY03	0.5pg/ml std	ID3	Standard	0.500	2.65	132.166	808.750	0.163	bb	0.6	15
4	ASSAY04	0.75pg/ml std	ID4	Standard	0.750	2.65	146.236	753.757	0.194	bb	0.7	-8.7
5	ASSAY05	1pg/ml std	ID5	Standard	1.000	2.65	204.967	759.225	0.270	bb	1.0	-4.4
6	ASSAY06	2pg/ml std	ID6	Standard	2.000	2.65	479.941	824.580	0.582	bb	2.1	3.6
7	ASSAY07	5pg/ml std	ID7	Standard	5.000	2.65	1302.141	916.398	1.421	bb	5.1	1.5
8	ASSAY08	10pg/ml std	ID8	Standard	10.000	2.65	2556.472	822.216	3.109	bbX	11.1	11.1
9	ASSAY09	15pg/ml std	ID9	Standard	15.000	2.65	3423.765	801.626	4.271	bb	15.3	1.8
10	ASSAY10	0.3pg/ml QC	ID10	QC	0.300	2.63	62.630	776.791	0.081	bb	0.3	-7.0
11	ASSAY11	2pg/ml QC	ID11	QC	2.000	2.65	552.174	1063.683	0.519	bb	1.8	-7.6
12	ASSAY12	12pg/ml QC	ID12	QC	12.000	2.65	2507.856	804.075	3.119	bb	11.1	-7.1
13	ASSAY13	Rat sample 01	ID13	Blank				972.523				
14	ASSAY14	Rat sample 02	ID14	Analyte		2.66	804.966	868.267	0.927	bb	3.3	
15	ASSAY15	Rat sample 03	ID15	Analyte		2.66	657.440	571.341	1.151	bb	4.1	
16	ASSAY16	Rat sample 04	ID16	Analyte		2.66	962.961	817.599	1.178	bb	4.2	
17	ASSAY17	Rat sample 05	ID17	Analyte		2.66	515.624	817.181	0.631	bb	2.2	
18	ASSAY18	Rat sample 06	ID18	Analyte		2.66	444.401	727.503	0.611	bb	2.2	
19	ASSAY19	Rat sample 07	ID19	Analyte		2.68	258.598	924.266	0.280	bb	1.0	
20	ASSAY20	Rat sample 08	ID20	Analyte		2.66	813.804	641.667	1.268	bb	4.5	
21	ASSAY21	Rat sample 09	ID21	Analyte		2.68	1184.878	690.912	1.715	bb	6.1	
22	ASSAY22	Rat sample 10	ID22	Analyte		2.68	113.328	692.057	0.164	bb	0.6	
23	ASSAY23	Rat sample 11	ID23	Analyte		2.68	1195.566	890.020	1.343	bb	4.8	
24	ASSAY24	Rat sample 12	ID24	Analyte		2.68	617.358	835.173	0.739	bb	2.6	
25	ASSAY25	Rat sample 13	ID25	Analyte		2.68	363.418	372.693	0.975	bb	3.5	
26	ASSAY26	Rat sample 14	ID26	Analyte		2.68	1683.629	816.763	2.061	bb	7.4	
27	ASSAY27	Rat sample 15	ID27	Analyte		2.68	1046.488	733.391	1.427	bb	5.1	
28	ASSAY28	Ratsample 16	ID28	Analyte		2.68	1040.561	736.818	1.412	bb	5.0	
29	ASSAY29	Rat sample 17	ID29	Analyte		2.68	1578.182	782.950	2.016	bb	7.2	
30	ASSAY30	12pg/ml QC	ID60	QC	12.000	2.66	2806.523	1263.891	2.221	bb	7.9	-33.9
31	ASSAY31	plasma blank	ID61	Blank				13.485				
32	ASSAY32	0.2pg/ml std	ID62	Standard	0.200	2.66	38.468	685.769	0.056	bb	0.2	-4.4
33	ASSAY33	0.5pg/ml std	ID63	Standard	0.500	2.66	103.563	683.362	0.152	bb	0.5	6.5
34	ASSAY34	0.75pg/ml std	ID64	Standard	0.750	2.66	136.094	699.598	0.195	bb	0.7	-8.5
35	ASSAY35	1pg/ml std	ID65	Standard	1.000	2.65	115.758	417.738	0.277	bb	1.0	-1.8
36	ASSAY36	2pg/ml std	ID66	Standard	2.000	2.66	401.251	761.854	0.527	bb	1.9	-6.3
37	ASSAY37	5pg/ml std	ID67	Standard	5.000	2.66	1039.202	740.750	1.403	bb	5.0	0.2
38	ASSAY38	10pg/ml std	ID68	Standard	10.000	2.65	1472.140	480.845	3.062	bbX	10.9	9.4
39	ASSAY39	15pg/ml std	ID69	Standard	15.000	2.66	3080.854	745.369	4.133	bb	14.8	-1.5

