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Abstract—Rescue teams face many challenges when      
traversing unknown environments. This can be dangerous for        
both the rescuer and the rescue, so fully understanding the          
situation is crucial in preventing unnecessary risks. The goal of          
our project is to provide rescue teams with the ability to remotely            
examine the situation and the environment to reduce possible         
risks or dangers and increase the rescue team’s efficiency. This          
paper introduces IntelliSAR, a ground-based robot with artificial        
intelligence capabilities aimed at supporting post-disaster search       
and rescue operations. Our system leverages machine learning        
and computer vision to perform object detection and assist in the           
task of identifying and locating victims. IntelliSAR supports        
semi-autonomous navigation as well as manual, remote       
navigation. The robot’s night vision camera and sturdy chassis         
allow it to remain effective in low-light and rugged environments.          
In addition, the robot is equipped with a temperature and          
humidity sensor and an ultrasonic sensor. The data from all the           
sensors are wirelessly transmitted back to an external PC via          
Wi-Fi and serve to provide the user with a wide range of            
real-time environmental information. 

Keywords—IntelliSAR, search and rescue, object detection,      
semi-autonomous navigation 

I. INTRODUCTION 

Humans have been fighting against natural disasters for        
thousands of years. Cave landslides, flash floods, mudslides,        
and earthquakes are just a few examples of impactful and          
dangerous natural disasters. The number of earthquakes with a         
death toll in the 21st century will increase, and the number of            
people killed by earthquakes will exceed that of the past.          
“Combining fatalities caused by the background rate with        
fatalities caused by catastrophic earthquakes (>100,000      
fatalities) indicates global fatalities in the 21st century will be          
2.57±0.64 million if the average post-1900 death toll for         
catastrophic earthquakes (193,000) is assumed” [1].  

When faced with these dangerous natural disasters, it is         
important for search and rescue tasks to be carried out as           
efficiently as possible. The first step in starting a rescue after a            
natural disaster is to search for victims [2]. Searching for          
victims in a post-disaster situation requires accuracy, speed,        
and flexibility. Rescuers must be able to get reliable         
information on the post-disaster situation through      

environmental observation and testing. Information lays the       
foundation for correct and efficient implementation of       
subsequent rescue work. Rescue workers, materials, and       
rescue facilities must be able to quickly arrive and set up           
following a disaster. Rescuers can then begin the search and          
rescue work as soon as possible, thereby gaining valuable         
time, improving rescue efficiency, and helping more victims        
survive. Flexibility is necessary due to the unpredictable        
situations and harsh environments that may be present in a          
post-disaster situation. 

In order to accommodate the aforementioned      
characteristics, our team developed IntelliSAR; an intelligent,       
ground-based robot designed to be used in post-disaster search         
and rescue situations. Search and rescue focus on locating and          
extracting people trapped in a collapsed or damaged structure.         
In these types of situations, rescuers are under extreme time          
pressure; after 48 hours, the mortality rate drastically increases         
due to lack of air, food, water, and medical treatment.          
Attempting to rescue victims can be as dangerous as the initial           
disaster for both the victim and rescuer [3]. In such conditions,           
lightweight and intelligent robots can greatly benefit search        
and rescue initiatives by exploring ahead of rescue teams and          
reporting conditions that may be hazardous [4]. IntelliSAR        
was designed with this goal of supporting rescue teams in          
mind. Through a user-friendly web application, the operator        
can remotely control IntelliSAR, view live temperature and        
humidity data, and view a live, night vision enabled video          
feed. Additionally, IntelliSAR is able to perform object        
detection and assist in the task of identifying and locating          
victims through the use of machine learning and computer         
vision techniques. All this information is relayed to the         
operator through the web application and allows rescue teams         
to thoroughly examine the post-disaster situation without       
exposing themselves to potential dangers. 

The rest of the paper is organized as follows. Section 2           
discusses related work. Section 3 discusses the details and         
specifications of IntelliSAR’s design. Section 4 discusses       
implementation, results, and analysis of our prototype. Section        
5 describes and shows how the IntelliSAR system would have          
looked had we completed it. Section 6 discusses the project          
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management aspects and our team dynamic. Section 7        
concludes the paper with a summary of our prototype and          
project results. 

II. RELATED WORK 

Search and rescue robots provide numerous benefits for        
disaster response and have been used following several        
high-profile disasters such as 9/11 and Hurricane Katrina [5].         
These robots are constantly being developed and improved        
upon in order to better enhance search and rescue efforts. 

A few examples of modern search and rescue robots are          
the Inuktun VGTV-Xtreme [6], iRap Robot [7], and iRobot         
PackBot [8].  
 

 
Figure 1. Inuktun VGTV-Xtreme [6] 

 
The Inuktun VGTV-Xtreme, shown in figure 1, was        

originally designed for industrial inspection purposes, but was        
adapted to fit a search and rescue role. This robot was first            
used in 2001 during the World Trade Center disaster and went           
through several design improvements following that. The       
main features of the Inuktun VGTV-Xtreme are the compact         
size, remote video feed, and considerable maneuverability       
provided by the tracked design. However, it was confirmed to          
have a short battery life of less than ten minutes during the            
2005 La Conchita Mudslides. The Inuktun VGTV-Xtreme was        
not fitted with any semi-autonomous or autonomous driving        
capabilities because of its early design. Despite its relatively         
straightforward and simple design, the Inuktun VGTV-Xtreme       
was one of the first explorations into using robots for search           
and rescue purposes and effectively fulfilled the ultimate        
purpose of providing responders with more information about        
the environment.  
 

