HOW MUCH NORTHAMPTON USE IN 2016?

In 2016, The City of Northampton supplied 1.030 billion gallons of water to its customers. On average, the city supplied 2.82 million gallons of water each day. The most water used in one day was 4.13 million gallons! The design capacity of the water filtration plant is 6.5 million gallons a day, which is more than enough to meet the city’s peak demand.

The DPW encourages water conservation. Please visit our website www.northamptonma.gov/770/Water for water conservation tips and for information on how to get a free residential water conservation kit!

WATER RESTRICTION POLICY

The DPW has adopted a water restriction policy to comply with DEP permit requirements. DEP requires that water use be restricted when average daily stream flow in the Mill River drops below 26.3 cubic feet per second, which is equal to 0.05 cubic feet per second per square mile for a 3-day period, or when the State issues a drought advisory. The Water Use Restriction can be lifted when the stream flow average meets or exceeds the minimum flow for 7 consecutive days. When a water use restriction is in place, there will be a ban on non-essential outdoor watering. The Water Department will notify the public when a water restriction is in place and will also provide specifics about the water use restriction.

WHO MAKES DECISIONS ABOUT OUR DRINKING WATER?

Today, day-to-day activities are overseen by the City Engineer David Veleta, Water Superintendent Andrew Dunn, and the Chief Water Treatment Plant Operator, Keith Snape.

Discussion about water rates, water system budgets and new land acquisitions for water supply protection occurs at City Council meetings. If you would like to participate in discussions regarding these or other subjects the Council meets on the 1st and 3rd Thursdays of each month. The meetings start at 7pm and are located at the City Council chambers 212 Main Street.
WHERE DOES NORTHAMPTON’S DRINKING WATER COME FROM? HOW IS IT TREATED?

In 2016, approximately 99% of Northampton’s drinking water came from three surface water reservoirs: the Francis P. Ryan, and the West Whately Reservoirs, located in Conway and West Whately, and the Mountain Street Reservoir located in Williamsburg and Hatfield. The remaining 1% came from our two groundwater wells in Florence.

To meet water quality standards for surface water supplies, we treat water from the reservoirs at the Water Filtration Plant. Sediment, small particles and organisms such as algae and bacteria can cause taste and odor issues and may make it unhealthy to drink. To remove this material, it is necessary to chemically treat the water and then pass it through two types of filtering units – an adsorption clarifier and a granular activated carbon filter.

When raw water from the reservoirs enters the Water Filtration Plant, a flocculent (Aluminum Sulfate) is added. Flocculent is a chemical that grabs onto smaller particles that are found in the water. The water then goes through a clarifier where approximately 60% of the organic particles are removed. It is then filtered by granular activated carbon, which removes the remaining particles. Once filtered, sodium hypochlorite, a disinfectant, is added prior to entering a 4 million gallon storage tank. As the water leaves the 4 million gallon storage tank, sodium carbonate is added for pH adjustment and corrosion control. At the Corrosion Control Facility in Leeds, zinc orthophosphate, which is referred to as a corrosion inhibitor, is added to the water. It forms a protective coating inside the water distribution pipes. Testing conducted throughout the water system in 2012 showed that this treatment is effective at reducing lead and copper concentrations in drinking water.

All of the chemicals used by the DPW are approved by the one of the following organizations: National Sanitation Foundation, or Underwriters Laboratory (UL), both accredited by the American National Standards Institute (ANSI). These chemicals also have to meet performance standards established by the American Water Works Association (AWWA).

HOW IS OUR DRINKING WATER PROTECTED?

In 2003, DEP completed a Source Water Assessment Program (SWAP) report. The SWAP Report assessed the potential for contamination of our water supplies. Northampton was ranked as having a moderate – low risk to our water supplies. The report reviewed both watershed lands and aquifer protection zones. It identified the largest threats to our water supply as residential fuel storage and some commercial uses.

If you are interested in the details of SWAP Report, more specific information can be obtained from the MASS DEP in Springfield or online at:

WHAT’S IN THE WATER WE DRINK?

Sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring materials and in some cases, radioactive material. Water can also pick up substances resulting from the presence of animals or from human activity.

To ensure that tap water is safe to drink, the DEP and the EPA prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Regulations set by the Food & Drug Administration (FDA) and the Massachusetts Dept. Of Public Health (DPH) establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and their potential health effects can be obtained by calling:

Safe Drinking Water Hotline
At 1-800-426-4791

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemo-therapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These persons should seek advice about their drinking water from their healthcare providers.

