Transferring Yesterdays Methods to Tomorrows Technology: The Evolution from HPLC to UPLC[™]

Eric S. Grumbach

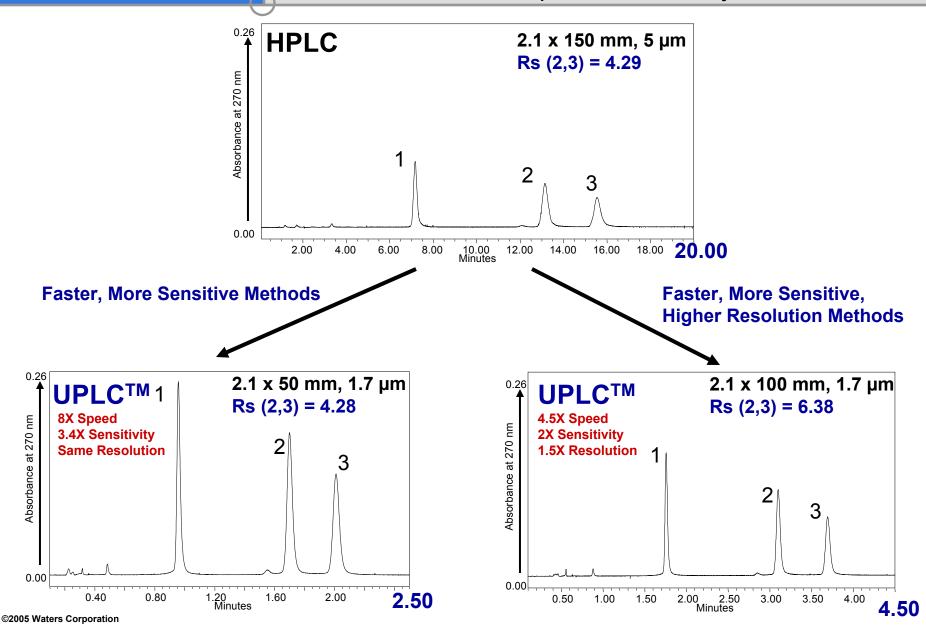
Thomas E. Wheat

Chuck Phoebe

Joe Arsenault

Jeffrey R. Mazzeo

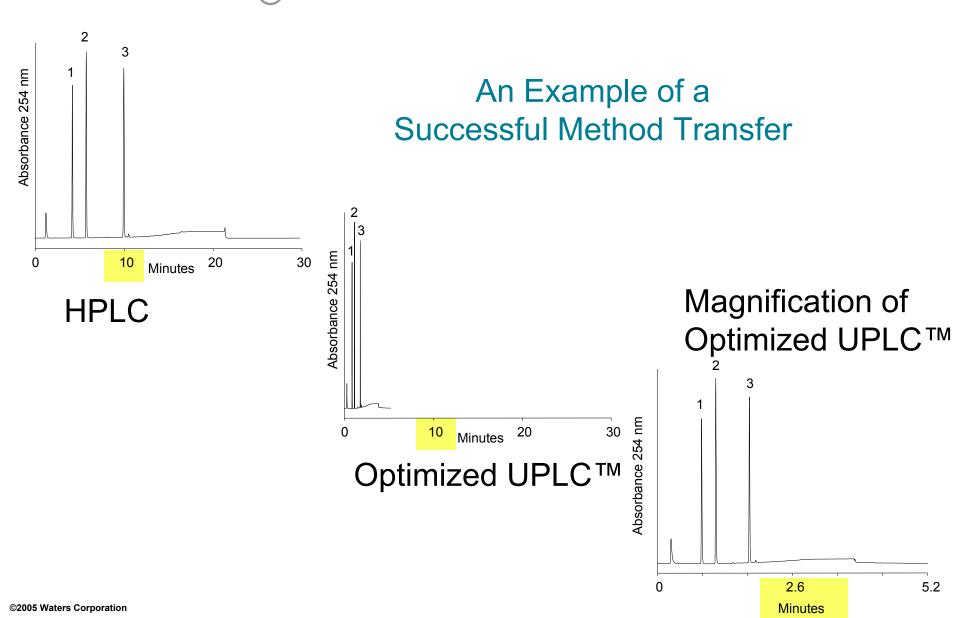
Diane M. Diehl


For Complete **:** Confidence

UPLC[™] TECHNOLOGY

- A new class of separation science
 - Based on chromatography columns with very small particles
 - Based on instruments designed to take advantage of the small particles
- Provides improved Resolution, Speed, and Sensitivity without compromise
- Suitable for chromatographic applications in general
 - Appropriate for developing new methods
 - Appropriate for improving existing methods

HPLC vs. UPLC[™] Speed, Sensitivity and Resolution


What Does Ultra Performance LC[™] Bring to the Chromatographic Laboratory?

Choices available:

- Increased speed and sensitivity with the same resolution
- Increased sensitivity and speed with resolution
- Increased resolution and sensitivity at the same speed

HPLC to Optimized UPLC™

- Classes of methods transfer
 - Replace a column brand with another