 
Figure 2. iRap Robot [7] 

The iRap Robot, shown in figure 2, was designed and          
created for the Robocup Rescue 2018 competition. This robot         
features remote exploration, motion detection, 2D map       
generation, thermal imaging, and high maneuverability. The       
iRap Robot’s dimensions are 100x60x60 cm, but it can reach          
100x60x200 cm when standing up. This robot was reported to          
have cost approximately 30,000 USD to create, with the bulk          
of it spent on the 6-axis robot arm [7]. The iRap Robot’s            
remote exploration and object/motion detection features are       
similar to IntelliSAR, but the iRap Robot focuses more on          
competitive maneuverability and robustness. Some of the       
drawbacks of their approach are the high cost and the large           
and bulky chassis. 
 

 
Figure 3. iRobot PackBot [8] 

 
The iRobot PackBot, shown in figure 3, was designed for          

military personnel in high-threat battlefield scenarios and can        
be used for surveillance and reconnaissance, bomb disposal,        
vehicle inspection, and various other dangerous missions. The        
iRobot PackBot is remotely controlled with a few        
semi-autonomous features and has dimensions of 70x50x20       
cm. Purchasing an iRobot PackBot costs about 100,000 to         
200,000 USD [9]. The iRobot PackBot’s search-and-rescue       
features are similar to IntelliSAR’s, but the PackBot is more          
focused on military utility and robustness and reliability of the          
robot. The main drawback is the extremely high cost for each           
unit. 

Compared with other modern search and rescue robots,        
IntelliSAR's biggest advantage is its low cost. IntelliSAR is         
highly practical and cost-effective. The main service of        
IntelliSAR is search and rescue. IntelliSAR is suitable for this          
role with its accurate object detection and robustness and was          
not designed with military use in mind. The use of an           
ultrasonic sensor instead of a Lidar sensor for autonomous         
navigation helps save costs without drastically reducing the        
reliability of the autonomous navigation. Table 1 shows a         
comparison between IntelliSAR and the other three       
aforementioned search and rescue robots. 
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 IntelliSAR VGTV- 
Xtreme 

iRap 
Robot 

iRobot 
PackBot 

Size Small Medium Large Medium 

Communication WiFi Radio WiFi/ 
Radio 

Radio 

Object 
Detection 

Person N/A Hazmat/ 
QR code 

N/A 

Navigation Semi-auto/ 
Manual 

Manual Auto/ 
Manual 

Semi-auto/
Manual 

Navigation 
Sensor 

Ultrasonic N/A Lidar Stereo 
Camera, 

Lidar 

Target 
Audience 

Search and 
Rescue 

Search 
and 

Rescue 

Search 
and 

Rescue 

Military 

Cost Low 
(<$500) 

High 
(~$10000) 

High 
(~$30000) 

Very high 
($100000+) 

Table 1. Comparison of IntelliSAR and other Search and 
Rescue Robots 

III. DESIGN 

This section discusses the details of IntelliSAR’s design        
and implementation. 

A. System Overview 
IntelliSAR consists of the following components:      

Yahboom G1 robot chassis [10], Raspberry Pi 4B [11], 4WD          
expansion board [12], Yahboom horizontal ultrasonic distance       
sensor [13], DHT11 temperature sensor [14], Coral USB        
accelerator [15], MakerFocus Raspberry Pi camera [16],       
Yahboom 370 motors [17], SG90 servos [18], and battery         
pack. Figure 4 shows the built IntelliSAR system with labeled          
components. 
 

 

Figure 4. IntelliSAR with Labeled Components 

The aluminum alloy chassis securely houses the individual        
components in their designated locations. The Raspberry Pi        
and 4WD expansion board are both mounted beneath the         
upper platform on the lower platform. The ultrasonic sensor is          

mounted on a servo near the front of the robot. The           
temperature sensor is mounted towards the middle of the         
chassis, near the 4WD expansion board. The USB accelerator         
is mounted at the back of the chassis, beneath the upper           
platform. The camera is attached to a gimbal system made up           
of two servos on the upper platform of the chassis. The robot’s            
treads are rotated by two motors; one on each side at the rear             
of the chassis. The battery pack is mounted on the bottom side            
of the chassis. 

Figure 5 shows the data flow throughout IntelliSAR’s        
overall system.  
 

 
Figure 5. Block and Data Flow Diagram 

The on-board Raspberry Pi 4B is the brain of the system           
and is responsible for hosting the web server, interfacing with          
the motor controller and camera controller on the 4WD         
expansion board, processing all the sensor data, and        
performing object detection. The Flask web server allows a         
remote operator to send control instructions to the robot and          
view the processed sensor data and live video feed. The robot           
and the remote browser are connected by Wi-Fi or mobile          
hotspot, and all data transfer is through the http protocol. The           
Raspberry Pi sends signals to the motor controller to control          
the direction and speed of the wheel motors and sends signals           
to the camera controller to rotate the servos that make up the            
camera gimbal system. The raw distance data from the         
ultrasonic sensor is captured and calculated by the Raspberry         
Pi for use in the semi-autonomous navigation feature. The raw          
temperature data is processed and converted into a readable         
format by the Raspberry Pi so that it can be displayed on the             
web application. The camera sends the raw image data to the           
Raspberry Pi via the camera bus. The image data is first           
processed by the object detection component of the        
application, and then the output H.264 video feed with the          
resulting detections is sent to the web server. The USB          
accelerator is connected to the Raspberry Pi’s USB port and          
helps with the processing and computations needed for the         
object detection. 

