UMassAmherst Midway Design Review

BabyGuard

Wearable & Rich Featured Baby Monitoring and Safety System

May 11, 2018

Department of Electrical and Computer Engineering

Advisor: Professor Tessier

Group Members

Advisor Prof. Tessier

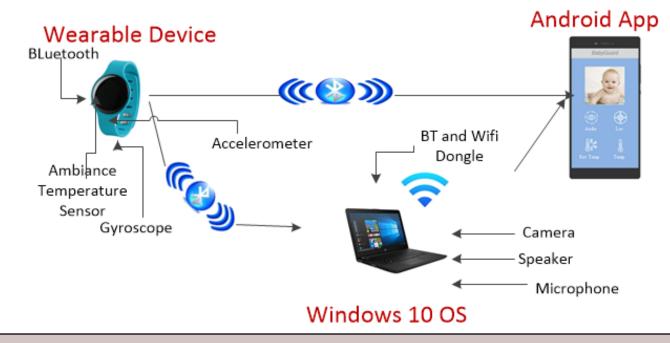
Tony

Yun Shi

Kiran

Department of Electrical and Computer Engineering

Advisor: Professor Tessier


What is the Problem?

- The rate of missing and kidnapping children has become higher in China and the US in recent years
- The tools for detecting the ambient temperature of a baby may not be timely
- Current products in the market do not have multi-functional features that can monitor a baby's physical status using two parties interaction

What is BabyGuard?

- Low cost array of wearable sensors collects a baby's ambient temperature
- Provides real-time feedback and tracks long term physical movement and temperature data
- Uses a home-mounted server to provide interaction between parents and a baby