Table 5 Altered Metabolite results summary

From the QuanLynx Browser menu **File** select **Print...** and set the parameters as shown in Figure 9 below.

Print		? ×
Printer		
<u>N</u> ame:	\\TU-SERVER2-PNT\HP-DISKIN-PS	▼ <u>P</u> roperties
Status:	Ready	
Type:	HP LaserJet 4050 Series PS	
Where:	10.1.52.130:HPDISKIN	
Comment:		Print to file
Print range ✓ <u>A</u> II <u>G</u> roups <u>S</u> ample		opies umber of copies: 1
Zompox		OK Cancel

Figure 9 Print

Check that the printed **Metabolite** data in the Compound Summary Report matches that shown in Table 5 previously.

9.7 Editing Chromatographic Peaks

In the QuanLynx Browser click on the **Toggle Calibration** button **I** to remove the Calibration Graph.

Then click on the **Toggle Chromatogram** button to add the Chromatogram View. Then maximise the Chromatogram View. In the Results Summary right click on ASSAY14 and select **Show Chromatograms**. The Browser should now appear as shown in Figure 10 below.

Figure 10 Chromatogram display

Checked	 Date	

Right click on the Chromatogram and select **Display Options...** and uncheck the **Show Internal Standard** in the **Style** list. The Browser should now appear as shown in Figure 11 below.

0	luan	Lynx - untitled *	8											
Ele	Edi	t View Display	Processing Window	· <u>H</u> elp <	-{]+ - X		ΠΣ	m I 🛷 I 🛙		a , ?				
				•				Met	tabolite					
송[# Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev	
17		7 ASSAY07	5pg/ml std	ID7	Standard	5.000	2.65	1302.141	916.398	1.421	bb	5.1	1.5	
1	-	8 ASSAY08	10pg/ml std	ID8	Standard	10.000	2.65	2556.472	822.216	3.109	bbX	11.1	11.1	
1	-	9 ASSAY09	15pg/ml std	ID9	Standard	15.000	2.65	3423.765	801.626	4.271	bb	15.3	1.8	-
		10 ASSAV10	U.spg/mi GC	1010	QC .	0.300	2.63	62.630	//6./91	0.081	00	0.3	-7.0	
	1	11 ASSAV11	2pg/mi GC	ID11	QC .	2.000	2.65	552.174	1053.583	0.519	da	1.8	-7.5	
	2	12 ASSAT12	12pg/miGC Ret.comple.01	ID12	Black	12.000	2.00	2007.000	004.075	3,119	00	313	-7.1	
	3	13 ASSAT13	Rat sample 01	1013	Dialik		2.00	904.066	8/ 2.523	0.007	is is	2.2	-	
	4 C	15 ACCAV45	Rat sample 02	ID14	Analyte		2.00	667.440	674 244	1 151	bb	4.1		
	6	16 ASSAV16	Rat sample 03	1015	Analyte		2.00	962,961	817 599	1 178	bb	4.1		-
11.00	0 1	1012332110	Troit sample 04	1010	Terrarte		2.00	302.3011	011.555	1 1.170	00	1 4.21		
\wedge	Chro	matogram					-							
AS	SAY	14 Smooth(Mn,2	2x(2)											MRM of 3 channels,AP+
Ra	tsa	mple 02 ID14												2/4.10 > 182.10
											data hali		107.44.05	4.1810+003
10	0										wetaboli	LE,2.00,00	4.97,4125	
												1		
												11		
	-1													
	-1											1 1		
												1		
	-											1 1		
												1 1		
	1											1 1		
	- 1											1 1		
												1 1		
1 2	%-											1		
													1	
													1	
	-1											1	1	
1													1	
	1												1	
													1	
											1		1	
											1		1	
											1			
	1				1.05						1		1	A TANK
				_							1			
	0-5	0.20 0.4	40 0.60 0.1	80 1	.00 1.20	1.40	.60	1.80	2.00	2.20 2	40	2.60	2.80	3.00 3.20 3.40 3.60 3.80
Rear	lv													X Metabolite NUM

