
Part IV: Scattering and Interactions

• Generalities about scattering in semiconductors

• Electron-phonon interaction

• Scattering with ionized impurities

• Coulomb interactions among free carriers

• Radiative processes
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Generalities about scattering in semiconductors

We have so far considered ideal crystals at equilibrium and the elementary excitations associated with the ionic
degrees of freedom (phonons) and the electronic degrees of freedom (plasmons). But we have never considered
the possible interactions between these degrees of freedom. If we recall the discussion we had when dealing with
the crystal Hamiltonian (see pages 46-47 of the Notes), we have so far considered only electronic states computed
assuming the ions frozen in their equilibrium positions. We have later considered the ionic states associated with
the excitation of ions away from equilibrium (pages 150-156), but we have not considered the effects of this
displacement on the structure of the electronic states. Using first-order perturbation theory (or, equivalently, a
linear response approximation), we shall describe these effects as ‘collisions’ between electrons and phonons.
Collisions are indeed crucial phenomena in crystals which allow us to understand most of their properties at
finite temperatures. We shall be mostly interested in charge transport. In this context, collisions constitute the
factors limiting the conductivity of the crystals. In addition to electron-phonon collisions we shall also consider
the ‘scattering’ suffered by electrons in the field of an ionized impurity (such a dopant), the ‘transitions’ (more
than scattering or collisions) induced by electromagnetic fields (electron-photon or ‘radiative’ processes), and
electron-electron collisions which result from flucutations of the (Hartree or Hartree-Fock) mean field.
Fermi Golden rule will be our main tool to evaluate the frequency at which these processes occur. As we saw
before, if H′(r, t) ∼ Hqe

iq·reiωt is the perturbation, then the frequency at which this perturbation induces a
transition from a Bloch state |nk > in band n to a Bloch state |n′k′ > in band n′ is given by:

1

τ(nk)
=

2π

h̄

∑
k′
| < n

′k′|H′|nk > |2 δ[En(k)− En′(k
′
) + h̄ω] . (540)

Let’s consider the matrix element < n′k′|H′|nk >, since this is different from the ‘usual’ matrix element between
plane waves. Recalling the expression for Bloch waves

< r|nk > =
1

V 1/2
eik·r u(n)k (r) =

1

V 1/2
eik·r

∑
G

u
(n)
k+G eiG·r , (541)
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we can write:

< n′k′|H′|nk > =
1

V

∫
dr

∑
q

ei(k−k′+q)·r Hq u
(n′)∗
k′ (r) u(n)k (r) =

=
1

V

∑
q

∑
l

e
i(k−k′+q)·Rl Hq

∫
Ωcell

dρ e
i(k−k′+q)·ρ

u
(n′)∗
k′ (ρ) u

(n)
k (ρ) , (542)

having set r = ρ+ Rl. The sum over cells indices l yields (see page 101):

∑
l

e
i(k−k′+q)·Rl = Ncell

∑
G

δ(k− k′ + q + G) , (543)

so that:

< n
′k′|H′|nk > =

∑
G

Hk−k′+G
1

Ωcell

∫
Ωcell

dρ e
iG·ρ

u
(n′)∗
k′ (ρ) u

(n)
k (ρ) =

∑
G,n′

Hk−k′+G In′,k′;n,k , (544)

having used the procedure followed at page 101 to reach Eq. (173) in getting the last expression for the integral
involving Bloch functions. Notice that the matrix element conserves momentum – as for electrons in free space –
but only up to a wavevector G of the reciprocal lattice, consistent with the fact that k is the ‘crystal’ momentum.
The factor I is called the ‘overlap factor’ since it is the overlap integral over the WS cell of the initial and final
Bloch components. For perturbation of very long wavelength it is easy to see that I ∼ 1, so it can be ignored.
It is also customary to separate the contributions with G = 0 in Eq. (544) from those with G 	= 0. The former
are called Normal processes, the latter (which involve a momentum transfer q = k′ − k outside the first BZ, so
that if must be remapped into the zone by adding a G vector) are called Umklapp processes. Also, processes
for which n = n′ are called intraband transitions, while interband processes are, quite obvioulsy, those for which
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n 	= n′. Finally, in many-valley semiconductors (for example, think of the 6 minima of the conduction band in
Si), intraband processes such that the initial and final states, |k > and |k′ > are close to the same minimum
(‘in the same valley’) are said to be intra-valley processes, while when |k > and |k′ > belong to different valleys
the process is said to be an inter-valley process. Static perturbations (ω = 0) indude elastic transitions in which
the energies of the initial and final states, En(k) and En′(k