 - Replace an instrument with another
 - Replace both the instrument and the column
- The benefits of UPLC[™] can only be realized with a new column on a new instrument

 As with any project to transfer a Liquid Chromatographic method, proper consideration of all the factors which control the separation process is essential for success

Internal diameter and length

Internal diameter

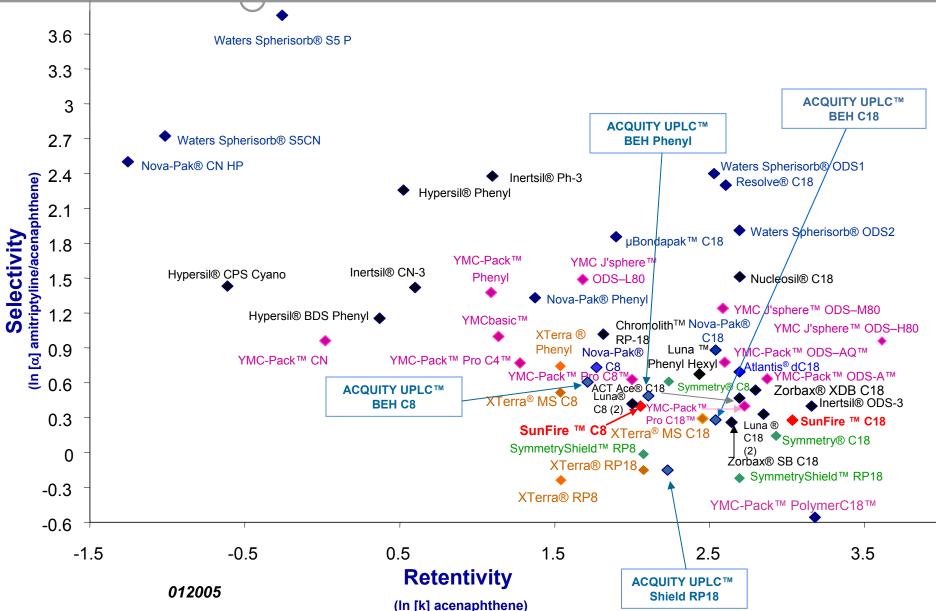
2.1 mm or 1.0 mm

- Length
 - If primary goal is **speed**, choose 50 mm length
 - If primary goal is **resolution**, choose 100 mm length

Ratio of Column Length to Particle Size

<u>L/dp</u>		<u>RATIO</u>		<u>Typical</u> <u>Run Times</u>
<u>300mm</u> 10 μm	=	30,000	1970's	~ 30+ min.
<u>150mm</u> 5µm	=	30,000	1980's	~10-15 min.
<u>100mm</u> 3 µ m	=	33,300	1990's	~ 5-10 min.
<u>50mm</u> 1.7μm	=	29,500	2004	~1- 2 min.
<u>100mm</u> 1.7μm	=	58,820	2x Maximu	m Resolution Capability

If you keep the L/dp ratio the SAME for 2 columns, you will obtain the SAME Resolution. With smaller particle sizes in shorter columns, you will achieve the same separation, but in LESS TIME!