Figure 11 Chromatogram with no internal standard

Checked _	Date	
-----------	------	--

Zoom into the peak at 2.66 minutes by left clicking at 2.00 minutes and dragging the cursor to 3.40 minutes. Now left click on the end of the peak baseline at 3.16 minutes and move this back to about 2.81 minutes by dragging the cursor. The Browser should now appear as shown in Figure 12 below. Note that area and height annotation of the peak may vary from that shown.

Q	uanLy	ynx - untitled *												_0
Ele	Edit	View Display Pr	ocessing <u>₩</u> indow	Help						-				
			+0 0+ - +>	↔ - +	{}⇒ - X		Σ		∃ □ €	3 7				
1								Me	tabolite	14				
*		# Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev	
7		7 ASSAY07	5pg/ml std	ID7	Standard	5.000	2.65	1302.141	916.398	1.421	bb	5.1	1.5	
8		8 ASSAY08	10pg/ml std	ID8	Standard	10.000	2.65	2556.472	822.216	3.109	bbX	11.1	11.1	
9	0 1	9 ASSATU9	1 Spgimi sta	109	Standard	0.300	2.65	62,630	776 701	9.271	bb	15.3	1.8	
	1 1	1 ASSAV11	2ng/ml QC	ID11	lac	2 000	2.65	552 174	1063.683	0.519	hh	1.8	-7.6	
1	2 1	2 ASSAY12	12pg/ml QC	ID12	QC	12.000	2.65	2507.856	804.075	3.119	bb	11.1	-7.1	
1	3 1	3 ASSAY13	Rat sample 01	ID13	Blank			10100000	972.523					
1.	4 1	4 ASSAY14	Rat sample 02	ID14	Analyte		2.66	804.966	868.267	0.927	bb	3.3		
1:	5 1	5 ASSAY15	Rat sample 03	ID15	Analyte		2.66	657.440	571.341	1.151	bb	4.1	-	
1110	6 1	6 ASSAY16	Rat sample 04	ID16	Analyte		2.66	962.961	817.599	1.178	bb	4.2	1	
\land	Chron	natogram												_02
AS	SAY1	4 Smooth(Mn,2x2)											MRM of 3 channels,AP
Ra	tsam	ple 02 ID14												274.10 > 182.1
											ata ha lit.	0.00.70	044405*	4.181e+00
10	0									RV I	ietaboliti	3,2.66,76	1.94;41351	
												1		
												$ 1\rangle$		
												14		
												11		
												11		
												1 1		
11												1		
	1											1		
	00											1		
9	% -												ł	
												1	1	
													1	
													1	
													1	
													1	
											1		1	
											1		1	
											1		1	
					1.05									
											1			
	× 11	0.20 0.40	0.60 0.8	30 1.	00 1.20	1.40 1	60	1.80	2.00	2.20 2.	40	2.60	2.80	3.00 3.20 3.40 3.60 3.80
Read	y													X Metabolite NUM
COLUMN TO A	10													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 12 Altered peak baseline

Checked		Date	
---------	--	------	--

Right click on the Chromatogram View and select **Save Peak Modifications...** A dialog asking if you wish to add an Alteration Comment will appear as shown in Figure 6. Type in the comment **Modify test** and click **Yes**.

Right click on the Results Summary window and select **Change Column Order...** Press the **Ctrl** key and click on **Modify Comments** and **Modify User** in the left hand list and click the **Add** button. Then click **OK**. The Browser should now appear as shown in Figure 13 below.

Figure 13 Modified chromatogram

|--|

NOTE For this Figure there may be slight differences between the one shown above and the actual screen display. These differences will be in the **Mod. User** column, as this will display the name of the user logged into MassLynx, and the **Area**, **Response** and **ng/m**I columns as these values for ASSAY14 will depend on the actual peak end that has been positioned manually.

9.8 Modifying the Quantification Method

Right click on the Results Summary window and select **Change Column Order...** Press the **Ctrl** key and click on **Modify Comments** and **Modify User**, in the right hand list, then click the **Remove** button. Then click **OK**.