′), are equal. In inelastic process, instaed, energy is
lost or gained during the scattering process. Scattering with the Coulomb field of an ionized impurity is a typical
example of elastic process, emission of a phonon a typical inelastic process.
We have so far considered Eq. (540) in the context of ‘conventional’ Quantum Mechanics. However, Fermi Golden
Rule applies equally to the many-body situation tackled by second quatization. The only difference will be the
nature of the final and initial states which will be vectors in Fock space, as we shall see below.
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Electron-Phonon interactions

We now consider the interaction between electrons and phonons. Basically there are two types of interactions:
The first, called ‘deformation potential’ interaction, is due to the effect which displacement of the ionic potential
causes on the electron energy. It is also called a ‘nonpolar’ interaction, because the electrons do not feel any
long-range electric (dipole) field, but feel simply the perturbation caused by the fact that the ions in the electronic
Hamiltonian are not frozen in their equilibrium positions Rlγ . Both acoustic and optical phonons cause this
interaction, although there are subtle differences between the two. A second type of interaction is, instead, of
a ‘polar’ nature: Phonons, especially optical phonons, cause a long-range dipole field which we can be treated
much in the same way as we treated plasmons. Electrons are scattered by this field which oscillates in time and
space as eiq·reiωqt, where h̄ωq is the dispersion of the optical phonons. This is also known as the ‘Fröhlich’
interaction, from the name of the first person who discussed it. Acoustic phonons can also induce an electric field
in piezoelectric materials (such as the quartz form of crystalline SiO2, as is well known from quartz watches).
Therefore, this is called the ‘piezoelectroc interaction’. We shall discuss below in some detail the nonpolar
interaction between electrons and acoustic phonons and polar Frölich scattering between electrons and longitudinal
optical phonons.

• Nonpolar (deformation potential) interaction
We have seen before that the electronic component of the electronic Hamiltonian, Eq. (88) of the Notes, Part
1, can be written as (see Eqns. (353) and (364) of the Notes, Part 3):

Hel =

∫
dr
[(
− ih̄

2m

)
∇π(r) · ∇ψ(r) − 1

h̄
π(r)V (r)ψ(r)

]
=
∑
nk

Enkc
†
nkcnk , (545)
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while the ionic component takes the form (see Eq. (121) and (132) of the Notes, Part 3):

Hion =
1

2

∑
lγ


P 2

lγ

Mγ
+

∑
l′	=l,γ′γ

∑
ij

∂2V
(lat)

γ′ (R(0)
lγ
− R(0)

l′γ′)

∂Rlγi ∂Rl′γ′j
δRlγi δRl′γ′j


 =

∑
ηq

h̄ωqη b
†
qηbqη .

(546)
We must now find the effect of the displacement of the ions away from their equilibrium position on the electron
energy.

Proceeding as we have done in dealing with phonons, we consider the change of the ionic potential up to terms
which depend linearly on the ionic displacement:

δV (r) ≈
∑
lγ

∇Vγ(r− Rlγ) · δRlγ . (547)

Note that here we are assuming that, when displaced, the ionic potential does not change but simply shifts rigidly.
This is known as the ‘rigid ion’ approximation and it ignores the fact that valence electrons will re-distribute
themselves as the ions move away from their equilibrium positions (which is in essence dielectric screening). We
may consider this as a higher-order effect ignored in our linear-response picture. But, clearly, this remains an
approximation. Let’s express the displacement of the ion γ in cell l in terms of the creation and annihilation
operators of phonons of momentum q and branch η via Eqns. (358) and (362) of the Notes, Part 3 (see also
Eq. (402)):

δV (r) ≈
∑
lγ

1

(NMγ)1/2
∇Vγ(r−Rlγ) ·

∑
qη

e(η)qγ Qqγ eiq·Rl =

=
∑
qη

∑
lγ

1

(NMγ)1/2

(
h̄

2ωqη

)1/2

(bqη + b†qη) e(η)qγ · ∇Vγ(r− Rlγ) e
iq·Rl . (548)
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Let’s now express the ionic potential in terms of its Fourier components:

Vγ(r−Rlγ) = Vγ(r− Rl − τγ) =
∑
κ

Vκγ eiκ·(r+Rl+τγ) , (549)

so that
∇Vγ(r− Rl − τγ) = i

∑
κ

κ Vκ,γ eiκ·(r+Rl) , (550)

having absorbed the factor eiκ·τγ inside the Fourier component Vκ,γ .