Available Ligands:

- ACQUITY UPLC[™] BEH C₁₈
 - Straight chain alkyl C₁₈
- ACQUITY UPLC[™] BEH Shield RP₁₈
 - Embedded polar group (carbamate)
- ACQUITY UPLC[™] BEH C₈
 - Straight chain alkyl C₈
- ACQUITY UPLC[™] BEH Phenyl

Why Multiple Ligands?:

- Changes in hydrophobicity
- Changes in silanol activity
- Changes in hydrolytic stability
- Changes in ligand density
- Changes in selectivity

Reversed-Phase Column Selectivity Chart

^{©2005} Waters Corporation

Solvent delivery

- Scale flow rate appropriate to column dimensions
- Scale linear velocity appropriate to particle size
- Adjust all segments of method, including equilibration

Sample injection

- Scale injection volume
- Detection
 - Ensure proper data sampling rate
 - Ensure proper time constant

$4.6 \times 150 \text{ mm}, 5 \mu \text{m}$ HPLC Column

Gradient Step	Time Since Injection	Flow Rate	%A	%В	Curve
Initial	0	1.5	95	5	*
2	15	1.5	5	95	6
3	20	1.5	5	95	1
4	30	1.5	95	5	1

- Express gradient duration in % change per column volume (cv) units
- Calculate each segment as a number of column volumes
- Calculate time required to deliver the same number of column volumes to the UPLC[™] column at the chosen flow rate.

For 15 min at 1.5 mL/min on a 4.6 x 150 mm column

Gradient Volume = Flow Rate x Time = 1.5 mL/min x 15 min = 22.5 mL

Column Volume = π x r² x L = 3.14 x 2.3² x 150 = 2.49 mL

Gradient Duration =
$$\frac{22.5 \text{ mL}}{2.49 \text{ mL}}$$
 = **9.03 cv**

4.6 x 150 mm, 5 µm HPLC Column

Gradient Step	Time Since Injection	Flow Rate	%A	% B	Curve	Segment Duration (min)	Segment Duration (Col.Vol.)
Initial	0	1.5	95	5	*	0	0
2	15	1.5	5	95	6	15	9.03
3	20	1.5	5	95	1	5	3.01
4	30	1.5	95	5	1	10	6.02

- > Consider 1.7 μ m target particle (2.1 mm i.d. column)
- Assume temperature and viscosity transferred
- Adjust flow rate based on van Deemter curve and approximate molecular weight
 - ~0.6 mL/min for average 500 dalton (molecular weight) molecules
 - ~0.1 mL/min for larger molecules because diffusion is slower, e.g., ~2,000 dalton peptides

Original Step 2: 15 min @ 1.5 mL/min with Duration of 9.03cv

Calculate Target Step 2: (keeping duration @ 9.03cv)

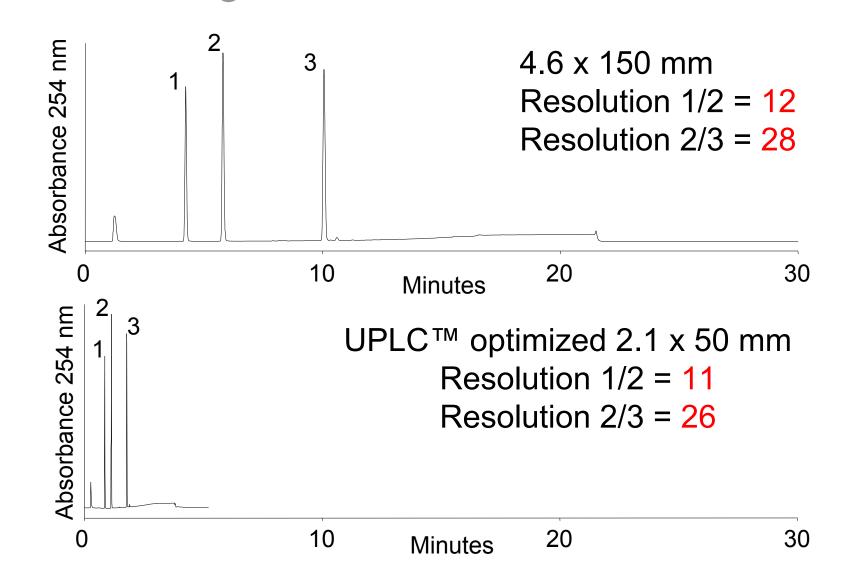
Target Column Volume (2.1 x 50) = 0.17 mL