From the QuanLynx menu **Edit** select **Method**. Then in the **Method Editor** dialog click the **General Parameters...** button. Set the parameters as shown in Figure 14 below and click **OK**.

Response	Calibration Curves	
Type Internal (relative)	Polynomial Type	Quadratic
• Areas C <u>H</u> eights	Point of <u>O</u> rigin	Exclude
Concentration	<u>F</u> it Weighting	None
Units ng/ml	Axis Transformation	None

Figure 14 New method parameters

Now close the QuanLynx **Method Editor** and click **Yes** when asked to **Save changes**. A dialog asking if you wish to add an Alteration Comment will appear as shown in Figure 6. Click **No** to dismiss this dialog.

Note the appearance of the Comment dialog will depend upon whether Security is installed. The appropriate action to accept the change should be made.

Checked _____ Date _____

In the QuanLynx Browser click on the **Toggle Chromatogram** button is to remove the Chromatogram

View. Then click on the **Toggle Calibration** button to add the Calibration Graph. Then maximise the Calibration View. From the QuanLynx menu **Processing** select **Execute** and check the options shown in Figure 15 below.

Figure 15 Processing wizard

The Browser should now appear as shown in Figure 16 below.

Figure 16 Quadratic calibration

Checked		Date	
---------	--	------	--

The Results Summary for the **Metabolite** should now match the data shown in Table 6 below. Note that ASSAY14 may display different results due to the previous manual modification.

#	Name	Sample Text	ID	Туре	Std. Conc	RT	Area	IS Area	Response	Flags	ng/ml	%Dev
1	ASSAY01	plasma blank	ID	Blank				930.147				
2	ASSAY02	0.2pg/ml std	ID2	Standard	0.200	2.63	55.113	883.674	0.062	bb	0.2	14.4
3	ASSAY03	0.5pg/ml std	ID3	Standard	0.500	2.65	132.166	808.750	0.163	bb	0.6	17.4
4	ASSAY04	0.75pg/ml std	ID4	Standard	0.750	2.65	146.236	753.757	0.194	bb	0.7	-7.3
5	ASSAY05	1pg/ml std	ID5	Standard	1.000	2.65	204.967	759.225	0.270	bb	1.0	-3.5
6	ASSAY06	2pg/ml std	ID6	Standard	2.000	2.65	479.941	824.580	0.582	bb	2.1	3.6
7	ASSAY07	5pg/ml std	ID7	Standard	5.000	2.65	1302.141	916.398	1.421	bb	5.1	1.1
8	ASSAY08	10pg/ml std	ID8	Standard	10.000	2.65	2556.472	822.216	3.109	bbX	11.1	10.8
9	ASSAY09	15pg/ml std	ID9	Standard	15.000	2.65	3423.765	801.626	4.271	bb	15.2	1.6
10	ASSAY10	0.3pg/ml QC	ID10	QC	0.300	2.63	62.630	776.791	0.081	bb	0.3	-2.2
11	ASSAY11	2pg/ml QC	ID11	QC	2.000	2.65	552.174	1063.683	0.519	bb	1.8	-7.6
12	ASSAY12	12pg/ml QC	ID12	QC	12.000	2.65	2507.856	804.075	3.119	bb	11.1	-7.4
13	ASSAY13	Rat sample 01	ID13	Blank				972.523				
14	ASSAY14	Rat sample 02	ID14	Analyte		2.66	804.966	868.267	0.927	mm-	3.3	
15	ASSAY15	Rat sample 03	ID15	Analyte		2.66	657.440	571.341	1.151	bb	4.1	
16	ASSAY16	Rat sample 04	ID16	Analyte		2.66	962.961	817.599	1.178	bb	4.2	
17	ASSAY17	Rat sample 05	ID17	Analyte		2.66	515.624	817.181	0.631	bb	2.2	
18	ASSAY18	Rat sample 06	ID18	Analyte		2.66	444.401	727.503	0.611	bb	2.2	
19	ASSAY19	Rat sample 07	ID19	Analyte		2.68	258.598	924.266	0.280	bb	1.0	
20	ASSAY20	Rat sample 08	ID20	Analyte		2.66	813.804	641.667	1.268	bb	4.5	
21	ASSAY21	Rat sample 09	ID21	Analyte		2.68	1184.878	690.912	1.715	bb	6.1	
22	ASSAY22	Rat sample 10	ID22	Analyte		2.68	113.328	692.057	0.164	bb	0.6	
23	ASSAY23	Rat sample 11	ID23	Analyte		2.68	1195.566	890.020	1.343	bb	4.8	
24	ASSAY24	Rat sample 12	ID24	Analyte		2.68	617.358	835.173	0.739	bb	2.6	
25	ASSAY25	Rat sample 13	ID25	Analyte		2.68	363.418	372.693	0.975	bb	3.5	
26	ASSAY26	Rat sample 14	ID26	Analyte		2.68	1683.629	816.763	2.061	bb	7.3	
27	ASSAY27	Rat sample 15	ID27	Analyte		2.68	1046.488	733.391	1.427	bb	5.1	
28	ASSAY28	Ratsample 16	ID28	Analyte		2.68	1040.561	736.818	1.412	bb	5.0	
29	ASSAY29	Rat sample 17	ID29	Analyte		2.68	1578.182	782.950	2.016	bb	7.2	
30	ASSAY30	12pg/ml QC	ID60	QC	12.000	2.66	2806.523	1263.891	2.221	bb	7.9	-34.1
31	ASSAY31	plasma blank	ID61	Blank				13.485				
32	ASSAY32	0.2pg/ml std	ID62	Standard	0.200	2.66	38.468	685.769	0.056	bb	0.2	3.3
33	ASSAY33	0.5pg/ml std	ID63	Standard	0.500	2.66	103.563	683.362	0.152	bb	0.5	9.0
34	ASSAY34	0.75pg/ml std	ID64	Standard	0.750	2.66	136.094	699.598	0.195	bb	0.7	-7.0
35	ASSAY35	1pg/ml std	ID65	Standard	1.000	2.65	115.758	417.738	0.277	bb	1.0	-1.0
36	ASSAY36	2pg/ml std	ID66	Standard	2.000	2.66	401.251	761.854	0.527	bb	1.9	-6.2
37	ASSAY37	5pg/ml std	ID67	Standard	5.000	2.66	1039.202	740.750	1.403	bb	5.0	-0.2
38	ASSAY38	10pg/ml std	ID68	Standard	10.000	2.65	1472.140	480.845	3.062	bbX	10.9	9.1
39	ASSAY39	15pg/ml std	ID69	Standard	15.000	2.66	3080.854	745.369	4.133	bb	14.8	-1.7

