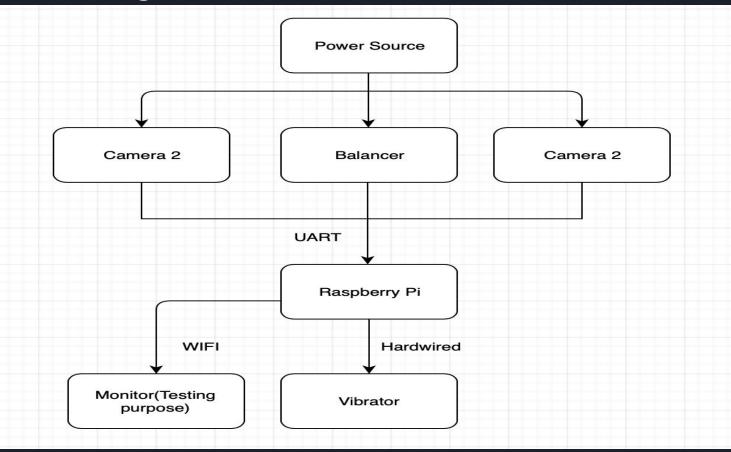
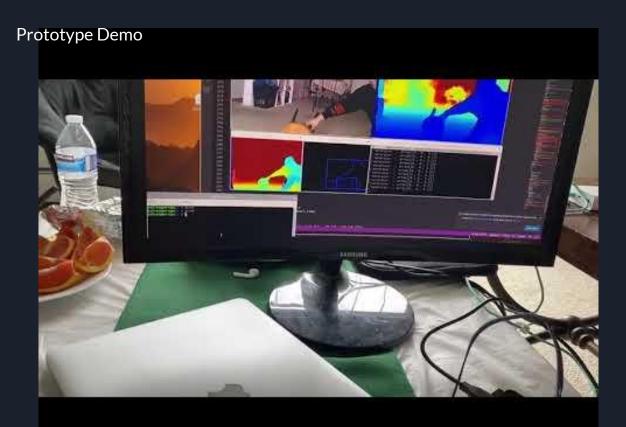
Digital Guide Dog


Hui Sun (Sean), He Zhang (Vincent), Dongxun Sun (Ricky) Advisor: Prof.Christopher V. Hollot

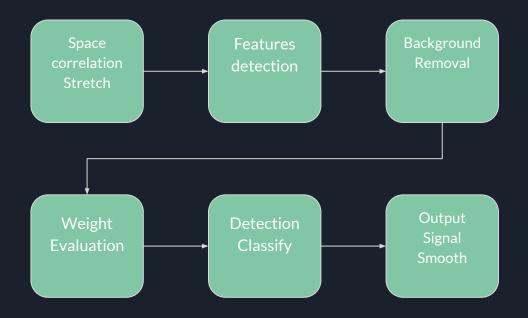
Problem Statement

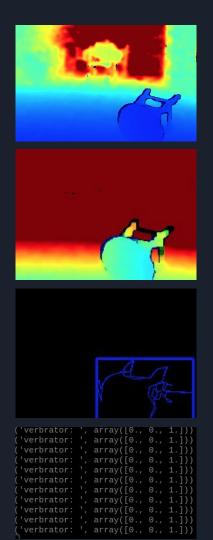

There are about 10 million visually impaired people in the US. It always hard for them to go outside to fit in the world with all the inconveniences. They usually go out with guide dogs, but it's not easy to train a dog to be a qualified dog. It might cost more than 48,000 dollars for training a guide dog. In this project, we would like to create a system called "Digital Guide" Dog" to offer them an easier way to avoid hitting any obstacles in a path.

Block Diagram

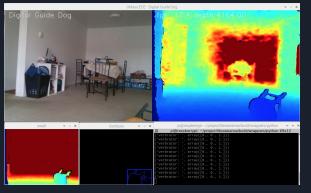


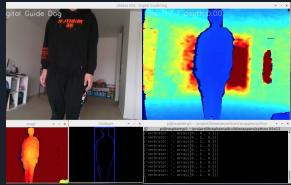
Outcome at Comprehensive Design Review

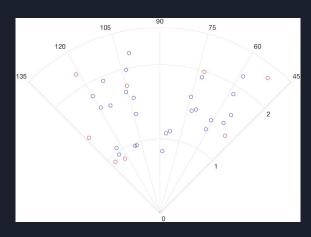

Prototype Overview

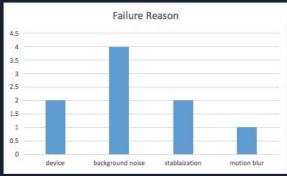


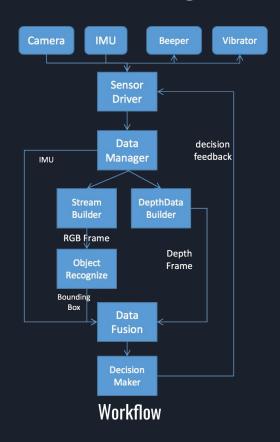
Outcome at Comprehensive Design Review

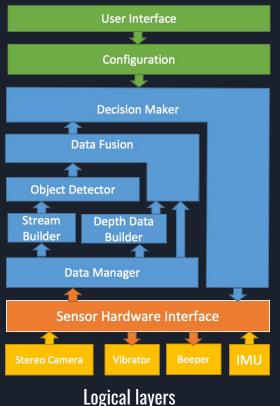



Algorithm Implementation




Evaluation on detection




correctness rate: 77.14%

Software Design Framework

Sensor Implementation

- 1. Vibrator Sensor

 Use GPIO to drive the high and low levels;