Gradient Step Volume = Duration (cv) x Target Column Volume

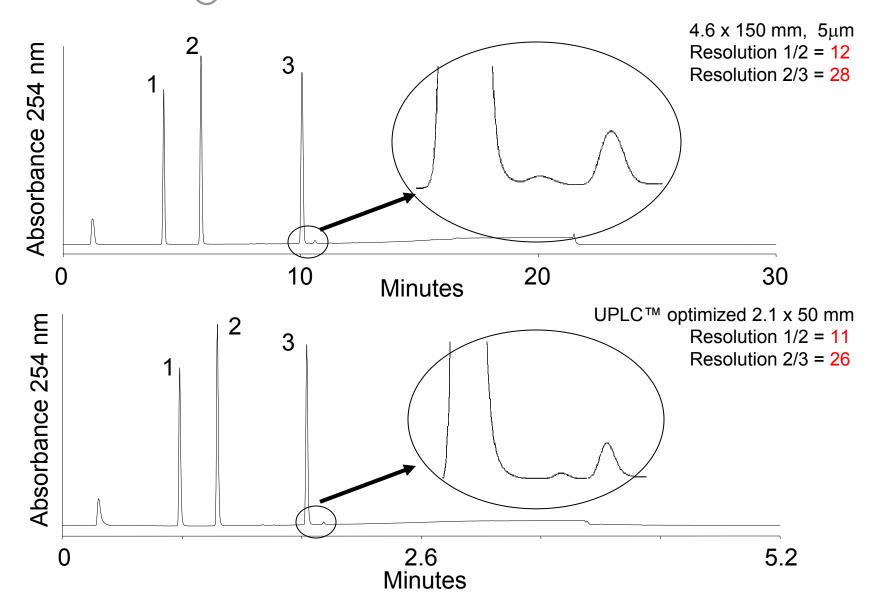
 $= 9.03cv \times 0.17 mL = 1.54 mL$

Gradient Step Time = Gradient Step Volume / UPLC[™] Flow Rate

= 1.54 mL / 0.60 mL/min. =


2.6 min.

Optimized Gradient Profile


2.1 x 50 mm, 1.7 μ m UPLCTM Column

Gradient Step	Time Since Injection	Flow Rate	% A	% B	Curve	Segment Duration (min)	Segment Duration (Col.Vol.)
Initial	0	0.6	95	5	*	0	0
Initial Hold	0	0.6	95	5	1	0	0
2	2.61	0.6	5	95	6	2.61	9.03
3	3.48	0.6	5	95	1	0.87	3.01
4	5.22	0.6	95	5	1	1.74	6.02

Comparing Results: Does the new method meet resolution criteria?

Comparing Results: Does the new method meet resolution criteria?

Original HPLC Method:

Caffeic Acid Derivatives in Echinacea Purpurea

Chromatographic Conditions :

Columns: XTerra[®] MS C₁₈ 4.6 x 150 mm, 5.0 μ m Mobile Phase A: 0.1% CF₃COOH in H₂O Mobile Phase B: 0.08% CF₃COOH in ACN Flow Rate: 1.0 mL/min Gradient: Time Profile C

radient:	Time	Profi	le	Curve
	(min)	%A	%В	
	0.0	92	8	6
	2.0	92	8	7
	32.0	50	50	6
	35.0	10	90	6
	36.0	92	8	6
	41.0	92	8	6

