IntelliSAR
October 18, 2019
IntelliSAR

Tianye (Arthur) Zhu

Yong Li

Derek Sun
Background and Motivation

- Safety and information of the environment are very important aspects of rescue missions
- Not fully understanding the environment and situation can lead to unnecessary risks and dangers

Examples:

- Cave rescue
 - Explorers trapped or lost
- Urban search and rescue
 - Victims trapped in Collapsed buildings
Goal

- Provide ability to remotely examine the situation and environment
- Reduce possible risks or dangers
- Improve efficiency of rescue teams in unknown environments
Method of Resolution

- A robot car that utilizes various sensors, machine learning, and computer vision to autonomously or remotely navigate around the surrounding environment and send data back to user.
Requirements Analysis

- Be able to be remotely controlled via Wi-Fi
- Be able to work in dim lighting conditions with night vision
- Be able to provide real time GPS location
- Gathered sensor data can be viewed remotely
- Can traverse uneven/sloped ground
- Be able to detect obstacles and navigate accordingly
- Be able to detect and classify objects
Requirements Analysis: Specifications

- Speed of up to 3 mile per hour
- Approximately 10 pounds
- Approximate size: 300 * 220 * 120 millimeters
- Approximately 3 hours of battery life
- Maximum grade: 30 degree
- Effective detection range of 4 meters
- Robust and durable enough to withstand minor collisions
Requirements Analysis: Inputs and Outputs

• Input
 • Camera data
 • Ultrasonic sensor
 • GPS tracker
 • Environmental sensors
 • User’s control signal

• Output
 • Live video feed with object detection
 • GPS data
 • Environmental data (temperature, moisture)
Design Alternatives

iRap Robot
- designed for SAR teams
- exploration, victim detection, 2D map generation
- high maneuverability
- remotely controlled

iRobot 510 PackBot
- designed for military personnel (high-threat battlefield scenarios)
- surveillance and reconnaissance, bomb disposal, vehicle inspection, etc.
- remotely controlled with few autonomous features

Design Alternatives

<table>
<thead>
<tr>
<th></th>
<th>IntelliSAR</th>
<th>iRap Robot</th>
<th>iRobot 510 PackBot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Small</td>
<td>Medium-Large</td>
<td>Small-Medium</td>
</tr>
<tr>
<td>Communication</td>
<td>Wi-Fi</td>
<td>Wi-Fi/Radio</td>
<td>Radio</td>
</tr>
<tr>
<td>Navigation Sensor</td>
<td>Camera</td>
<td>LIDAR</td>
<td>Stereo Camera, LIDAR</td>
</tr>
<tr>
<td>Visual Object Detection</td>
<td>Common objects</td>
<td>Hazmat/QR code</td>
<td>N/A</td>
</tr>
<tr>
<td>Target Audience</td>
<td>Search and Rescue</td>
<td>Search and Rescue</td>
<td>Military</td>
</tr>
<tr>
<td>Cost</td>
<td>Low (<$500)</td>
<td>High (~$30,000)</td>
<td>High ($100,000+)</td>
</tr>
</tbody>
</table>
Block Diagram

Robot (Raspberry PI 4B + Motor Driving Board + Chassis)
Peripherals -- Sensors, Camera, GPS

Robot (Raspberry Pi 4B + Motor Driving Board + Chassis)
Peripherals -- Sensors, Camera, GPS

- Requirements
 - Measure temperature
 - Measure geographic location
 - Capture video at dim light conditions
 - Navigation

- Implementations
 - Temperature sensor (BME280)
 - GPS (NEO-6M)
 - Infrared camera (5 megapixel, nightvision)
Robot

Robot *(Raspberry Pi 4B + Motor Driving Board + Chassis)*
Robot

- Requirements
 - House all sensors
 - Robust & stable
 - Certain degree of maneuverability
 - Peripherals scalability
 - IoT supportability

- Implementation
 - Chassis (214*280*114 mm)
 - 12V DC motors GA25Y370)
 - Raspberry Pi 4B
Raspberry Pi 4B

- Power: 5V DC (USB Type-C)
- Dimensions: 88 x 60 x 24mm
- Cores: 4 * 1.5 Ghz
- GPIO: 3.3V power rail 40

- Why Pi 4B
 - Performance comparable
 - Extensions
 - IoT Support
 - Economical

*Data Source
External PC

Robot (Raspberry Pi 4B + Motor Driving Board + Chassis)
External PC

- Requirements
 - Communicate with robot through Wi-Fi
 - Display sensor data
 - Display live video feed
 - Display GPS position
 - Transmit navigation instructions to robot (manual mode)
 - Object detection

- Implementations
 - Web GUI interface
 - Edge device publish data to Azure
 - External PC retrieve data from cloud
 - Render locally
 - Navigation signal send via cloud to IoT service on robot
Autonomous Navigation

Robot (Raspberry PI 4B + Motor Driving Board + Chassis)
Autonomous Navigation

- Requirements
 - Object detection
 - Obstacle avoidance
 - Control motors accordingly

- Implementation
 - OpenCV
 - Tensorflow
Autonomous Navigation

- OpenCV
 - open source computer vision library
 - used for image processing
 - object detection
 - You Only Look Once v3 (YOLOv3) - Joseph Redmon et al.

- Tensorflow
 - open source machine learning library
 - used to build neural network
 - neural network will help make navigation decisions
Budget

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raspberry Pi 4B 4G</td>
<td>80</td>
</tr>
<tr>
<td>Infrared Camera (500w Pixel)</td>
<td>20</td>
</tr>
<tr>
<td>Chassis Platform</td>
<td>100</td>
</tr>
<tr>
<td>Motor * 6 (GA25Y370)</td>
<td>60</td>
</tr>
<tr>
<td>Sensors and GPS module</td>
<td>50</td>
</tr>
<tr>
<td>Li Battery 2200 7.4v mAh 25c</td>
<td>20</td>
</tr>
<tr>
<td>Battery Charger 7.4v</td>
<td>20</td>
</tr>
<tr>
<td>SD card 32GB</td>
<td>20</td>
</tr>
<tr>
<td>Azure IoT service</td>
<td>Free Tier</td>
</tr>
<tr>
<td>Total</td>
<td>370</td>
</tr>
</tbody>
</table>
Responsibilities

- Yong Li
 - Hardware selection, setup Pi
 - Azure related (Sensor data, GPS, video feed)
 - Sensor data transfer
- Arthur Zhu
 - Wi-Fi connectivity
 - Maneuverability
 - Autonomous navigation
 - Robot motor control
- Derek Sun
 - Object detection
 - Autonomous navigation
 - Application development
Roadblocks/Challenges

- Autonomous navigation
- Accurate object detection
- Component compatibility and system connectivity
- Robot maneuverability
Proposed MDR Deliverables

- Functional robot able to be remote controlled
- Azure setup for our system
- Train YOLOv3 model to be able to detect/classify certain objects

Responsibilities

- Yong Li
 - Robot functionality
 - Sensor connectivity, Azure connectivity
- Arthur Zhu
 - Networking, Motor control
- Derek Sun
 - Object detection
Proposed FPR and Demo Day Deliverables

FPR
▪ Live demonstration of IntelliSAR capabilities

Demo Day
▪ IntelliSAR on display
▪ Object detection demonstration
▪ Video that shows IntelliSAR in action
 ▪ Perspective of robot (w/ object detection)
 ▪ Data from sensors
Questions?