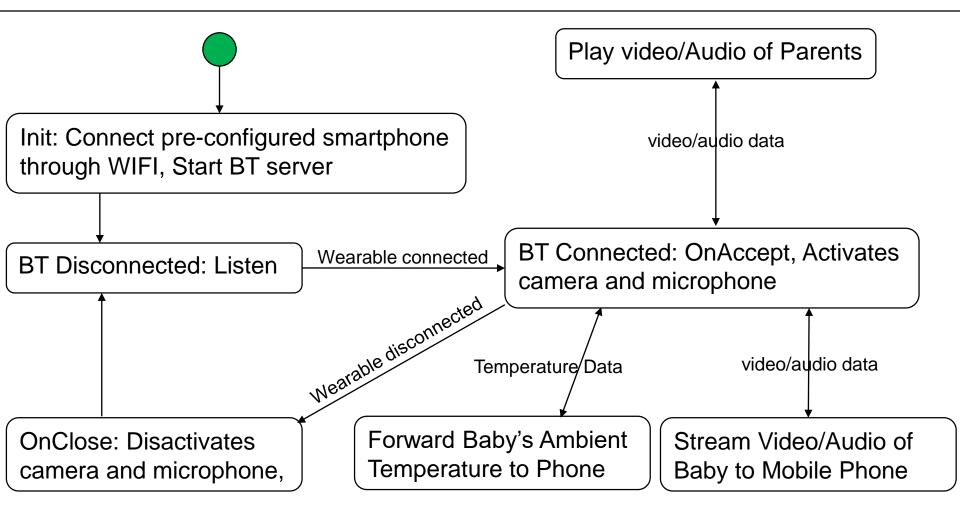
System Requirements

Wearable Device

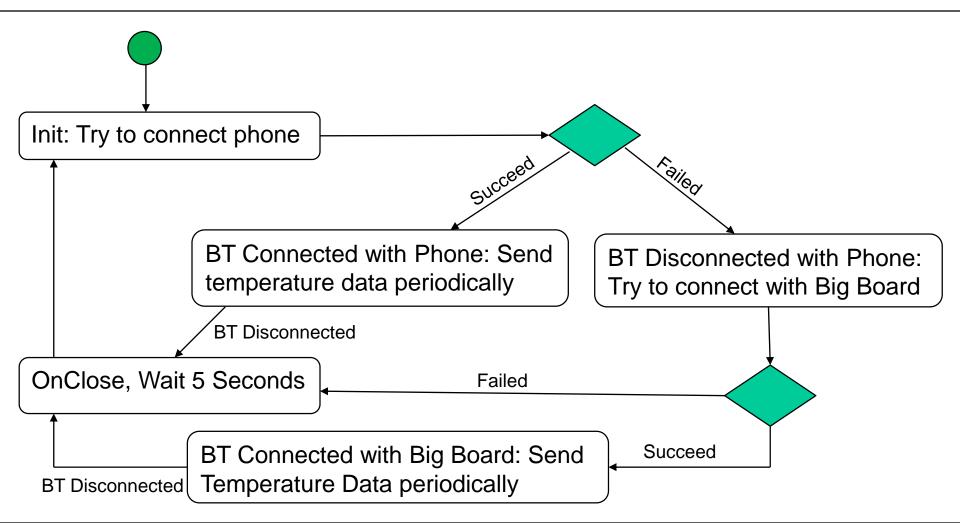
- Mounted with sensors and connects to Android app or Home Server via BT
- Real-time capture for temperature, acceleration and orientations sensor data
- Exposes SDK and ports for programming and development

DE1-SOC/PC

- Connects with wearable device to download sensor data
- Mounted with camera, speaker, LCD and microphone for interaction


Android App

- User interface to monitor and control wearable device
- Interacts with DE1-SOC/PC to send / receive data from various sensors


Redesigned Block Diagram

State Chart (DE1)

State Chart (Wearable)

Solution Design – DE1-SOC

Detailed functionality of home server

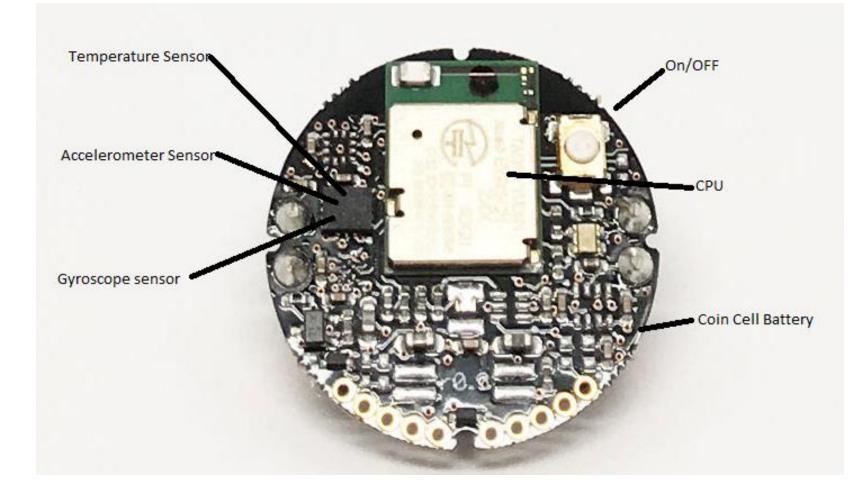
- Installed inside baby room and connects to wearable device via Bluetooth and to the mobile phone via Wifi.
- Powerful includes BT/WIFI/camera/microphone/screen/speaker
- When the wearable device connects the home server through Bluetooth, the server knows the baby is in this room, and activates its camera/microphone
- Server sends video/audio of baby to parent's smartphone (for example in other room/office) through WIFI
- Wearable device sends temperature of baby's ambient temperature through Bluetooth to board, and the latter forwards information to parent's smartphone through WIFI
- Smartphone sends video/audio of parents to board, which plays on screen and speaker to calm down baby

Solution Design – DE1-SOC

- Camera on DE1 pointing direct to the front
- On connection to the wearable, the DE1 activates its camera and microphone and take video and audio
- On receiving video/audio from parents, the DE1 will play on its screen and speaker
- Extended through USB dongles