EPA/Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are also available from the Safe Drinking Water Hotline listed above or at:

http://www.epa.gov/safewater

CONTAMINANTS THAT MAY BE PRESENT IN DRINKING WATER SOURCES INCLUDE:

Microbial Contaminants - Viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic Contaminants - Salts and metals can be naturally occurring or result from storm water runoff, industrial or domestic wastewater discharges, oil and gas production, as well as mining and farming.

Pesticides and Herbicides - may come from a variety of sources such as, agriculture, urban storm water runoff, and residential uses.

Organic Chemical Contaminants - Synthetic and volatile organic chemicals which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants - can be naturally occurring or can be the result of oil and gas production and mining activities.

CROSS CONNECTION CONTAMINATION

A cross connection may occur whenever contaminated or non-potable water flows backwards into a drinking water supply line. This may cause a dangerous situation if the water line is connected to a piece of equipment that contains a harmful liquid, such as a boiler, an air conditioning system, or a fire sprinkler system, and the pressure in the water line drops (due to a fire, a water main break, etc). The drop in pressure can cause that harmful liquid to be drawn back into your drinking water supply. A cross contamination and back flow situation is not limited to commercial and industrial sites only, as an outside hose connection can cause a dangerous condition at your home. If a hose is used to spray fertilizers, pesticides, or weed killers and the water pressure drops, the liquid you are spraying can be drawn back into the drinking water pipes.

To prevent a cross connection, never submerge hoses in buckets, pools, tubs or sinks and do not use spray attachments without a backflow prevention device installed on the faucet. These devices are inexpensive and are available at most hardware stores and home improvement centers. Just ask for a hose bib vacuum breaker. One should be installed on all threaded faucets around your home, both inside and out, anywhere you may want to connect a hose. If you are the owner of an industrial, commercial, or institutional property, you must have your facility’s plumbing surveyed for cross connections. This way you can help protect your employees and the public water supply from potential contamination.
INORGANIC SUBSTANCES

<table>
<thead>
<tr>
<th>Regulated Contaminant</th>
<th>Dates Collected</th>
<th>Highest Result or Highest Running Average Detected</th>
<th>Range Detected</th>
<th>MCL or MRLD</th>
<th>MCLG or MRDLG</th>
<th>Violation? Y/N</th>
<th>Possible Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (ppm)</td>
<td>11/8/2016</td>
<td>2.08</td>
<td>1.35-2.08</td>
<td>10</td>
<td>10</td>
<td>NO</td>
<td>Runoff from fertilizer use; leaching from septic tank, sewage; erosion of natural deposits (Well #1)</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>10/15/2014</td>
<td>0.160</td>
<td>0.285-0.0357</td>
<td>2</td>
<td>2</td>
<td>NO</td>
<td>Discharge or drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

LEAD AND COPPER TESTING

<table>
<thead>
<tr>
<th>Substance (Units)</th>
<th>Date Collected</th>
<th>90th percentile</th>
<th>AL</th>
<th>MCLG</th>
<th># of sites sampled</th>
<th># of sites above AL</th>
<th>Violation?</th>
<th>Major Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppm)</td>
<td>Jul/Aug 2015</td>
<td>0.00276</td>
<td>15</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>NO</td>
<td>Corrosion of household plumbing system; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>Jul/Aug 2015</td>
<td>0.194</td>
<td>1.3</td>
<td>1.3</td>
<td>30</td>
<td>0</td>
<td>NO</td>
<td>Corrosion of household plumbing system; erosion of natural deposits, leaching from wood preservatives</td>
</tr>
</tbody>
</table>

RADIONUCLIDES

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Collected</th>
<th>Highest Level Detect</th>
<th>MCL</th>
<th>MCLG</th>
<th>Violation?</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha Activity</td>
<td>07/14/2015</td>
<td>2.13pci/l</td>
<td>15pci/l</td>
<td>0</td>
<td>NO</td>
<td>Erosion of natural deposits, naturally occurring</td>
</tr>
</tbody>
</table>

