Comprehensive Design Review

IntelliSAR March 5, 2020

Department of Electrical and Computer Engineering

Advisor: Professor Tessier

IntelliSAR

Department of Electrical and Computer Engineering

Advisor: Professor Tessier

Background and Motivation

- Safety and information of the environment are very important aspects of rescue missions
- Not fully understanding the environment and situation can lead to unnecessary risks and dangers

Examples:

Cave/mine rescue Explorers trapped or lost

Urban search and rescue Victims trapped in collapsed buildings

Goal

- Provide ability to remotely examine the situation and environment
- Reduce possible risks or dangers
- Improve efficiency of rescue teams in unknown environments

Our Product

Requirements Analysis

- Be able to be remotely controlled via Wi-Fi
- Be able to work in dim lighting conditions with night vision
- Gathered sensor data can be viewed remotely
- Can traverse uneven/sloped ground
- Be able to detect obstacles and navigate accordingly
- Be able to detect and classify objects

Block Diagram

Requirements Analysis: Specifications

Specification	Value
Weight	6 lb
Dimensions	256*183*213 mm
Battery Life	Board 5.8 hours
Camera	Night Vision 5MP
Speed Range	0.7 ~ 6.5 km/h
Obstacle Detection Range	$3 \sim 450 \text{ cm}$
Video Stream w/ Object Detection Frame Rate	H.264 640x480 @ 30FPS
Object Detection Range	6 meters (best case scenario)

Battery Life Analysis

- Current peripherals consumes 800 mA in total
- Raspberry Pi 4 requires 3.7V, 3A* to operate stably
- Very few battery banks in market provide 3.7V, 3A output

Main Board Power Consumption						
Components	Q′ty	Current	Voltage	Power		
		(A)	(V)	(W)		
Raspberry Pi	1	1.1	3.7	4.1		
Camera	1	0.16	3.7	0.59		
UltraSonic	3	0.015	3.7	0.06		
Camera Motors	2	0.3	3.7	1.1		
USB Accelerator	1	0.5	3.7	1.85		
Sum	8	2.375	3.7	8.9		

	Batte	ry Life Anal	lysis		Driving	Board	l Power Co	nsumptior	ו
Components	Q′ty	Capacity (Ah)	Current (A)	Battery Life(h)	Components	Q'ty	Current (A)	Voltage (V)	Power (W)
					Drive Board	1	0.1	12	1.2
Battery	1	11.1	1.9	5.84	Wheel Motors	6	0.35	12	12.6
					Sum	7	2.2	12	13.8

*https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/

CDR Deliverables

- Improve accuracy of object detection
- Improve speed of object detection
- Make semi-autonomous navigation more reliable
- Train model to be able to detect/classify certain objects

Responsibilities

- Derek Sun
 - Construct robot and restore functionality, compile training dataset, integrate USB accelerator, improve object detection, re-implement semi-autonomous navigation
- Arthur Zhu
 - Compile training dataset, improve object detection, data collection and analysis, battery analysis

CDR Deliverables: Robot

- Flask web application running off Raspberry Pi
 - Robot controller
 - Camera controller
 - Night vision video feed w/ object detection
 - Keyboard controls for better UX
 - Mobile-friendly
- Semi-autonomous navigation enabled

CDR Deliverables: Object Detection

Implemented with Python, Tensorflow + TFLite, and OpenCV

Training

- Transfer learning with SSD MobileNetV2 model as basis
- Compiled our own image database (person, rock)
 - Used labelImg to label images

labelImg (person)

labelImg (rock)

CDR Deliverables: Object Detection

Evaluation

- Tensorboard visualization tool
 - Provides training/eval metrics
- Detect overfitting/underfitting

Detection Model Evaluation Metrics				
Metric	Value			
mAP	0.4971			
mAP (large)	0.5108			
mAP (medium)	0.06634			
mAP (small)	0.0016068			
mAP@.50IOU	0.8607			
mAP@.75IOU	0.5804			

Detections

Ground Truths

Demo

Proposed FPR Deliverables

- Further improve accuracy of object detection
- Improve robustness of robot

Responsibilities

- Derek Sun
 - Improve object detection accuracy, improve training dataset
- Arthur Zhu
 - Robustness enhancement, improve training dataset

Schedule

SCHEDUL INTELLIS/	ፍ EOF AR	PROJECTED SCHEDULE
TASKS	JANUARY FEBRUARY M	MARCH APRIL
Robot Reconstruction		
Integrate USB Accelerator		
Re-implement Semi-Autonomous Navigation		
Improve Semi-autonomous Navigation		
Add the Ability of Detecting Rock		-
Improve accuracy of Object Detection		

Questions?

Appendix: Object Detection Metrics

Precision

- measures how accurate the model's predictions are
- **defined as:** $Precision = \frac{True Positives}{True Positives + False Positives} = \frac{True Positives}{Total \# of Predicted Positives}$

Recall

- measures how well the model finds all the positives
- **defined as:** $Recall = \frac{True Positives}{True Positives + False Negatives}$

Ex) in the context of a person detector:

 $Precision = \frac{\#People \ correctly \ predicted}{\#People \ correctly \ predicted + \#People \ incorrectly \ predicted}$

Recall = # People correctly predicted # People correctly predicted + # Objects incorrectly predicted as person

Appendix: Object Detection Metrics

Intersection over Union (IoU)

 measures the overlap between the bounding box generated by the model and the ground truth bounding box and is what determines whether a prediction is a true positive, false positive, or false negative

Average precision (AP)

 defined as the area under the precision-recall curve (PR curve), with the recall on the x-axis and precision on the y-axis.

Mean average precision (mAP)

 calculated by taking the average of the AP for all the classes being predicted

Appendix: TensorBoard Metrics

mAP

- obtained by averaging the mAPs calculated using IoU thresholds ranging from .5 to .95 with increments of .05 mAP (large)
 - calculated mAP for large objects
 (96² pixels < area < 10000² pixels)

mAP (medium)

calculated mAP for medium-sized objects

```
(32^2 \text{ pixels} < \text{area} < 96^2 \text{ pixels})
```

mAP (small)

 calculated mAP for small objects (area < 32² pixels)

Appendix: TensorBoard Metrics

mAP@.50IOU

- mAP calculated using a IoU threshold of 50% mAP@.75IOU
 - mAP calculated using a IoU threshold of 75%