Table 6 Quadratic calibration results summary

Checked D	ate
-----------	-----

10. Test execution summary

Observation No.	Notes		Observation or non-conformance	Related observation
Tested By Na	ame	_Signature	Date	
Reviewed By N	ame	_ Signature	Date	

Operational Qualification for the QuanLynx Application of MassLynx V4.0.

11. Appendix - Algorithms used by MassLynx peak integration and quantitation

11.1 Peak Response

There are two main methods of calculating peak response value, these are External Standard and Internal Standard. Both are based on the Absolute Response calculated for a peak.

11.1.1 Absolute Response

Absolute Response is based on either peak Area or Height and the selected combination of compound Primary and Secondary peaks. The examples below are shown for peak Area.

Compound Response Primary

This is the default if no Secondary trace is specified.

Abs.Resp. = Primary Area

Compound Response Secondary

Abs.Resp. = Secondary Area

Compound Response Both

Abs.Resp. = Primary Area + Secondary Area

Where:

Primary Area is the area of a peak calculated by peak detection on the primary chromatogram trace. Secondary Area is the area of a peak calculated by peak detection on the secondary chromatogram trace.

11.1.2 External Response

Peak Response = Abs.Resp

Where:

Abs.Resp is the absolute response of a peak as calculated in 11.1.1.

11.1.3 Internal Response

Peak Response = Abs.Resp <u>* Amount_l</u> Abs.Resp₁

Where:

Abs.Resp is the absolute response of a peak as calculated in 11.1.1. Amount_I is the given amount of the Internal Standard in the sample Abs.Resp_I is the area of the internal standard peak as calculated in 11.1.1.

11.2 Primary / Secondary Peak Ratio

If primary and Secondary traces are specified the ratio of peaks detected on each trace is calculated as below. Ratio is based on either peak Area or Height, the example below is shown for peak Area.

Secondary Peak Area

Where:

Primary Area is the area of a peak calculated by peak detection on the primary chromatogram trace. Secondary Area is the area of a peak calculated by peak detection on the secondary chromatogram trace.