 PWM to control those vibrator frequencies.
- 2. IMU Sensor

 Use IIC bus protocol to read each bit of data;

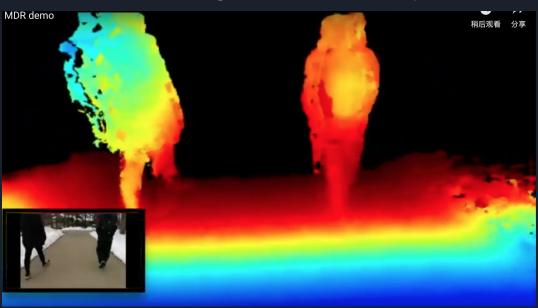
 Capacitance conversion was used to calculate the relative tilt value.

Gyroscope data test

```
pi@raspberryp
        pi@raspberrypi: 💣
                                 pi@raspberrypi:
[-63.0, 38.0, 992.0]
                         193.0,
                                  -950.0, -264.0]
 -61.0, 31.0, 1007.0]
 -59.0, 37.0, 1014.0]
                                 -950.0, -230.0]
 -64.0, 36.0, 1007.01
                                 -962.0, -223.0]
                                 -955.0, -190.0]
-55.0, 45.0, 1000.01
                                  -950.0, -235.0]
 -63.0, 43.0, 998.0]
                         215.0,
                                  -961.0, -234.0]
-55.0, 39.0, 993.0]
                                  -951.0, -177.0]
[-55.0, 36.0, 993.0]
                         [172.0,
                                  -950.0, -182.0]
 -56.0, 40.0, 1000.0]
                         [211.0,
                                 -947.0, -263.0]
-56.0, 26.0, 1005.0]
                         [220.0,
                         [169.0, -944.0, -180.0]
[-58.0, 32.0, 1004.0]
                         [162.0, -940.0, -258.0]
[-59.0, 38.0, 995.0]
                                            100 07
                                   000 0
Working
         3.3V, 5V
voltage
         12C
Supported
interface
         31.2mm*17mm
Dimensions
```

```
36 # enable fifo and dmp
37 # i2c.write byte data(0x68 , 106 , 32+64)
30 # ===== intial done =====
Shell ×
  XYZ_a_out[9//, -129, 176]
  xyz_a_out[999, -141, 170]
  xyz_a_out[855, -234, 193]
  xyz_a_out[1051, -121, 107]
  XYZ_a_out[1013, -117, 99]
  xyz_a_out[969, -106, 105]
   xyz_a_out[986, -123, 92]
   xyz_a_out[993, -111, 96]
   xyz_a_out[969, -110, 333]
   xyz_a_out[801, -124, 443]
    xyz_a_out[880, -148, 409]
    xyz_a_out[638, -201, 679]
    xyz_a_out[602, -212, 760]
    xyz_a_out[518, -202, 848]
    xyz_a_out[570, -212, 775]
    xyz_a_out[909, -268, 594]
    xyz_a_out[870, -149, 312]
    xyz_a_out[960, -197, 197]
```

What we got


- 1. Low cost array of wearable sensors collects movement and information obstacle distance ahead
- 2. Provide real-time information and devices working status feedback
- 3. Assist the blind to move more safely and efficiently.

Hardware Specification Table

Features	Use Environment	Detection Range
	Indoor/Outdoor, Enough light	Within 3 meters. Accuracy varies depending
	Image Sensor Technology 3μm x 3μm pixel size	on calibration, scene, and lighting condition.
Depth	Depth Field of View (FOV): Approx. 90° x 60° x 95°	
Components	Raspberry Pi 4B Intel RealSense D430	IMU Sensor 3 Vibration Sensors
Physical	Length x Depth x Height To be further determined	Power 5V, 2A

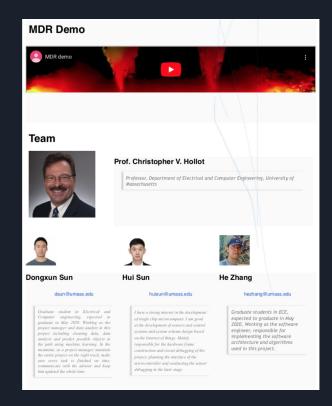
Issues

The depth video needs to have better fluidity and the rate of recognition needs to improve.

Breakdown of Tasks

- Hui Sun: Hardware Engineer
- He Zhang: Software Engineer generated the depth film
- Dongxun Sun: Project Manager, Software Engineer

Budget


- Raspberry Pi 4 Model B & SD Card: \$98
- Intel RealSense D435: \$180
- IMU Sensor: \$22
- Vibrator Sensor:\$10
- Others: \$20
- Totally: \$330

Future Plan

1. Make the device wearable

2. Optimize the algorithm

Team Website

The Project of Digital Guide Dog

There are about 10 million visually impaired people in the US. It a lways hard for them to go outside to fit in the world with all the inconveniences. They usually go out with guide dogs. In this project, we would like to create a system called "Digital Guide Dog" to offer them an easier way to avoid hitting any obstacles in a path.

How much does a guide dog cost?

The cost to put one guide dog team – as our guide dog recipients and their guide dogs are known – into service is \$48,000. That cost include the breeding, raising, and training of the dog, instruction for the guide dog user, and instruction for the guide dog team.

Thanks for your attention