DISINFECTION BY-PRODUCTS

<table>
<thead>
<tr>
<th>Regulated Contaminant</th>
<th>Date(s) Collected</th>
<th>Highest Result or Highest Running Average Detected</th>
<th>Range Detected</th>
<th>MCL or MCLG</th>
<th>MCLG or MRDLG</th>
<th>Violation?</th>
<th>Possible Source(s) of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes (TTHMs) (ppb)</td>
<td>Quarterly</td>
<td>35.5</td>
<td>11.2 - 57.0</td>
<td>80</td>
<td>-----</td>
<td>NO</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Haloacetic Acids (HAAS’s) (ppb)</td>
<td>Quarterly</td>
<td>24.8</td>
<td>6.5-35.2</td>
<td>60</td>
<td>-----</td>
<td>NO</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorine (ppm) (free, total or combined)</td>
<td>Monthly</td>
<td>0.50</td>
<td>0.07-1.24</td>
<td>4</td>
<td>4</td>
<td>NO</td>
<td>Additive used to control microbes</td>
</tr>
</tbody>
</table>

TREATMENT TECHNIQUES

<table>
<thead>
<tr>
<th>Turbidity</th>
<th>TT</th>
<th>Lowest Monthly % of Samples</th>
<th>Highest Detected Daily Value</th>
<th>Violation?</th>
<th>Possible Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly Turbidity (95%) NTU Limit</td>
<td>0.3</td>
<td>100% Compliance</td>
<td>0.248</td>
<td>NO</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>Max. Day Turbidity NTU Limit</td>
<td>1.0</td>
<td>100% Compliance</td>
<td>0.248</td>
<td>NO</td>
<td>Soil Runoff</td>
</tr>
</tbody>
</table>

Monthly turbidity compliance is related to a specific treatment technique (TT). Our system filters the water so at least 95% of our samples each month must be below the turbidity limits specified in the regulations.

UNREGULATED & SECONDARY CONTAMINANTS

<table>
<thead>
<tr>
<th>Inorganic Contaminants</th>
<th>Date Collected</th>
<th>Result or Range Detected</th>
<th>Average Detected</th>
<th>SMCL</th>
<th>ORSG</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese (ppm)</td>
<td>4/21/2016</td>
<td>0.0141</td>
<td>0.0141</td>
<td>0.050</td>
<td>0.30</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>11/03/2016</td>
<td>8.49</td>
<td>8.94</td>
<td>-----</td>
<td>20</td>
<td>Natural sources; runoff from use as salt on roadways; by-product of treatment process</td>
</tr>
<tr>
<td>Chromium (ppb)</td>
<td>1/8/2014</td>
<td>0.067-1.00</td>
<td>0.387</td>
<td>-----</td>
<td>-----</td>
<td>Discharge from metal refineries</td>
</tr>
<tr>
<td>Strontium(ppb)</td>
<td>1/8/2014</td>
<td>0.10-134</td>
<td>49.418</td>
<td>-----</td>
<td>-----</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Vanadium(ppb)</td>
<td>1/8/2014</td>
<td>0.067-0.44</td>
<td>0.233</td>
<td>-----</td>
<td>-----</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium Hexavalent(ppb)</td>
<td>1/8/2014</td>
<td>0.010-0.85</td>
<td>0.264</td>
<td>-----</td>
<td>-----</td>
<td>Industrial manufacturing discharge; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chlorate(ppb)</td>
<td>1/8/2014</td>
<td>10.0-263</td>
<td>186.418</td>
<td>-----</td>
<td>-----</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorodifluoromethane(ppb)</td>
<td>1/8/2014</td>
<td>0.027-0.69</td>
<td>0.44</td>
<td>-----</td>
<td>-----</td>
<td>Industrial manufacturing discharge</td>
</tr>
</tbody>
</table>
2016 WATER TESTING INFORMATION

The DPW is committed to supplying water that complies with DEP and EPA standards. All data shown was collected during calendar year 2016 unless otherwise noted in the table. Unregulated contaminants shown are those for which EPA has not established a drinking water standard. The purpose of unregulated contaminant monitoring is to assist EPA in determining concentrations and whether regulation is warranted. We are proud to report that last year that your drinking water met all applicable health standards regulated by DEP and EPA.