11.3 Calibration Curve Calculations

MassLynx can fit several types of calibration curves, which are described below.

11.3.1 Weighted Calibration Curves

Calibration points used when fitting curves can be given a weighted importance, the larger the weighting the more significant a point is treated when the curve is fitted.

Weighting (w_i) of i^{th} calibration point is calculated using one of the following, all w_i are set to 1 for no weighting.

1)	wi	=	у _і -1
2)	w _i	=	у _і -2
3)	w _i	=	x _i -1
4)	wi	=	x _i -2

Where:

yi is Y value (response) of ith calibration point

 x_i is X value (concentration) of ith calibration point

11.3.2 Include Origin

If Include Origin is selected as a calibration curve type an extra point with zero concentration and response is used in the regression. The extra point has the same weighting as the lowest calibration standard.

11.3.3 Average RF

The calibration curve formed is linear passing through the origin with a gradient equal to the average response values of the calibration points.

Where:

Swy	=	Σ <u>yj*w</u> j
		x _i
Sw	=	Σw_{j}

 \textbf{y}_{i} is Y value (response) of i^{th} calibration point

 x_i is X value (concentration) of ith calibration point

 w_i is weighting of i^{th} calibration point, all set to 1 for no weighting.

11.3.4 Linear

The calibration curve is formed by fitting a line using linear regression to a set of calibration points.

I	Gradient ntercept	= =	Swxy / Swxx y _{w,mean} - Gradient * x _{w,mean}
Where:	^y w,mean	=	$\frac{\sum y_i * w_i}{\sum w_i}$
	^x w,mean	=	$\frac{\Sigma x_i * w_i}{\Sigma w_i}$
	Swxy	=	$\Sigma (x_i - x_{w,mean})^* (y_i - y_{w,mean})^* w_i$
	Swxx	=	$\Sigma (x_i - x_{w,mean})^2 * w_i$

 y_i is Y value (response) of ith calibration point

 $x_{i} \text{ is X}$ value (concentration) of $i^{\mbox{th}}$ calibration point

 w_i is weighting of i^{th} calibration point, all set to 1 for no weighting.

If Force Origin is selected a line with zero intercept is fitted.

Gradient = $\sum \underline{x_i}^* \underline{y_i}^* \underline{w_i}$ $\sum x_i^2 \overline{w_i}$

11.3.5 Quadratic and Higher Order Curves

MassLynx uses a general Least Squares Fit algorithm to regress a polynomial of any order against the calibration points. The method used is outlined below.

Polynomial regression can be described as the fitting of m "independent" variables (Xj, j = 0 to m-1) to a single "dependent" variable y. i.e.

y = Xb + e

where **y** is the *n* x 1 vector containing the n y values (y_i), **X** is the *n* x *m* matrix of x values, (x_iJ), **b** is the *m* x 1 vector of regression coefficients (b_i), and **e** is the *n* x 1 vector of residuals from the fit to each y_i value.

The familiar least squares solution for the regression coefficients is given by:

b = $(X'X)^{-1}X'y$

where ⁻¹ indicates matrix inverse, and ' indicates matrix transpose.

The above equation can then be solved using Gauss-Jordan elimination.

To implement weighted regression X and y are first multiplied by a diagonal $n \times n$ matrix P (i.e. X becomes PX and Y becomes PY), before the above equation is solved.

where each element (pij) of **P** is given by:

p _{ij}	=	w _i 1/2	for i = j
p _{ij}	=	0	for i <> k

w_i is weighting of ith calibration point, all set to 1 for no weighting.

11.4 Peak Amount Calculations

11.4.1 User Specified Response Factor

If a user response factor if selected within the quantitation method calibration curves are not used. The following calculation is performed to obtain peak amounts.

Amount = <u>Peak Response</u> Response Factor

Where: Peak Response is the response value calculated for a peak. Response Factor is user entered response factor for that compound.

11.4.2 Average RF Calibration Curve

Amounts are calculated using an Average RF calibration as follows

Amount =

<u>Peak Response</u> Average RF

Where:

Peak Response is the response value calculated for a peak. Average RF is average response factor calculated for a set of calibration points.

11.4.3 Linear Calibration Curve

Amounts are calculated using a linear calibration as follows

Amount = <u>Peak Response - Intercept</u> Gradient

Where:

Peak Response is the response value calculated for a peak. Intercept is the intercept calculated for the linear calibration. Gradient is the gradient calculated for the linear calibration.