Table 2 shows the specifications of the IntelliSAR system. 
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Specification Value 

Weight 7 lb 

Dimensions 256 x 183 x 213 mm 

Battery 3.7v 18650 Battery x 3 

Battery Life ~120 min 

Control Distance 50 m indoors, 100 m outdoors 

Camera Night vision, 5MP, 1080p 

Temperature Measurement 
Range 

0 ~ 50 ℃ 

Temperature Measurement 
Accuracy 

± 2 ℃ 

Speed Range 0.7 ~ 6.5 km/h 

Camera Rotation Horizontal: 0°~180° 
Vertical: 45°~180° 

Obstacle Detection Range 2 ~ 500 cm 

Obstacle Detection Accuracy 0.3 cm 

Object Detection Range 6 m (best case scenario) 

Video Stream w/ Object 
Detection Frame Rate 

H.264 640x480 @ 30FPS 

Table 2. Specifications for IntelliSAR 

A weight of 7 lb and dimensions of 256x183x213mm         
allow IntelliSAR to maintain a small form factor and         
convenient setup/deployment. IntelliSAR has a large enough       
battery to guarantee two hours of normal operation (analyzed         
in section IV, part D). In terms of remote control range,           
IntelliSAR is able to be controlled from up to 50 meters away            
indoors or up to 100 meters away outdoors (analyzed in          
section IV, part E). The control range is much lower indoors           
because the radio frequency cannot penetrate solid objects        
such as walls and floors. The camera supports night vision and           
a max resolution of 1920x1080, but we chose to use 640x480           
to lower the amount of processing power needed for the object           
detection. The DHT11’s temperature measurement range is       
from 0 to 50 degrees Celsius, with an accuracy of ± 2 degrees             
Celsius [14]. The speed at which IntelliSAR moves is         
adjustable, with a minimum speed of 0.7 km/h and a          
maximum speed of 6.5 km/h. With the ultrasonic distance         
sensor, IntelliSAR is able to detect obstacles up to 5 meters           
away with an accuracy of 0.3 centimeters [13]. In terms of           
object detection range, IntelliSAR is able to detect        

people/victims up to 6 meters away in the best case scenario of            
non-blurry image and clearly distinguishable human form. The        
object detection enabled video stream shown on the web         
application is 640x480 resolution and runs at approximately        
30 FPS. Our specification analysis helps us to better evaluate          
the performance of IntelliSAR and determine areas in need of          
optimization. IntelliSAR meets all of our specification goals,        
but we also determined that several important specifications        
such as battery life, speed, and obstacle detection accuracy         
could be improved by simply purchasing upgrades to the         
corresponding hardware components. 

B. Robot 
The on-board Raspberry Pi 4B is responsible for hosting         

the web server, interfacing with the motor controller and         
camera controller on the 4WD expansion board, processing all         
the sensor data, and performing object detection. 

The manipulation of the robot includes controlling the        
wheel motors and the camera platform. Two wheel motors are          
used to move the robot in different directions at adjustable          
speeds. The camera is mounted on a platform controlled by          
two servos in order to provide a greater viewing scope. The           
user interface is provided through the web page, through         
which the operator is able to control the robot's moving          
direction, speed, and camera rotation. The navigation       
instructions are sent to the Flask web server on the Raspberry           
Pi as http requests, and these instructions are passed to the           
GPIO PINs that connect to the motors and servos. 

The ultrasonic distance sensor is used for obstacle        
detection and avoidance in the IntelliSAR system. Every        
second, the application sets the PIN_TRIGGER voltage from        
0 to 1 for 20ms, instructing the sensor to send out an ultrasonic             
pulse. Once the sensor receives the reflected waves, the sensor          
sets the PIN_ECHO to 1. The application monitors the         
PIN_ECHO and records when the reflected wave returns. The         
distance between the robot and the surrounding obstacles can         
be calculated as . These calculated   2

T ime × Sound Speed in Air    
distances are used to analyze the distance of the obstacles          
detected and determine the robot’s next movement direction.        
The navigation instructions are sent to the motor controller via          
the GPIO PINS and are then converted to control signals to           
drive the wheel motors. Figure 6 shows the ultrasonic sensor          
and the aforementioned pins. 

 
Figure 6. Ultrasonic Sensor 
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Similarly, the environmental sensors capture the      
surrounding temperature and humidity data and transfer the        
data to the Raspberry Pi through the connected GPIO PINs.          
The Raspberry Pi acquires the raw sensor data and interprets it           
to output meaningful temperature and humidity values. Once        
an http client requests the web server for the environmental          
data, the web server will poll the values and display them on            
the client. 

The Coral USB accelerator, with its on-board Edge TPU         
(Tensor Processing Unit), is designed to speed up inferencing         
on edge devices such as IntelliSAR’s on-board Raspberry Pi         
[15]. The Edge TPU is an ASIC (application-specific        
integrated circuit) chip designed by Google that uses highly         
parallelized and directly connected ALUs (arithmetic logic       
units) to achieve a high computational throughput on the         
calculations necessary in a neural network. Due to the efficient          
parallelization and removal of memory accesses, the Edge        
TPU is able to do this with less power consumption and a            
smaller footprint [19]. It is secured to the back of the robot            
chassis and connected to the Raspberry Pi via USB cable. The           
incorporation of the Coral USB Accelerator allows us to         
drastically increase our object detection video feed’s frames        
per second from 4 to 30 and provide a much better user            
experience without having to sacrifice any functionality or        
accuracy. The Coral USB accelerator is shown in figure 7. 

 
Figure 7. Coral USB Accelerator 

C. Web Application 
In order to enable easy deployment and remove limitations         

such as installing and configuring software for robot        
operation, we decided to use a web application for displaying          
the data and controlling the robot. This also allows the robot to            
be used over a wide range of devices, including laptops,          
mobile tablets, and phones. We used the Python Flask web          
framework for IntelliSAR’s web application because it is        
lightweight and easy to work with. When designing the         
webpage, the Bootstrap CSS framework was used to ensure         
compatibility with all devices no matter the screen size. Figure          
8 shows the user interface that we designed for our web           
application. The live video feed with toggleable object        
detection is shown in the center of the UI. The buttons to            
control the direction and speed of IntelliSAR’s wheel motors         
are located on the left side, and the buttons to control the            
servos of the camera gimbal system are located on the right.           

At the very bottom is the button to turn on or off the             
semi-autonomous navigation. The live temperature data is       
viewed on a separate page that can be accessed through the           
dropdown menu at the top right. 