Data received by MetaBase App on Win10

	А	В	С	D
1	epoch (ms)	time (08:00)	elapsed (s)	temperature (C)
2	1.52491E+12	2018-04-28T17:46:11.221	0	31.625
3	1.52491E+12	2018-04-28T17:46:12.223	1.002	31.625
4	1.52491E+12	2018-04-28T17:46:13.224	2.003	31.75
5	1.52491E+12	2018-04-28T17:46:14.214	2.993	31.75
6	1.52491E+12	2018-04-28T17:46:15.215	3.994	31.75
7	1.52491E+12	2018-04-28T17:46:16.216	4.995	31.75
8	1.52491E+12	2018-04-28T17:46:17.218	5.997	31.75
9	1.52491E+12	2018-04-28T17:46:18.219	6.998	31.75
10	1.52491E+12	2018-04-28T17:46:19.220	7.999	31.75
11	1.52491E+12	2018-04-28T17:46:20.222	9.001	31.75
12	1.52491E+12	2018-04-28T17:46:21.223	10.002	31.75
13	1.52491E+12	2018-04-28T17:46:22.224	11.003	31.75
14	1.52491E+12	2018-04-28T17:46:23.225	12.004	31.75
	Me	taWear_Tony_FA73_2018	-04-28T1	(\pm)


(Using a PC instead of DE1 for MDR)

Solution Design - Wearable

Detailed functionality of wearable device.

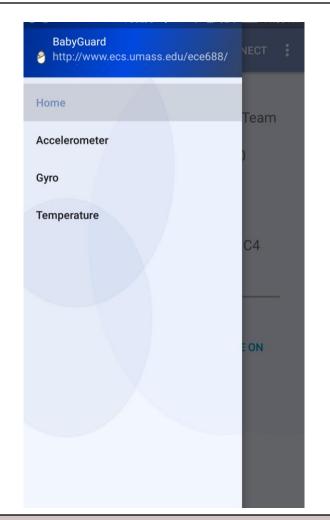
- Small and compact device worn on wrist or ankle.
- Connect via Bluetooth to the mobile phone or home server and transmit temperature data of the ambient temperature periodically (2s) to the mobile app or home server.
- Sends alert signals to the Andriod app or home server if ambient temperature crosses threshold.
- Sounds alarm if Bluetooth connection broken with mobile phone and home server not reachable by **flashing light/sound*.

Solution Design - Wearable

Hardware Specification Table

	Dimension	– Diameter: 0.94in / 24mm	
		– H: 0.24in / 6mm	
	Weight	– 5.6gms	
Wearable	Connectivity	– Bluetooth LE 4.0 – 2.4Ghz	
Device		– Up to 100ft of range – typical 10m	
		– Stream sensor Data from 1 Hz to 100 Hz	
		– Log sensor Data from 1 Hz to 400 Hz	
	Temperature	– 40…85°C Range	
	Battery	– 200 – 220mAH CR2032 Coin cell battery	
Home server	Windows PC	Windows 10 OS	
Mobile Device	Android	Android 4 and above	

*Specification are from product description chart of metawear C device


Bluetooth Strength and Battery life Testing

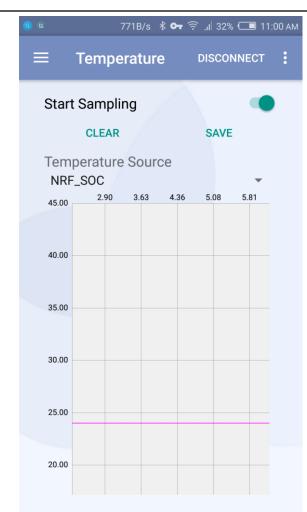
*dBm is the power ratio in decibels of the radio power per one milliWatt. A signal of -60dBm is nearly perfect, and -112dBm is call-dropping bad.