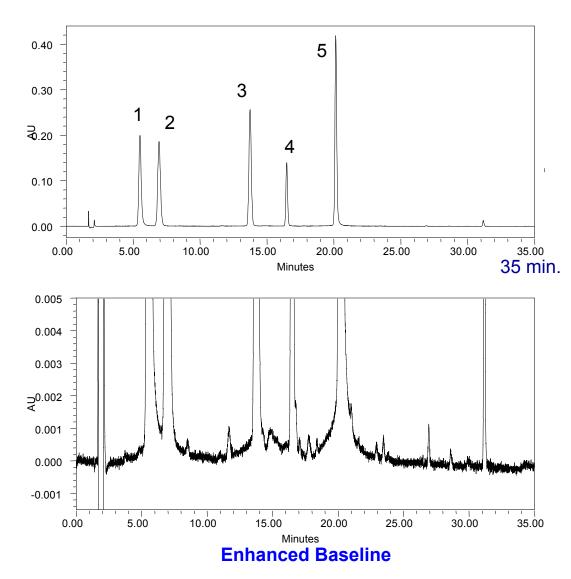
Injection Volume: 10.0 µL

Weak Needle Wash: 0.1% CF_3COOH in 8% ACN Sample: Caffeic Acid Derivatives in Echinacea Purpurea Sample Diluent: 50:50 H_2O : MeOH with 0.05% CF_3COOH Sample Concentration: 100 µg/mL

Temperature: 40 °C

Detection: UV @ 330 nm

Sampling rate: 10 pts/sec


Time Constant: 0.1

Instrument: Alliance[®] 2695 Separations Module with 2996 PDA detector

Analyte

1.	Caftaric acid

- 2. Chlorogenic acid
- 3. Cynarin
- 4. Echinacoside
- 5. Cichoric acid

E.G.

HPLC-to-UPLC[™] Method Transfer:

Chromatographic Conditions

Original HPLC Method

Chromatographic Conditions :

Columns: XTerra[®] MS C₁₈ 4.6 x 150 mm, 5.0 μ m Mobile Phase A: 0.1% CF₃COOH in H₂O Mobile Phase B: 0.08% CF₃COOH in ACN Flow Rate: 1.0 mL/min

Gradient:	Time	Profi	le	Curve	
	(min)	%A	%В		
	0.0	92	8	6	
	2.0	92	8	7	
	32.0	50	50	6	
	35.0	10	90	6	
	36.0	92	8	6	
	41 0	92	8	6	

Injection Volume: 10.0 µL

Sample: Caffeic Acid Derivatives in Echinacea Purpurea Sample Diluent: 50:50 H_2O : MeOH with 0.05% CF₃COOH Sample Concentration: 100 μ g/mL

Temperature: 40 °C

Detection: UV @ 330 nm

Sampling rate: 10 pts/sec

Time Constant: 0.1

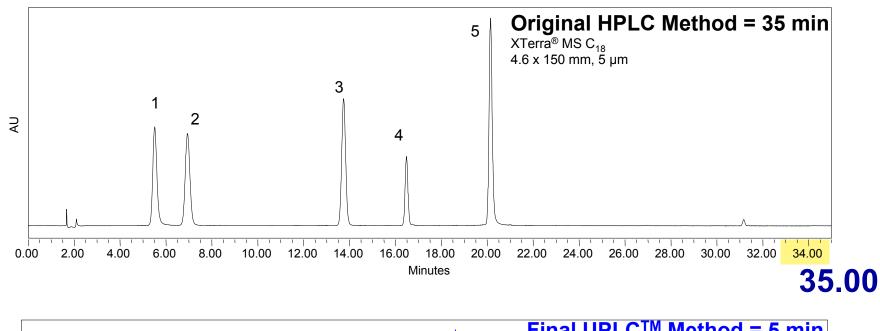
Instrument: Alliance® 2695 Separations Module with