 
Figure 8. Web Application UI 

D. Semi-Autonomous Navigation 
There is one ultrasonic distance sensor mounted on a servo          

at the front side of the robot chassis. The sensor sends out            
ultrasonic waves that get reflected back and captured if an          
obstacle is encountered. The distance between the sensor and         
the obstacle is calculated by the following formula:  

istanceD = 2
(t −t )received sent * V sonic  

By monitoring the surrounding space, IntelliSAR is able to         
avoid obstacles and navigate semi-autonomously. The      
currently implemented algorithm is described by the flowchart        
shown in figure 9. IntelliSAR continues forward until the         
distance sensor detects that an obstacle is within 30         
centimeters. Then, IntelliSAR turns right, turns left, or        
reverses backwards, based on the data returned by the pivoting          
distance sensor. We used a distance of 30 centimeters for our           
algorithm because that is the minimum distance at which         
IntelliSAR is able to successfully turn around. 

 
Figure 9. Semi-Autonomous Navigation Flowchart 
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E. Object Detection 
In order to better support post-disaster search and rescue         

operations and help increase the efficiency of rescue teams,         
IntelliSAR provides person detection capabilities through the       
use of machine learning and computer vision techniques. This         
function is able to reliably detect victims in various poses such           
as standing straight, sitting down, and lying down and was          
implemented using a custom trained object detection model. 

In order to custom train our detection model in an efficient           
manner, we used a technique called transfer learning. Transfer         
learning is a process where a neural network model pre-trained          
in a related domain is used to accelerate the development of           
models in a custom or more specific domain [20]. The process           
consists of restoring the weights of the pre-trained model and          
training the model on one’s own custom dataset, thereby fine          
tuning the layers from the pre-trained model. In the rest of this            
section, we first introduce commonly used object detection        
terminology and metrics and then discuss a few of the object           
detection architectures that we explored, tradeoffs between       
them, the specific object detection model that we determined         
would be the best starting point for training our custom model,           
and the goals that we adhered to during the training process.  
 
1. Object Detection Metrics 

This section will discuss and define terminology and        
metrics that are commonly used to measure the performance         
of object detection models [21]. Precision measures the        
model’s prediction accuracy and is defined as: 

 
Recall measures how well the model finds all the positives and           
is defined as: 

 
In the case of IntelliSAR’s person detection: 

 

 
Intersection over Union (IoU) measures the overlap       

between the bounding box generated by the model and the          
ground truth bounding box and is what determines whether a          
prediction is a true positive, false positive, or false negative. 
IoU is defined as: 

 
For example, if a metric is using IoU=50%, then a          

prediction would only be marked as “correct” if the predicted          
bounding box has a 50% or more overlap with the          
corresponding ground truth box. 

Average precision (AP) is defined as the area under the          
precision-recall curve (PR curve), with the recall on the x-axis          
and precision on the y-axis. 

Mean average precision (mAP) is calculated by taking the         
average of the AP for all the classes being predicted. For a            

person detection system, the mAP would be the same as the           
AP because only the single Person class is being predicted. 
 
2. Faster Region Convolutional Neural Network (R-CNN) 

The Faster R-CNN architecture, shown in figure 10,        
performs detection in two stages: proposal generation and box         
classification [22]. The proposal generation stage, called the        
region proposal network (RPN), consists of processing input        
images using a feature extractor and then predicting        
class-agnostic box proposals based on features at some        
selected intermediate level. The box classification stage       
consists of using these box proposals to crop features from the           
same intermediate feature map and then feeding the cropped         
features to the feature extractor to predict a class and          
class-specific box refinement for each proposal. The Faster        
R-CNN architecture has been particularly influential, with its        
concepts becoming the basis for many other detection        
architectures (e.g. R-FCN and SSD). 

 
Figure 10. Faster R-CNN Architecture [22] 

 
3. Region-based Fully Convolutional Network (R-FCN) 

The R-FCN architecture, shown in figure 11, is similar to          
Faster R-CNN, but handles the feature cropping in the second          
stage more efficiently. Crops are taken from the last layer of           
features prior to prediction, rather than from the same layer          
where region proposals are predicted [22]. This approach        
minimizes the amount of per-region computation necessary       
and allows R-FCN to achieve comparable accuracy to Faster         
R-CNN, often at a faster speed. 

 
Figure 11. R-FCN Architecture [22] 

 
4. Single Shot Detector (SSD) 

The Single Shot Detector (SSD) architecture, shown in        
figure 12, typically uses a single feed-forward convolutional        
network to directly predict classes and anchor offsets without         
requiring a second stage per-proposal classification operation       
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[22]. When related to Faster R-CNN, SSD architectures        
modify the proposal generation stage to also directly output         
class probability and anchor offsets. This allows SSDs to         
perform detection in a “single shot”. 

 
Figure 12. SSD Architecture [22] 

 
 
5. Speed/Accuracy Tradeoffs 

To select the right detection architecture for our specific         
use case, we considered each architecture’s attributes, namely        
speed and accuracy. Speed is important because we are         
running the object detection on a Raspberry Pi but still want to            
achieve an acceptable frame rate. Accuracy is important        
because IntelliSAR needs to be able to reliably detect victims.          
In the rest of this section, we will discuss the results of            
Jonathan Huang et al.’s speed and accuracy investigation on         
three common, state-of-the-art detection architectures [22]. 