The correction to the energy of the electrons due to the displacement Eq. (548) results simply from the

electrostatic energy of the electron density ρ(r) = ψ†(r)ψ(r) interacting with the potential energy δV (r).
Thus:

Hep =

∫
dr ψ†(r) δV (r) ψ(r) , (551)

which should be regarded as the perturbation term due to the electron-photon coupling. Using the Fourier
expansions

ψ(r) =
1

V 1/2

∑
nk

cnk e
ik·r

uk(r) , (552)

and

ψ
†
(r) =

1

V 1/2

∑
nk

c
†
nk e

−ik·r
u
∗
k(r) , (553)

we have (omitting the band-index n for simplicity):

Hep =
1

V

∑
kk′

∑
qη

∑
lγ

1

(NMγ)1/2

(
h̄

2ωqη

)1/2

eiq·Rl c†
k′ (bqη + b†qη) ck e(η)qγ · (iκ) Vκ,γ ×

×
∫

dr eiκ·(r−Rl) u∗k′(r) uk(r) e
i(k−k′)·r . (554)

ECE618 Spring 2010 209



Now notice that, similarly to Eq. (543):

∑
l

e
i(q−κ)·Rl = Ncell

∑
G

δ(q− κ+ G) , (555)

while the integral involving Bloch functions vanishes unless k′ − k + κ = G (see Eq. (173), page 101 of the
Notes). Thus:

Hep =
∑
kqG

(
N

Mcell

)1/2 ∑
γη

(
Mcell

Mγ

)1/2 ( h̄

2ωqη

)1/2

i(q + G) · e(η)qγ Vq+G,γ Ik+q+G,k ×

× c
†
k+q+G (bqη + b†qη) ck . (556)

In order to simplify the notation, we shall make the convention that all phonon wavevectors must be mapped
into the first BZ, whenever necessary. Let’s define the electron-phonon coupling constant as:

Aqη =
∑
Gγ

(
h̄

2ρxωqη

)1/2

i(q + G) · e(η)qγ Vq+G,γ , (557)

having absorbed the factor (Mcell/Mγ)
1/2 as a different normalization of the Fourier transform of the ionic

potential (so that it’s normalized to the atomic volume rather than to the cell volume) and having converted
the wavefunction (or field) normalization from a box-normalization to the infinite-volume normalization, so that
the crystal mass density ρx appears in this expression. Thus,

Hep =
∑
kqη

Aqη Ik+q,k c
†
k+q (bqη + b

†
qη) ck . (558)
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Note the physical meaning of Eq. (558): It represents the annihilation of an electron of momentum k, the

creation (the term b
†
qη) or annihilation (the term bqη) of a phonon of branch η and momentum q, and, finally,

the creation of an electron with momentum k+ q. Thus, it can be viewed as the transfer of momentum q from
or to a phonons to/from an electron. Note that the only non-zero matrix elements of the Hamiltonian Eq. (558)
are those which differ by one phonon and having an electron state |k > swapped with a state |k + q >. For
absorption processes only terms of the following form will be nonzero (ignoring the branch-index η to simplify
the notation):

Aq < Nq−1|bq|Nq >< nk+q+1;nk−1|c†k+qck|nk+q, nk > = Aq

√
(1− nk+q)nkNq , (559)

while for emission processes the only non-vanishing matrix elements will be of the form:

Aq < Nq+1|b†q|Nq >< nk+ q+1;nk− 1|c†k+qck|nk+q, nk > = Aq

√
(1− nk+q)nk(1 +Nq) ,

(560)
having indicated with nk the electron number and with Nq the phonon number.