11.4.4 Quadratic and Higher Order Calibration Curves

Amounts are calculated by solving the following equation using the Newton-Raphson Method.

Peak Response = P (Amount)

Where:

Peak Response is the response value calculated for a peak. P() is the polynomial function calculated for a set of calibration points.

11.4.5 User Parameters

User parameters can be used to multiply or divide the final quantitation results. These factors are entered per sample in the Sample List. If a factor is not specified of zero it is assumed to be one.

Final Amount = <u>Amount * User Factor 1 * User Factor 2 * User Factor 3</u> User Divisor 1

The User Peak Factor is entered per compound in the Quantify Method.

Final Amount = Amount * User Peak Factor

Notes:

User Multiplication and Divisor factors are not applied to Standard samples.

In MassLynx 3 onwards Sample List fields can be renamed to user requirements. When converting from a pre MassLynx V3.0 sample list the following field mappings occur.

'Initial Amount' now becomes 'User Divisor 1' 'User Factor' now becomes 'User Factor 1' 'Dilution Factor' now becomes 'User Factor 2' 'Extract Volume' now becomes 'User Factor 3'

Operational Qualification for the QuanLynx Application of MassLynx V4.0.

11.5 Calibration Curve Statistics

11.5.1 Coefficient of Determination

The coefficient and determination is calculated for a regressed calibration curve. In the case of a linear curve it is equivalent to the square of the correlation coefficient and is reported as such.

For each data point a value of y ($y_{i,pred}$) can be predicted from the calibration curve at the position x_i . For each data point a residual between the actual and predicted y value can be calculated as ($y_i - y_{i,pred}$), and the weighted residual sum of squares (RSS) can be calculated as:

RSS = $\Sigma (y_i - y_{i,pred})^2 * w_i$

where w_i is weighting of i^{th} calibration point.

The total variation in the data is reflected in the weighted corrected sum of squares (CSS), calculated * as:

$$CSS = \sum (y_i - y_{w,mean})^2 * w_i$$

where y_{w.mean} is the weighted mean value of y

$$y_{w,mean} = \sum y_i * w_i$$

 Σw_i

The model sum of squares (MSS) is the portion of the total variation accounted for by the regression, i.e.

MSS = CSS-RSS

The coefficient of determination (R^2) is the proportion of the variation accounted for by regression, and is given by the ration of the model sum of squares to the corrected sum of squares, i.e.

R ²	=	MSS / CSS
	=	(CSS-RSS)/CSS

11.5.2 Curve Correlation Coefficient

In the case of linear curves the square of the correlation coefficient (r) is equivalent to the coefficient of determination described above and is reported as such.

11.5.3 RRF mean, SD and %RSD for Average RF curves

The calculation of RRF mean, SD and %RSD are detailed in equations below :

11.6 Totals Compounds

Totals compounds are formed from groups of peaks, these can include Named peaks that have been identified by other method compounds and Unnamed peaks which have not been identified. Compounds are identified as being a part of a Group by a shared group name

This section details calculations performed specifically for Totals compounds.

11.6.1 Peak Response

The responses of all peaks that are part of the Totals group are calculated individually.

11.6.2 External Response

See section 11.1.2.

11.6.3 Internal Response

Calculated Internal Response of a peak is based upon the average response of the Internal Standards of the named compounds in the Group.

Peak Response	= <u>Abs.Resp</u> Ave.Named.Resp _{IS}
Where:	
Abs.Resp Ave.Named.Resp _{is}	= Absolute response of Unnamed peak as calculated in 11.1.1. = Average response of group Named peaks Internal Standards. = $(\Sigma_N (AbsResp_{ISn} / Amount_{ISn})) / N$
Ν	= Number of found Named compounds in group
n	= Named compound index
AbsResp _{ISn}	= Absolute response of the n th Named Internal Standard peak as calculated in 11.1.1.
Amount _{ISn}	= Given amount of the n th Named Internal Standard in the sample

11.6.4 Calibration Curve Calculations

The calibration curve for a Totals compound is formed by averaging the calibrations of the Named Compounds in the Group. The Totals curve is used to calculate the concentration of the Unnamed peaks in the Group.