 
Figure 13. Accuracy vs Time [22] 

Figure 13 shows the results of the authors’ accuracy vs          
time testing. In this scatterplot, the x-axis represents the GPU          
time, and the y-axis represents the mean average precision.         
GPU time is the measurement of timings on their GPU in           
milliseconds, with the results ranging from tens of        
milliseconds to almost one second. Mean average precision is         
a measure of the model’s percentage of correct predictions for          
all classes. The point’s shape indicates the architecture and the          
point’s color indicates the feature extractor used. Each        
architecture and feature extractor pair may correspond to        
multiple points due to the changing of other parameters (e.g.          
number of proposals). The points of interest are marked in the           
scatter plot. Shown on the upper right, Faster R-CNN paired          
with the Inception Resnet feature extractor has very high         
accuracy with very slow speed. Faster R-CNN architectures        
typically have high accuracy and low speed, but they can be           

significantly sped up with only a small decrease in accuracy          
by reducing the number of proposals used. Shown on the          
upper left, the same setup using 50 proposals instead of 300           
proposals runs significantly faster with only a minimal        
reduction in accuracy. R-FCN, as mentioned previously, is        
able to achieve comparable accuracy to Faster R-CNN with         
much faster speeds. R-FCN with Resnet and 100 proposals         
boasts performance similar to Faster R-CNN with Resnet and         
50 proposals and also runs significantly faster with only a          
minimal reduction in accuracy when compared to Faster        
R-CNN with 300 proposals. SSDs are much faster than other          
detection architectures but have decreased accuracy, especially       
on small or tightly clustered objects. As shown in the          
scatterplot, SSD with InceptionV2 and SSD with MobileNet        
run extremely fast but have lower accuracy than Faster         
R-CNN and R-FCN. In the end, each detection model has their           
own performance tradeoffs that need to be considered for         
one’s use case. The choice of which specific object detection          
model would be best suited for the implementation of         
IntelliSAR was made based on the aforementioned speed and         
accuracy investigation and is discussed in detail in the next          
section. 
 
6. Basis for our Custom Model 

For our project, we used a quantized SSD MobileNetV2         
model pre-trained on the Common Objects in Context        
(COCO) dataset as the basis for our detection model. This          
model was obtained from Tensorflow’s object detection model        
zoo [23], a repository that provides developers with several         
pre-trained detection models of various different neural       
network architectures. The quantized version of the SSD        
MobileNetV2 reduces both the memory requirement and       
computational cost of the original model. We chose this model          
because it was designed for mobile and edge devices and suits           
our requirements of performing real-time object detection       
directly on IntelliSAR’s on-board Raspberry Pi. Based on the         
results shown in figure 13, the SSD with MobileNet model          
runs approximately 17 times faster than Faster R-CNN with         
ResNet and 300 proposals. The SSD with MobileNet model         
also runs approximately 3 times faster than both R-FCN with          
ResNet and Faster R-CNN with ResNet and 50 proposals. It is           
important to note that these are all relative timings and may           
vary depending on the hardware used, but they still provide          
valuable insight into the performance of each model.        
Additionally, these comparisons do not take into account the         
effects of optimizations such as quantizing the model or         
converting the model into a Tensorflow Lite model, both of          
which are currently only able to be applied to SSD models in            
Tensorflow. The SSD detection architecture has relatively low        
accuracy when compared to architectures such as Faster        
R-CNN or R-FCN, but we deemed that SSD’s drastic speed          
improvement was worth the 0.10 to 0.15 decrease in mean          
average precision. The quantized SSD MobileNetV2 model       
pre-trained on the COCO dataset from Tensorflow’s model        
zoo is able to detect objects of 80 different classes and has a             
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mean average precision of 0.22 based on COCO’s evaluation         
metric, serving as a solid basis for creating our custom          
detection model. 
 
7. Training Goals 

In order to ensure that the model is training properly and is            
able to achieve acceptable performance and accuracy, it is         
important to evaluate the model constantly, avoid underfitting,        
and avoid too much overfitting. Underfitting and overfitting        
are both significant issues that may occur while training a          
machine learning model, with overfitting being the more        
prevalent issue of the two. Underfitting occurs when the         
model does not fit the training data and misses the trends or            
patterns in the data. Underfitting can typically be solved by          
just training the model for a longer amount of time.          
Overfitting occurs when the model has trained “too well” and          
is fit too closely to the training dataset, meaning that it doesn’t            
generalize well on new data [24]. Having a bit of overfitting is            
actually beneficial for your model’s performance, but letting it         
overfit too much can quickly ruin a model’s performance. One          
method of avoiding too much overfitting is to use a train/test           
split, meaning that the dataset is split into a training set and an             
evaluation set. The training set is used to train the model, and            
the evaluation set is used to evaluate the model periodically          
over the training process. This method allows one to check the           
model’s ability to generalize on unseen data (from the         
evaluation set) and stop the training when the model begins to           
overfit. Another method of avoiding overfitting is to use more          
complete training data that covers the full range of inputs that           
the model is expected to handle. With a perfect dataset, it           
would be beneficial for the model to fit as closely as possible.            
However, obtaining a perfect dataset is impossible, unless the         
detection model being trained is expected to only handle a          
very small range of inputs. Overall, the main goals during the           
training of our model were to use as comprehensive a dataset           
as we could obtain, get the evaluation error as low as possible            
(or evaluation mAP as high as possible), get the evaluation          
error similar to or slightly higher than training error, avoid          
underfitting, and avoid too much overfitting. 

IV. PROTOTYPE IMPLEMENTATION 

In this section, we will discuss the implementation, results,         
and analysis of our prototype up through the Comprehensive         
Design Review (CDR). Table 3 shows the status of the          
previous Midway Design Review (MDR) deliverables that we        
proposed during Preliminary Design Review (PDR). Table 4        
shows the status of the CDR deliverables that we proposed          
during MDR. 
 
 
 
 
 
 

MDR Deliverables Status 

Functional robot able 
to be remote 
controlled 

Complete 
Robot is remote controllable through a 
Python Flask web server. The night vision 
and object detection enabled live video feed, 
and temperature sensor data are viewable 
through the webserver. 

Azure setup for our 
system 

Design Change 
Following feedback from PDR, we decided 
to detach from the cloud and only transmit 
data over WLAN. 

Trained object 
detection model able 
to detect and classify 
certain objects 

Complete 
Custom-trained a SSD MobileNetV2 model 
that is able to detect people in various 
positions. A Python script that is run on the 
Raspberry Pi streams the live video feed, 
with bounding boxes and classifications 
shown, to a Flask web server. 