TABLE ABBREVIATIONS AND DEFINITIONS:
Action Level (AL) – The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
BRL – Below Reporting Limit
Detected Level – This column represents an average of sample results collected during 2016 if only one sample was collected, there will not be a range listed in the adjacent column.
Maximum Contaminant Level (MCL) – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs (see below) as feasible using the best available treatment technology.
Massachusetts office of Research and Standards Guideline (ORSG) – This is the concentration of a chemical in drinking water, at or below which, adverse health effects are unlikely to occur after chronic (lifetime) exposure. If exceeded, it serves as an indicator of the potential need for further action.
Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant (chlorine, chloramines, chlorine dioxide) allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant (chlorine, chloramines, chlorine dioxide) below which there is no known expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Maximum Contamination Level Goal (MCLG) – The level of a contaminant in drinking water below which, there is no known or expected risk to health. MCLGs allow for a margin of safety.
MGD – Million gallons per day
N/A – Not Applicable
N/D – Non-detectable with type of testing conducted.
NTU – Nephelometric turbidity units.
90th Percentile – Out of every 10 homes tested for lead and copper levels, 9 were at or below this level. We collected 30 samples therefore the 90th percentile would be the 27th highest sample (30 x 0.9 =27).
ppb – Parts per billion or micrograms per liter (ug/L)
ppm – Parts per million, or milligrams per liter (mg/L)
ppt – Parts per trillion or nanograms per liter

Secondary Maximum Contaminant Level (SMCL) – These standards are developed to protect aesthetic qualities of drinking water and are not health based.
Treatment Technique (TT) – A required process intended to reduce the level of a contaminant in drinking water.
Turbidity – A measure of the cloudiness of the water. It is a good indicator of water quality. We measure turbidity in NTUs (Nephelometric Turbidity Units).
Unregulated Contaminants – Contaminants for which the EPA has not established drinking water standards. Some of these chemicals are unregulated because there is little toxicity information available for these compounds. The purpose of monitoring unregulated contaminants is to assist EPA in determining their occurrence in drinking water and whether further regulations are warranted. For health risk information on these chemicals, please contact the DEP Office for Regional Standards (ORS) at: (617) 556-1157.

COMPLIANCE WITH THE LEAD & COPPER RULE
Northampton treats the water to comply with lead and copper regulations. The treatment stabilizes pH and establishes a protective coating on the inside of water pipes. This treatment helps prevent lead and copper from entering your drinking water. In 2006, after many continuous years of testing the DPW remained in compliance with the lead and copper rule and the DEP reduced the monitoring requirements for lead and copper testing to once every three years. In 2015, lead and copper test results showed that Northampton continues to remain in compliance and will not have to test again until 2018. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Water Division is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been off for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or online at:
http://www.epa.gov/safewater/lead

LEAD AND COPPER IN SCHOOLS
In 2004 the Northampton Water Department conducted extensive testing of all public schools for lead and copper. All water fixtures were tested including bubblers, sinks and faucets. Any fixtures that were over the EPA limit were either replaced or removed from service. In 2016 the school department resampled all fixtures. The schools will continue to be tested as recommended by MassDEP in 2018.

WATERSHED PROTECTION UPDATE
Forest management activities in 2016 included the harvesting of red pines on water supply property near the City’s drinking water reservoirs. Red pine scale was identified in forest stands near the reservoirs. Harvests of the red pine began in winter of 2015 and are presently ongoing. Red pine harvests have occurred on approximately 157 acres of 185 acres that will be harvested when logging is complete. Maintaining a healthy, resilient forest is an important component of watersheds management and water quality protection. For more information on watershed activities please visit: http://www.northamptonma.gov/1400/Watershed

VIOLATIONS in 2015
In 2015, the Northampton Water Department had three violations which resulted in Notices of Noncompliance (NONs) from the Massachusetts Department of Environmental Protection (MassDEP). The NONs were regarding lead and copper testing. These situations didn’t constitute emergencies. If they had been, you would have been notified immediately.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are indicators of whether our drinking water meets health standards. Between July 8th 2015 and August 12th 2015, we did not complete all testing for lead and copper and, therefore, cannot be sure of the quality of your drinking water during that time.

What should I do?
There is nothing you need to do at this time.

What happened? What is being done?
The first violation occurred between July 8th 2015 and August 12th 2015 when the Water Department was required to collect 30 lead and copper samples from MassDEP- approved locations. Three of the locations used were previously approved sites, but sites that weren’t specifically approved for use in 2015. Also during the same time period, the Water Department was required to collect two samples from one daycare facility, and two samples from one school, but only one sample was collected at each location, resulting in a violation. These violations have subsequently been addressed with Mass DEP.
The third violation occurred when the required form (LCR-D) reporting the 90th percentile compliance calculations for lead and copper testing was not submitted to DEP by the required date. The form was required to be submitted 10 days after the 3rd quarter of 2015. The form was submitted on 3/29/2016, which brought the City into compliance. The Water Department will resample as required by MassDEP in calendar year 2018.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.