Regarding the normalization of Fock states for bosons: Consider the state containing two phonons, |2 >= b†b†|0 >, having omitted

the index q. Let’s compute its norm using the commutation rule bb† = 1 + b†b:

< 2|2 > = < 0|bbb†b†|0 > = < 0|b(1 + b
†
b)b
†|0 > < 0|bb†|0 > + < 0|bb†bb†|0 > =

= 1 + < 0|bb†(1 + b†b)|0 > = 1 + < 0|bb†|0 > = 2 . (561)

In general one can follow the same procedure to find (try it with < 3|3 >):

< N |N > = N ! . (562)

Now consider, for example, the term < N − 1|b|N > in Eq. (559) above:

< N − 1|b|N > =
1

[(N − 1)!N !]1/2
< 0|bN−1bb†N |0 > =

1

[(N − 1)!N !]1/2
< 0|bNb

†N |0 > =
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=

(
N !N !

(N − 1)!N !

)1/2
< N |N > = N1/2 . (563)

Note that the terms involving the electron number simply represent the effect of ‘Pauli blocking’ (we can create
an electron with wavevector k+ q only if that state is available (that is: nk + q = 0). More interesting is the
appearance of the phonon numbers (which arise from the normalization mentioned at page 147 of the Notes):
When squared inside Fermi Golden Rule, they give raise to the ‘Einstein’ coefficients Nq for absorption, Nq +1
for emission: Stimulated emission is simply a result of the commutation rules!

• Deformation potential and Harrison interaction.

The problem remains of calculating the ‘coupling constant’Aq. In principle, it may be computed from the known
ionic (pseudo)potentials Vγ . The task is not easy and these calculations have been performed numerically only
in the past two decades, thanks to the increased computing power invailable. However, Bardeen and Shockley in
1955 have proposed an elegant method to estimate the electron-phonon matrix element when electrons are close
to the bottom of the conduction band (or holes close to the top of the valence band) from known parameters
known as ‘deformation potentials’ (hence the name of this type of interaction).
When we compress or dilate a crystal, say by changing the lattice constant a → a + u, the band structure
changes. In particular, the energy of the conduction-band minimum moves by an amount

∆Ec = Ec(a+ u)− Ec(a) ≈
dEc

da
u .

In 3D, ∆Ec is proportional to the change of the volume ∆V which, for a lattice displacement u is given by
∆V = V∇ · u, so that

∆Ec = V
dEc

dV
∇ · u ∼ q ∆ac . (564)

The constant V dEc/dV is called ‘deformation potential’ for the conduction band. Let’s denote it here by ∆ac,
although, depending on the particular valley and valence/conduction band considered, several other symbols are
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used in the literature (such as E1 or Ξ).
If we consider phonons of wavelength sufficiently long (that is, spanning many cells), we can approximate
the effect of the density-wave associated with acoustic phonons (consisting of alternating crests/troughs of
compression/dilation/compression/dilation....) as having locally the same effect of a uniform, global compression
or dilation of the crystal. So we can identify the uniform displacement u above with the ionic displacement
δRlγ and we can express the local shift of the CB-edge by the polarization ξq. This ‘fluctuating’ CB-edge is
what causes the electrons to scatter. Thus, the squared matrix element for electron/acoustic-phonon scattering
has the form:

| < k′|Hac|k > |2 =
h̄∆2

acq
2

2V ρωq

(
nq +

1

2
± 1

2

)
,

where ρ is the density of the crystal, the ‘plus’ sign refers to emissions, the ‘minus’ sign to absorption processes.
Note that the frequency of acoustic phonons (in Si there are 2 transverse modes – TA – and a single longitudinal
mode – LA) can be well approximated by a linear relation ωq ≈ csq, where cs is the sound velocity. Therefore
the matrix element grows with momentum transfer and we see that scattering with acoustic phonons is a
‘large-angle scattering’, very effective in ‘randomizing’ the electron direction and momentum. This has a great
effect on the mobility. A more correct expression for the deformation potential interaction in the ellipsoidal
valleys in Si and Ge has been given by Herring and Vogt in 1955. In terms of the uniaxial shear and dilation
deformation potentials Ξu and Ξd respectively, the isotropic deformation potential ∆ac appearing in Eq. (564)
above is replaced by:

∆LA = Ξd + Ξu cos
2
θq , (565)

for collisions assited by LA phonons and

∆LA = Ξu cos θq sin θq , (566)

where θq is the angle between the longitudinal axis of the ellipsoid and the phonon momentum q.
A similar expression, due to Harrison, holds for optical phonons simply replacing the frequency ωq and
deformation potential ∆ac with their ‘optical’ counterparts ωop and ∆op. Note that the main difference lies
in the fact while for acoustic strain the energy-change depends on the gradient of the displacement (the strain
∝ ∇ ·u), for optical distortions of the lattice the energy change is affected mainly by the displacement itself, so