Table 3. Status of MDR Deliverables 
 
 
 

 

CDR Deliverables Status 

Reconstructed robot with all 
functionality restored 

Complete 
Original robot is inaccessible, so 
IntelliSAR has been reconstructed 
with newly purchased robot parts. 
All software functionality has been 
fully restored.  

Improve accuracy of object 
detection 

In Progress 
Overall mAP increased from 
0.2255 to 0.3554. 

Improve speed of object 
detection 

Complete 
Purchased a Coral USB 
accelerator and integrated it into 
our system. Frames per second of 
object detection video feed 
increased from 4 fps to 30 fps. 

Re-implement 
semi-autonomous navigation 
and improve reliability 

In Progress 
Semi-autonomous navigation 
functionality was restored in the 
reconstructed robot. Increased turn 
speed and stopping reliability. 

Trained object detection model 
able to detect and classify 
multiple objects 

Complete 
Object detection model trained to 
detect both people and rocks. 

Table 4. Status of CDR Deliverables 
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A. Robot Functionality 
Regarding the robot deliverable, the mobility and       

manipulation of the robot has been implemented. Two motors         
are used to drive the robot’s treads on each side and are            
controlled through the user interface on the Flask web server.          
This web server is hosted and handled by the on-board          
Raspberry Pi. On the control page, the operator is able to           
control the robot via the clickable buttons or the keyboard          
controls and make it move forward, move backward, turn         
right, turn left, or stop. The robot’s movement speed is          
controlled through the pulse width modulation (PWM) value        
on the GPIO PINs that the motor driving board is connected           
to. By adjusting the PWM value to the left and right motors,            
different amounts of power are delivered to the motors. When          
the motors rotate at full speed, the robot moves at a speed of 6              
km/hour. To make the robot easier to control and avoid          
potential accidents, we set the default speed to be 40% of the            
full speed. Through the web UI, the operator is able to adjust            
the speed to anywhere between 0% and 100% of the full           
speed. 

The live video feed is provided by the camera on the robot,            
which is fixed on top of a rotatable platform. Two servos are            
used to rotate the camera platform horizontally and vertically.         
There are many choices for video encoding, but we primarily          
considered mjpeg and H.264. The mjpeg encoding sends each         
frame as a jpeg formatted picture and thus requires more          
network bandwidth and increases latency. We chose to use the          
H.264 encoding because it is more efficient for transferring         
real time video over a wireless network. 

Similar to the robot controller, the environmental sensor        
data is hosted on another webpage. The temperature data and          
humidity data from the sensors on the robot are passed to the            
Raspberry Pi and displayed on the web server. This data is           
rendered as two dynamic curves, with the values and times          
also displayed at the bottom of the page. 

The semi-autonomous navigation is initiated by an on/off        
button on the web UI. Once the button is clicked, IntelliSAR           
begins polling the ultrasonic sensor to monitor the surrounding         
space and traverse while avoiding any obstacles. When the         
semi-autonomous navigation is turned off, IntelliSAR halts its        
current movement and waits for control commands from the         
operator. 

Due to customs issues causing an inability to continue         
working with the original robot constructed in the first project          
semester, we purchased new robot parts and reconstructed        
IntelliSAR. However, our existing software was not fully        
compatible with the new robot platform and had to be updated           
accordingly. All software functionality was fully restored for        
CDR. 

B. Object Detection 
The object detection functionality is implemented through       

the use of the Python programming language and the         
Tensorflow, Tensorflow Lite, and OpenCV software libraries.       
Tensorflow is an open-source machine learning library.       

Tensorflow Lite is an open-source deep learning framework        
specifically designed for edge computing applications and       
helps developers run Tensorflow models on their mobile,        
embedded, and IoT devices. OpenCV is an open-source        
computer vision library that provides many useful functions        
for object detection applications. Tensorflow’s Object      
Detection API [25], an open source framework that makes it          
easier for developers to construct, train and deploy object         
detection models, was used to train and evaluate our custom          
detection model and convert the model into an optimized         
Tensorflow Lite model. Tensorflow Lite models have a faster         
inferencing time and require less processing power, thus        
running at higher speeds than regular Tensorflow models. The         
Tensorflow Lite interpreter was used to run our converted,         
custom-trained Tensorflow model on IntelliSAR’s on-board      
Raspberry Pi 4B. The Coral USB accelerator, with its         
on-board Edge TPU, was purchased and integrated into our         
system prior to the Comprehensive Design Review. We used         
Google’s Edge TPU Compiler [26] to compile our custom         
Tensorflow Lite model for use with the Edge TPU. The          
addition of the Coral USB accelerator and its Edge TPU          
allowed for an increase in the frames per second of the object            
detection video feed (from 4 fps to 30 fps). 

Initially, we used Google’s Open Images Dataset v5        
(OIDv5) [27] to provide the labeled images needed for         
training our custom model. The OIDv4 ToolKit [28] was used          
to obtain only images and annotations of the “Person” class,          
allowing us to avoid downloading the whole dataset (~9         
million images). For the training of the model, we used          
approximately 6250 images. The model trained with this        
dataset was showcased at the Midway Design Review.  

To improve the accuracy of IntelliSAR’s object detection        
following the Midway Design Review, we trained the model         
on our own dataset of images that better covers the range of            
inputs that the model is actually expected to handle. In          
IntelliSAR’s case, we compiled an image database of people         
in different positions, in different lighting, and with varying         
amounts of noise. These images were all taken with the          
Raspberry Pi’s camera in both night vision on and night vision           
off modes. The labeling of the images was done manually via           
the graphical image annotation tool LabelImg [29]. The        
dataset for training consisted of 250 labeled images of people.          
The dataset used for evaluation consisted of 70 labeled images          
of people. 

Additionally, we trained our model on labeled images of         
rocks to demonstrate that our object detection system is able to           
detect and classify multiple objects at a time. To accomplish          
this, we took pictures of natural rocks of varying sizes and           
shapes and used LabelImg to label them. In the end, we added            
30 labeled images of rocks to the training dataset and 10           
labeled images of rocks to the evaluation dataset. 