Distance(m)	Bluetooth Strength	Status	Remark
21	> -90dBm	No	Device disconnects
20	-79dBm	connected	Sensor data Transmission successful
15	-68dBm	connected	Sensor data Transmission successful
10	-50dBm	connected	Sensor data Transmission successful
5	-45dBm	connected	Sensor data Transmission successful
1	-42 bBm	connected	Data Accessible

Streaming	Battery Lifetime	Remark
Continues	7days	Realtime streaming to App/PC
Intermetant	10days	Connected to device but intermittent data streaming
Idle	30days	Connected to App/PC but no streaming

Solution Design - Android APP

- Android application designed in Android Studio
- Retrieves real-time data from wearable
- Contains 3 pages
 - > Accelerometer
 - Gyro
 - > Temperature


Solution Design - Android APP

Q >	728B/s 🕈 🕶 🤶	33% 🗔 10:54 AM
BabyGuard		
Ś	Select Device	
MetaWear C6:4E:94:72:C8:C4		-80 dBm
	0.00051	

9	773B/s 🖇 O-	🗟 .॥ ३२% 🗔 ११:0	00 AM
≡ Hom	е	DISCONNECT	:
Dev	vice Inforr	nation	
ManufacturerBoduGuard TeamModel Number1Serial Number000000Firmware Revision1.0.0Hardware0.1Revision			
Battery Lev	/el		
RED ON	Led GREEN ON OFF	BLUE ON	-

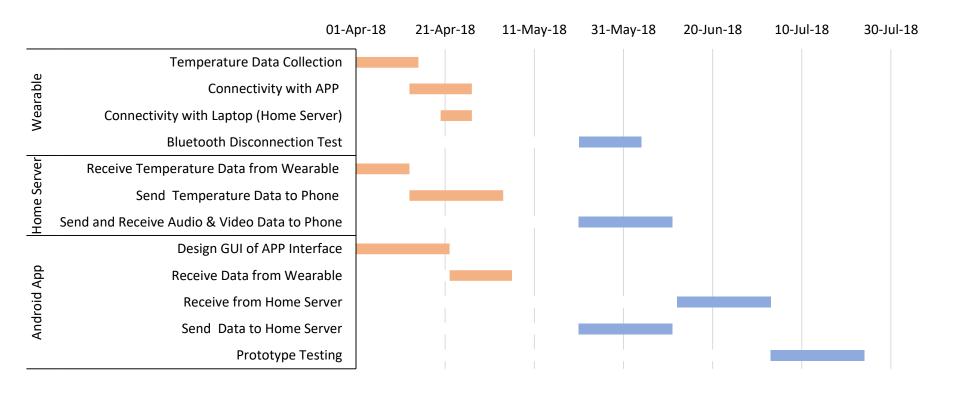
CANCEL

Solution Design - Android APP

Proposed MDR Deliverables

- Establish connection between the wearable and laptop
- The wearable sends temperature data to laptop
-) 🚫

- The laptop forwards temperature data to Smartphone
- Smartphone shows temperature data in GUI



In general, we have build a platform which will be able to use as a foundation to implement the rest of our project.

Proposed CDR Deliverables

- Implement notification method when connection is lost between wearable and phone
- Wearable device connects main server and send temperature data periodically.
- Home server/base station connects to mobile app if available through Wifi and send gathered data.
- Phone alarms when ambient temperature above threshold
- Migrate to DE1 from PC

Gantt Chart

Distribution of Responsibilities

Tony

- DE1's BT/WIFI communication with other 2 devices
- Make sure the Bluetooth connection between DE1 and wearable does not raise a false alarm
- DE1 and its camera/microphone/screen/speaker development

Kiran

- Wearable hardware design
- Wearable device development, interfacing and programing
- Determine technical feasibility of the solution.

Yun Shi (Jackie)

- Establish connection detection among DE-1 board, wearable and phone
- Create mobile app that displays the monitoring status
- Implement a website to illustrate BabyGuard

Thank you

Questions?