Each coefficient of the Totals curve is calculated as follows:

$$\mathbf{C}_{i} = (\Sigma_{N} \mathbf{C}_{i,n}) / \mathbf{N}$$

Where:

N is the number of Named compounds in the Group. C_i is the ith coefficient of the Totals curve. $C_{i,n}$ is the ith coefficient of the nth Named compound in the group.

11.6.5 Peak Amount Calculations

Totals concentration is the sum of the concentrations of the selected peaks that make up the group.

Peaks summed can be specified as only Named peaks, Only Unnamed peaks or Both.

The concentration of each individual peak in the group is calculated as described in section 11.4.

11.7 Limits of Detection (LOD) and Limits of Quantitation(LOQ)

The calculation of the LOD and LOQ for a compound is dependent upon the noise contained within the chromatogram trace used to quantify that compound.

11.7.1 Chromatogram Noise Calculation

Chromatogram noise is calculated as the standard deviation of the noise in the trace (effectively a height), which is multiplied by a user specified factor. Chromatogram noise may be calculated automatically or manually :

Manual Noise Measurement – To select this method, the user must specify an RT range of the trace which contains noise only. The resulting noise value is the standard deviation of the data in this region, multiplied by the User Factor.

Note : an RT entry of 0.0 may be used to signify the start or end of the trace when input as the start or end RT respectively.

Noise
$$Height = SD_{selected data} \times User Factor$$

Where :

$$SD_{x} = \frac{\sum_{N} (x_{i} - Mean_{x})}{N - 1}$$

Automatic Noise Measurement – This method is initiated by selecting the entire range of the trace for noise measurement (i.e. start and end RT equal 0.0). An algorithm is used to determine which regions of the trace consist only of noise, the result being the standard deviation of these regions multiplied by the user specified factor.

Note : The noise detection algorithm relies on a relationship between the median difference between adjacent points and standard deviation which is specific to gaussian deviates. This approximation provides good results when used with raw chromatogram data, but not for smoothed data. As a result, the algorithm measures the noise in the raw trace, to which a scaling factor is then applied to produce the effect of the current smoothing parameters. This smoothing correction is specific to the effect of mean smoothing on gaussian deviates (see below). As a result, the accuracy of this method is affected when (a) Savitzky Golay smoothing is used and, to a lesser extent, when (b) the noise regions are not gaussian in nature.

$$SD_{mean}_{smoothed} = \frac{SD_{raw \, data}}{Winsize^{0.5} \times Iterations^{0.25}}$$

Where :

$$Winsize = (2 \times WinHalfSize) + 1$$

This equation describes the relationship between the standard deviation of raw and mean smoothed data (for gaussian deviates). *Iterations* is the number of smooths applied to the raw data and *Winsize* is the size of the smoothing window. Masslynx requires a half window size to be entered which has the relationship with *Winsize* described in above.

A multiplication factor of 3 is commonly used as, for gaussian deviates, this corresponds to a range within which 95% of the data will lie.

11.7.2 Chromatogram Area Noise

The noise value is effectively a measure of noise height, an area value maybe calculated that is equivalent to the calculated noise. The Compound's IS peak is used for this, the ratio of height to area of the corresponding IS peak is calculated, this is applied to the noise value if the corresponding noise area is required.

11.7.3 Response Value for Noise

The absolute noise values are converted into equivalent response values.

If compounds are being quantified using Heights use the original noise values, if using Areas use the Area noise values.

Calculate an absolute noise response for the compounds based upon the method Secondary Parameters Compound response, Primary, Secondary or Both (in which case sum the noise values from both traces). If a Secondary trace is not specified the Primary is always used.

Calculate a noise response value from the absolute noise response by applying the IS response, in the same way as if it were a normal peak.

11.7.4 LOD and LOQ Concentrations

The LOD and LOQ concentrations are calculated by applying the compound's calibration curve to the noise response to obtain a value for the concentration, which is then multiplied by user specified factors for LOD and LOQ respectively. The LOD and LOQ factors are specified as part of the Quantify method and are set for all compounds, the default values are 3 and 8 respectively.

Resulting LOD and LOQ concentrations should be stored in Peak Record and be available for display in the Summary, if no value is available output should be blank.

11.7.5 LOD and LOQ Flags

These flags indicate if the calculated concentration of a compound falls below the LOD or LOQ concentration threshold. If a compound concentration exceeds the threshold the flag is 'Yes' if it is less than the threshold the flag is 'No'.