The object detection enabled video feed was implemented        
with Python and has been integrated with the main IntelliSAR          
web application. When the Flask web application is started,         
the program starts up the 640x480 videostream and loads our          
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custom detection model into the Tensorflow Lite interpreter.        
Then, each frame of the videostream is processed using the          
Tensorflow Lite interpreter, and we get back the predictions in          
the form of bounding box locations, classifications, and        
confidence. Finally, we use OpenCV to draw these predictions         
on the frame and display it on the web application’s video           
feed. We also calculate the framerate of our object detection          
video feed using OpenCV’s tick functions and display it in the           
top left corner of the frame. 

 

Figure 14. Examples of Object Detection 

In figure 14, we show examples of detecting a close-up          
person, a close-up person in dim lighting, a person lying down           
on the floor, and a person surrounded by several random          
objects. Detecting a close-up person is very reliable due to the           
large size and well-defined features. Detecting a close-up        
person in dim lighting is slightly less reliable due to the lower            
visibility of the features, but still performs well. Detecting a          
person lying down on the floor is much less reliable due to the             
smaller size and often complete absence of prominent        
person-defining features. Detecting a person surrounded by       
several objects helps show that the object detector is truly          
detecting only people and not just any random object in the           
frame. 

C. Object Detection Analysis 
This section discusses numerical evaluation metrics      

(defined in section III, part E.1) for our object detection          
model. 
 

Metric Value 
mAP 0.2255 
mAP (large) 0.2782 
mAP (medium) 0.04057 
mAP (small) 0.0016068 
mAP@.50IOU 0.4332 
mAP@.75IOU 0.2044 

Table 5. Detection Model Evaluation Metrics (MDR) 

 

Metric Value 
mAP 0.3554 
mAP (large) 0.3968 
mAP (medium) 0.0505 
mAP (small) 0.0022644 
mAP@.50IOU 0.6514 
mAP@.75IOU 0.375 

Table 6. Detection Model Evaluation Metrics (CDR) 

Table 5 shows several metrics that were obtained by         
evaluating the initial custom trained model, which was        
displayed at the Midway Design Review, on our evaluation         
dataset. Table 6 shows the same metrics for the updated model           
displayed at the Comprehensive Design Review. The mAP        
metric is obtained by averaging the mAPs calculated using         
IoU thresholds ranging from .5 to .95 with increments of .05           
[30]. The mAP (large) metric is the calculated mAP for large           
objects (962 pixels < area < 100002 pixels). The mAP          
(medium) metric is the calculated mAP for medium-sized        
objects (322 pixels < area < 962 pixels). The mAP (small)           
metric is the calculated mAP for small objects (area < 322           
pixels). The mAP@.50IOU metric is the mAP calculated        
using an IoU threshold of 50%. The mAP@.75IOU metric is          
the mAP calculated using an IoU threshold of 75%. 

The quantized SSD MobileNetV2 model pre-trained on the        
Common Objects in Context (COCO) dataset has a mAP of          
0.22. However, the mAP of our custom model and the mAP of            
the pre-trained model are calculated using different evaluation        
datasets and can’t be directly compared. Despite this, the mAP          
of the pre-trained model still provides a good frame of          
reference because the mAP of our custom model should         
become more similar to the mAP of the pre-trained model as           
we improve the accuracy of our model and make the          
evaluation dataset more thorough. 

D. Power Consumption Analysis 
The robot's battery pack consists of three 3.7v 18650         

batteries. To understand how long the battery can last, we          
calculated the power consumption based on the specifications        
of each component. After charging, the battery voltage is         
about 12.6V. According to the Raspberry Pi specifications        
[31], the minimum input current has to be 3A when the current            
draw of the peripherals is higher than 0.5A. Through         
calculation, we can conclude that the time that the car can           
work normally is 108 minutes, which is consistent with our          
experimental data. Table 7 describes the main board power         
consumption. Table 8 describes the driving board power        
consumption. Table 9 describes the robot power consumption.        
Table 10 describes the battery life analysis. 
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Main Board Power Consumption 
Components Q’ty Current (A) Voltage(V) Power (W) 

Raspberry Pi 1 1.1 12 13.2 
Camera 1 0.2 12 2.4 
Ultrasonic 1 0.02 12 0.24 
Camera servo 2 0.3 12 3.6 
Sum 5 1.6A 12 19.2W 

Table 7. Main Board Power Consumption 

Driving Board Power Consumption 
Components Q’ty Current (A) Voltage(V) Power (W) 
Drive Board 1 0.1 12 1.2 
Motors for 
Tracks 

2 0.8 12 19.2 

Sum 3 1.7A 12 20.4W 
Table 8. Driving Board Power Consumption 

Robot Power Consumption 
Components Q’ty Current (A) Voltage(V) Power (W) 
Total 8 3.3A 12 39.4W 

Table 9. Robot Power Consumption 

Battery Life Analysis 
Components Q’ty Capacity (Ah) Current (A) Battery Life 

(hr) 
Battery 1 6 3.3 1.8 

Table 10. Battery Life Analysis 

E. Latency Analysis 
As a search and rescue robot, it is important to ensure           

reliable, remote operation and a reasonable response time. We         
measured the request response time and radio strength in a          
typical scenario. Thus, we were able to find the maximum          
distance at which the robot can be reliably controlled. 

We evaluate this in an open area with the robot and laptop            
connected to a mobile hotspot provided by a cell phone. For           
the tests, the robot is placed at different distances (5 meter           
intervals) from the mobile hotspot. Figure 15 illustrates the         
response time measurement procedure. We developed a       
simple python script that sends requests from the laptop to the           
robot at time t1 and records the server’s response time as time            
t4. If the response isn't received within 2 seconds, the request           
is marked as timed out. Otherwise, the response time is          
represented by the equation . One hundred requests were    2

t4−t1      
sent and the average response time was calculated as the          
overall response time at that distance. Similarly, the radio         
strength at different distances was measured using a Wi-Fi         
analysis application on another mobile device. 

