AN

Preliminary Design Review

IntelliSAR October 18, 2019

Department of Electrical and Computer Engineering

Advisor: Professor Tessier

IntelliSAR

Department of Electrical and Computer Engineering

Advisor: Professor Tessier

Background and Motivation

- Safety and information of the environment are very important aspects of rescue missions
- Not fully understanding the environment and situation can lead to unnecessary risks and dangers

Examples:

Cave rescue Explorers trapped or lost

Urban search and rescue Victims trapped in Collapsed buildings

Department of Electrical and Computer Engineering

Goal

- Provide ability to remotely examine the situation and environment
- Reduce possible risks or dangers
- Improve efficiency of rescue teams in unknown environments

Method of Resolution

 A robot car that utilizes various sensors, machine learning, and computer vision to autonomously or remotely navigate around the surrounding environment and send data back to user.

Requirements Analysis

- Be able to be remotely controlled via Wi-Fi
- Be able to work in dim lighting conditions with night vision
- Be able to provide real time GPS location
- Gathered sensor data can be viewed remotely
- Can traverse uneven/sloped ground
- Be able to detect obstacles and navigate accordingly
- Be able to detect and classify objects

Requirements Analysis: Specifications

- Speed of up to 3 mile per hour
- Approximately 10 pounds
- Approximate size: 300 * 220 * 120 millimeters
- Approximately 3 hours of battery life
- Maximum grade: 30 degree
- Effective detection range of 4 meters
- Robust and durable enough to withstand minor collisions

Requirements Analysis: Inputs and Outputs

- Input
 - Camera data
 - Ultrasonic sensor
 - GPS tracker
 - Environmental sensors
 - User's control signal
- Output
 - Live video feed with object detection
 - GPS data
 - Environmental data (temperature, moisture)

Design Alternatives

iRap Robot

- designed for SAR teams
- exploration, victim detection, 2D map generation
- high maneuverability
- remotely controlled
- iRobot 510 PackBot
 - designed for military personnel (high-threat battlefield scenarios)
 - surveillance and reconnaissance, bomb disposal, vehicle inspection, etc.
 - remotely controlled with few autonomous features

 $https://robocup-rescue.github.io/team_description_papers/2018/Champ2018_Thailand_iRAP_TDP.pdf and a standard a standard$

Design Alternatives

	IntelliSAR	iRap Robot	iRobot 510 PackBot
Size	Small	Medium-Large	Small-Medium
Communication	Wi-Fi	Wi-Fi/Radio	Radio
Navigation	Autonomous/Manual	Autonomous/Manual	Semi-autonomous/ Manual
Navigation Sensor	Camera	LIDAR	Stereo Camera, LIDAR
Visual Object Detection	Common objects	Hazmat/QR code	N/A
Target Audience	Search and Rescue	Search and Rescue	Military
Cost	Low (<\$500)	High (~\$30,000)	High (\$100,000+)

Block Diagram

Peripherals -- Sensors, Camera, GPS

Department of Electrical and Computer Engineering

Peripherals -- Sensors, Camera, GPS

- Requirements
 - Measure temperature
 - Measure geographic location
 - Capture video at dim light conditions
 - Navigation
- Implementations
 - Temperature sensor (BME280)
 - GPS (NEO-6M)
 - Infrared camera (5 megapixel, nightvision)

Robot

Robot

- Requirements
 - House all sensors
 - Robust & stable
 - Certain degree of maneuverability
 - Peripherals scalability
 - IoT supportability
- Implementation
 - Chassis (214*280*114 mm)
 - 12V DC motors GA25Y370)
 - Raspberry Pi 4B

Raspberry Pi 4B

- Power: 5V DC (USB Type-C)
- Dimensions: 88 x 60 x 24mm
- Cores: 4 * 1.5 Ghz
- GPIO: 3.3V power rail 40

- Performance comparable
- Extensions
- IoT Support
- Economical

MobileNet v2 Benchmark (ms)

*Data Source

External PC

Department of Electrical and Computer Engineering

External PC

- Requirements
 - Communicate with robot through Wi-Fi
 - Display sensor data
 - Display live video feed
 - Display GPS position
 - Transmit navigation instructions to robot (manual mode)
 - Object detection
- Implementations
 - Web GUI interface
 - Edge device publish data to Azure
 - External PC retrieve data from cloud
 - Render locally

- Navigation signal send via cloud to IoT service on robot

Autonomous Navigation

Autonomous Navigation

- Requirements
 - Object detection
 - Obstacle avoidance
 - Control motors accordingly
- Implementation
 - OpenCV
 - Tensorflow

Autonomous Navigation

- OpenCV
 - open source computer vision library
 - used for image processing
 - object detection
 - You Only Look Once v3 (YOLOv3) Joseph Redmon et al.
- Tensorflow
 - open source machine learning library
 - used to build neural network
 - neural network will help make navigation decisions

Budget

Component	Cost (\$)	
Raspberry Pi 4B 4G	80	
Infrared Camera (500w Pixel)	20	
Chassis Platform	100	
Motor * 6 (GA25Y370)	60	
Sensors and GPS module	50	
Li Battery 2200 7.4v mAh 25c	20	
Battery Charger 7.4v	20	
SD card 32GB	20	
Azure IoT service	Free Tier	
Total	370	

Responsibilities

- Yong Li
 - Hardware selection, setup Pi
 - Azure related (Sensor data, GPS, video feed)
 - Sensor data transfer
- Arthur Zhu
 - Wi-Fi connectivity
 - Maneuverability
 - Autonomous navigation
 - Robot motor control
- Derek Sun
 - Object detection
 - Autonomous navigation
 - Application development

Roadblocks/Challenges

- Autonomous navigation
- Accurate object detection
- Component compatibility and system connectivity
- Robot maneuverability

Proposed MDR Deliverables

- Functional robot able to be remote controlled
- Azure setup for our system
- Train YOLOv3 model to be able to detect/classify certain objects

Responsibilities

- Yong Li
 - Robot functionality
 - Sensor connectivity, Azure connectivity
- Arthur Zhu
 - Networking, Motor control
- Derek Sun
 - Object detection

Proposed FPR and Demo Day Deliverables

FPR

Live demonstration of IntelliSAR capabilities

Demo Day

- IntelliSAR on display
- Object detection demonstration
- Video that shows IntelliSAR in action
 - Perspective of robot (w/ object detection)
 - Data from sensors

Questions?

Department of Electrical and Computer Engineering