#### Midterm Design Review

# Fatigue Driving Detector

Advisor: Professor Pouraghily

Member: Jiong Wang

Hongyu Ba

Yachen Liu

# <u>UMassAmherst</u>

#### Team Members



Advisor: Prof. Pouraghily



Hongyu Ba



Jiong Wang(leader)



Yachen Liu

#### Contents

- Problem statement
- Feasibility analysis and system description
- Equipment
- Block diagram and software flowchart
- Future work, Schedule Chart and Demo

#### Problem statement

# How significant is the fatigue driving?

- In China, The number of traffic accidents caused by fatigue driving is 100,000 per year.
- 71,000 people are injured in accidents by fatigue driving in China
- In the freight industry across the world, 57% of fatal truck traffic accidents are due to fatigue driving.

#### Feasibility analysis

#### The reaction time of fatigue driving

|                                     | Average | 15 <sup>th</sup> Percentile | 50 <sup>th</sup> Percentile | 85 <sup>th</sup> Percentile |
|-------------------------------------|---------|-----------------------------|-----------------------------|-----------------------------|
| Brake Assist                        |         | •                           |                             |                             |
| Run 1 (Cars / Pedestrians Emerging) | 0.85    | 0.67                        | 0.81                        | 1.02                        |
| Run 1 (Braking Vehicle Ahead)       | 1.30    | 0.80                        | 0.99                        | 2.01                        |
| Gantry Collapse                     |         |                             |                             |                             |
| Time to Apply Brake                 | 1.53    | 1.18                        | 1.35                        | 1.84                        |
| Time to Apply Steering              | 1.54    | 1.08                        | 1.45                        | 2.15                        |
| Unexpected Stationary Vehicle       |         | •                           |                             |                             |
| Time to Apply Brake                 | 3.52    | 2.17                        | 3.35                        | 4.79                        |
| Time to Apply Steering              | 5.08    | 4.23                        | 5.00                        | 6.34                        |
| Driver Fatigue                      |         |                             |                             |                             |
| Run 1, All Reaction Tasks           | 1.12    | 0.86                        | 1.05                        | 1.38                        |

Table - Driver Reaction Time Summary Table



#### Feasibility Analysis

In this study, the cerebral oxygen saturation decreased significantly by  $6.94 \pm 1.74\%$  following 3-h driving task. The subjects reported exhibiting evident fatigue symptoms such as tiredness, irritability, mentally sluggishness, the lack of energy, headache, and sleepiness after the task.





#### "Gold standard" for fatigue monitoring

#### Reference:

Zengyong L .Assessment of cerebral oxygenation during prolonged simulated driving using near infrared spectroscopy: its implications for fatigue development Eur J Appl (2009) 107:281–287

#### System description

#### Reaction Time System (before driving):

- Calculate the costumers' real-time reaction time and compare it with the fatigue driving reaction time(0.86s) from the reference
- ➤ Test the reaction time 5 times every 20 minutes and take the average value. When the average customer reaction time is found to be greater than or equal to the reaction time of fatigue driving, record the SpO₂ value at this time as the fatigue critical value.

## System description

#### SpO2 System (during driving):

- ➤ Calculate the costumers' real-time SpO₂ value and compare it with the fatigue critical value from Reaction Time System.
- ➤ When the customer SpO₂ value is equal to or less than the fatigue critical value, the system will issue an alarm (LED), to avoid fatigue driving

# Equipment



MAXREFDES117#
Board

#### The MAXREFDES117# reference design

- ➤ A low power, optical heart rate and SpO₂ module complete with integrated red and IR LEDs.
- This board works with both Arduino and Mbed platforms
- This board can be placed on a finger (steeling wheal) to accurately detect heart rate and SpO<sub>2</sub> value

#### Equipment



#### Three chips:

- a SpO<sub>2</sub> and heart-rate sensor (MAX30102);
- an efficient, low-power step-down converter (MAX1921);
- ➤ an accurate level translator (MAX14595).

The board requires only a single 2V to 5.5V supply

#### **Equipment** Adafruit FLORA - v3



FLORA is Adafruit's fully-featured electronics platform.

- > an Arduino-compatible microcontroller
- has built-in USB support.
- has 4 indicator LEDs
- An ICSP connector for easy reprograming for advanced users.

# Equipment



## Block diagram



#### Software flowchart



#### Core Algorithm

$$SpO_2 = C_1 \times AverageRatio^2 + C_2 \times AverageRatio + C_3$$

Where AverageRatio is the average ratio of IR and red LED readings.  $C_1$ ,  $C_2$ , and  $C_3$  are constants.

$$C_1 = -40.060$$

$$C_2 = 30.354$$

$$C_3 = 94.845$$

Reference:

https://www.maximintegrated.com/en/design/reference-design-center/system-board/6300.html/tb\_tab1

#### Core Algorithm

```
//uch spo2 table is approximated as -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845;
const uint8 t uch spo2 table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99,
           97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91,
           90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81,
          80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67,
          66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50,
          49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29,
           28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5,
           3, 2, 1 };
                       if ( n ratio average>0 && n ratio average <184) {
                         n spo2 calc= uch spo2 table[n ratio average] ;
                         *pn spo2 = n spo2 calc ;
                         *pch spo2 valid = 1;
                       else{
                        *pn spo2 = -999;
                         *pch spo2 valid = 0;
```

# Our Design





#### <u>UMassAmherst</u>

#### Schedule Bar Chart



#### Future work

- Improve system stability and accuracy of data acquisition
- > Establish detailed reaction time testing procedures
- Analyze and process data to develop more accurate fatigue states



# Demo

#### Outcome



#### Outcome



## Fatigue Driving Detector

# Thank you! Questions?