 
Figure 15. Response Time Measurement 

 
The results of our testing are shown in figure 16. When the            

robot was at a distance of 70 meters from the mobile hotspot,            
the radio signal decreased from 0 to -90 mDb, and the packet            
delay increased from 20ms to 200ms. When the distance         
increased further, the packet loss increased and had an obvious          
effect on the operation. 

 
Figure 16. Controllable Distance 

V. PLANNED SYSTEM 

During the Comprehensive Design Review, we focused on        
the progress made on IntelliSAR’s object detection model and         
demonstrated the model’s ability to detect and classify people         
and rocks with moderate accuracy. Additionally, we discussed        
our proposed deliverables for the Final Project Review (FPR).         
These consisted of further improving the accuracy of the         
object detection, improving the training and evaluation       
datasets, and improving the robustness of the robot itself.         
Following the feedback from the Comprehensive Design       
Review, we adjusted our goals to also include rolling back the           
inclusion of the rock detection, training the model to detect an           
additional, less ambiguous object, and improving the       
semi-autonomous navigation algorithm and related sensors.  

The rock detection was implemented for the purpose of         
demonstrating that our object detection system could classify        
more than just a person. The camera’s rock/obstacle detection         
was also added with the intention of complementing        
IntelliSAR’s existing semi-autonomous capabilities, as it      
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would help lighten the obstacle avoidance’s reliance on the         
sole ultrasonic sensor. However, we found that the rock         
detection was not very reliable and seemed to actually         
decrease the reliability of our person detection as we         
experimented with this setup. This is likely due to the          
ambiguity of a rock’s shape and how an image of a person’s            
head, with its round shape and lack of colors due to our use of              
an infrared camera, could be easily mistaken for a rock. For           
the final product, we would have instead opted to train the           
model to detect specific human body parts (e.g. human hand)          
rather than people and rocks. 

In regards to the semi-autonomous navigation, we       
encountered an issue with the ultrasonic sensor that was         
causing the obstacle avoidance to malfunction occasionally.       
The ultrasonic sensor that came with the robot parts that we           
purchased post-CDR was angled upwards and could not be         
adjusted. This sometimes caused IntelliSAR to fail to detect an          
obstacle directly in front that was not tall enough to be hit by             
the ultrasonic sensor’s upward-angled waves. To fix this issue,         
we would have adjusted the default mount to ensure that the           
ultrasonic sensor was level. Additionally, to further improve        
the reliability of the obstacle avoidance, it would have likely          
been ideal to swap out the ultrasonic sensor for a LIDAR           
sensor to get higher resolution and more accurate distance         
measurements. 

VI. PROJECT MANAGEMENT 

We have completed a significant part of IntelliSAR, and         
our next tasks are to incorporate GPS tracking and improve          
the object detection and semi-autonomous navigation. When       
beginning our development of IntelliSAR, the hardware       
selection and assembly progressed smoothly, with almost all        
of these tasks being successfully completed in the PDR stage.          
This progress allowed us to allocate more time towards our          
subsequent work. Through rapid iterative development, we       
gradually improved the control functions of the car. 

Our team cooperates and works well together. During the         
first project semester, Yong and Arthur were in China, and          
Derek was in the United States. Despite this separation,         
everyone still carried out the effective communication and        
efficient development needed to ensure the steady progress of         
our project. Each of us were responsible for our own tasks but            
would help each other when any problems were encountered.         
Every week, we held team meetings with our advisor,         
Professor Tessier, to communicate progress and our next        
goals. Yong was acting as the team manager and was          
responsible for the overall hardware development and control        
functionality of the entire car. Derek was responsible for         
implementing object detection and semi-autonomous     

navigation. Arthur was responsible for some web development        
tasks, sensor settings for IntelliSAR, data collection and        
analysis, and the MDR poster.  

During the second project semester, we continued to        
maintain the same productive team atmosphere and continued        
to put our best effort into fulfilling our original goals for           
IntelliSAR despite the departure of Yong from our team.         
Derek inherited the role of team manager and was responsible          
for reconstructing the robot and restoring all prior        
functionality, compiling the training and evaluation dataset,       
integrating the Coral USB accelerator, improving the accuracy        
of the object detection, and re-implementing and improving        
the semi-autonomous navigation. Arthur was responsible for       
compiling the training and evaluation dataset, improving       
robustness of the chassis, collecting data, and performing        
power analysis. 

VII. CONCLUSION 

From the beginning, we have hoped to design a useful          
product that will improve search and rescue initiatives.        
Practicality is an important factor that is worth prioritizing,         
and we have made sure to take this into account in           
IntelliSAR’s specifications. In terms of mobility and       
maneuverability, IntelliSAR can move at a maximum speed of         
about 6.5 km/h, climb up slopes of up to 30 degrees, and can             
cope with most outdoor environments such as mud, grass, and          
rough roads. In terms of obstacle avoidance, the car can          
automatically stop and turn when encountering obstacles with        
a detection distance of about 30 centimeters and a stopping          
time of about 0.5 seconds. IntelliSAR’s camera is able to          
rotate 180 degrees horizontally and vertically and has night         
vision capabilities, allowing it to maintain performance in dark         
environments. 

For the Comprehensive Design Review in the second        
project semester, we reconstructed the robot with all        
functionality restored, improved the accuracy of the object        
detection, improved the speed of the object detection, and         
re-implemented the semi-autonomous navigation and     
improved its reliability. To complete our project, we planned         
to complete the following goals: further improve the accuracy         
of the object detection, improve the training and evaluation         
datasets, improve the robustness of the robot itself, roll back          
the inclusion of the rock detection, train the model to detect an            
additional, less ambiguous object, and improve the       
semi-autonomous navigation algorithm and related sensors. 
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