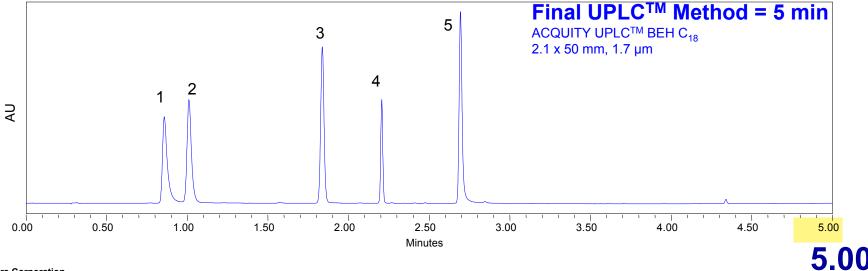
2996 PDA detector

Chromatographic Conditions :

Columns: ACQUITY UPLCTM BEH C₁₈ 2.1 x 50 mm, 1.7 μ m Mobile Phase A: 0.1% CF₃COOH in H₂O Mobile Phase B: 0.08% CF₃COOH in ACN Flow Rate: 0.5 mL/min

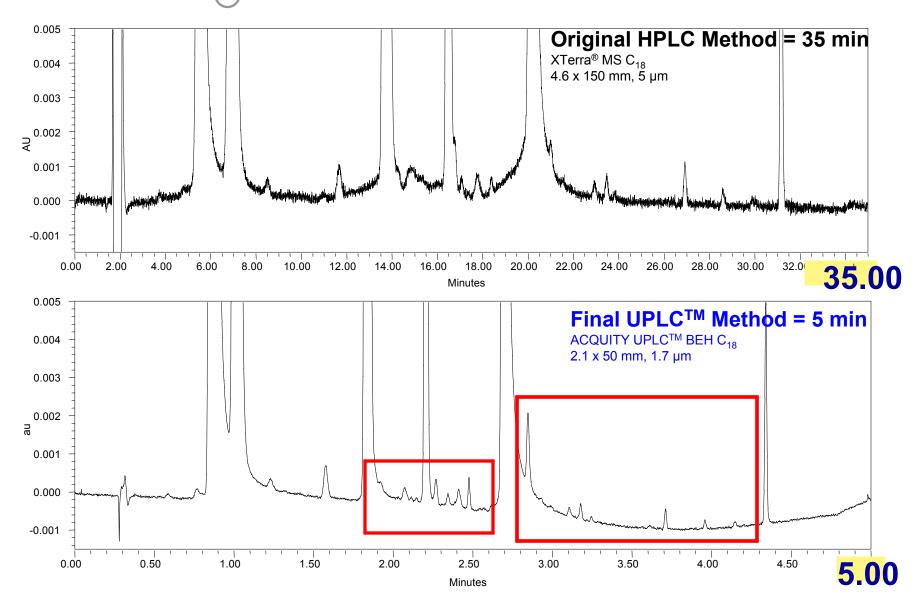
Gradient: Time


nt:	Time	Profi	Curv	e	
	(min)	%A	%B		
	0.0	92	8	6	
	0.1	92	8	7	
	4.45	50	50	6	
	4.86	10	90	6	
	5.0	92	8	6	
	6.0	92	8	6	


Injection Volume: 1.0 µL

Weak Needle Wash: 0.1% CF₃COOH in 8% ACN Sample: Caffeic Acid Derivatives in Echinacea Purpurea Sample Diluent: 50:50 H₂O: MeOH with 0.05% CF₃COOH Sample Concentration: 100 µg/mL Temperature: 40 °C Detection: UV @ 330 nm Sampling rate: 40 pts/sec Time Constant: 0.1 Instrument: Waters ACQUITY UPLC[™], with TUV detector

HPLC-to-UPLC[™] Method Transfer:


Caffeic Acid Derivatives in Echinacea Purpurea

HPLC-to-UPLC[™] Method Transfer:

Caffeic Acid Derivatives in Echinacea Purpurea

- Methods can be moved directly from HPLC to ACQUITY UPLC[™]
 - Improved resolution
 - Improved speed
 - Improved detectability
- Many parameters can and must be transferred to preserve results
- Attention to detail leads to success