ECE618 Spring 2010 213



the q-dependence in Eq. (564) above disappears. In the literature usually one finds many ‘optical deformation
potentials’. Usually the notation (DtK)op is used, defined as ∆op(ωop/cs), so that:

| < k′|Hop|k > |2 =
(DtK)2oph̄

2V ρωop

(
nop +

1

2
± 1

2

)
.

The calculation of the scattering rates for emission and absorption of optical phonons is relatively simple, since
the frequency of optical phonons is roughly independent of q, and so in the occupation number nop. Thus,
with simple integrations:

1

τop(E)
=

(DtK)2opm
∗3/2

21/2πh̄3ρωop

[
nop(E + h̄ωop)

1/2 + (1 + nop)(E − h̄ωop)
1/2

]
,

where, of course, emission should be included only if E > h̄ωop.
For acoustic phonons things are more complicated, since the phonon energy depends on the phonon wavevector
q and so does the Bose factor nq. A common approximation embraced to simplify the problem is to assume
that the phonon energy is smaller that the thermal energy kBT (at sufficiently low T and for sufficiently small
q), so that nq ≈ kBT/(h̄ω) = kBT/(h̄csq) and to ignore also the energy lost or gained in a collision, if the
phonon energy is much smaller then the electron energy. These two approximations are called the ‘equipartition’
and the ‘elastic’ approximations, respectively. Having made these approximations one has:

1

τac(E)
=

21/2∆2
acm

∗3/2kBT
πh̄4ρc2s

E1/2 .

Nonpolar scattering with acoustic phonons controls the low-field electron mobility in nonpolar semicondecutors,
such as Si and Ge. Also important is intervalley scattering assisted by both acoutic and optical phonons. Note,
however, that by symmetry considerations Harrison scattering in the six Si X-valleys vanishes. The figure below
shows the total electron-phonon and hole-phonon scattering rates at 300 K in Si calculated using the nonlocal
empirical pseudopotential band structure.
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• Fröhlich interaction.
In polar semiconductors optical phonons do generate a long-range dipole fields with which electrons interact.
In order to evaluate the interaction Hamiltonian, first let’s recall that only longitudinal modes give raise to a
dipole field (see page 169). The dipole field associated with LO phonons will onviously be proportional to the
displacement,

P = Bq (bq + b
†
q) , (567)

having omitted the index η since we deal only with the LO branch (there’s only one LO branch in the
semiconductors we are interested in, all having 2 ions in each unit cell).
In order to evaluate the coupling constant Bq we can proceed as follows (see the analogous procedure at page
148 of the Notes). Let’s write the electrostatic potential due to the dipole field caused by the LO phonons as
well as the (plasma) response of the carriers, if any:

φq(r, t) = φ
(0)
q cos(q · r− ωLOt) . (568)

Let’s now consider the energy associated with this potential. Since phonons and plasmons in the harmonic and
linear-response approximations, respectively, are represented as harmonic oscillations, the time-averaged total
energy associated with these excitations is simply twice the time-averaged potential energy, < Uq >. This, in
turn, is the electrostatic (self)energy of the polarization charge density ρq(r, t) in the presence of the potential
φq(r, t) caused by the polarization charge itself. We may express this potential energy in two alternative
equivalent ways: From the expression (568) for the potential, the density of the polarization charge associated
with the LO mode can be obtained from the Poisson equation

ρq(r, t) = ε∇2φq(r, t) , (569)

so that over a volume Ω:

< Wq > = 2 < Uq > =
2

Ω

∫
Ω
dr φq(r, t)ρq(r, t) =

2

Ω
εq

2
φ
(0)2
q

∫
Ω
dr cos

2
(q ·r) = εq

2|φ(0)q |2 .
(570)
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Alternatively, we can express < Wq > in terms of the electrostatic energy of the field Eq = −∇φq:

< Wq > =
2

Ω

〈∫
Ω
dr ε |Eq(R, t)|2

〉
, (571)

which yields the same result of Eq. (570) above. We now use a semiclassical argument as our final step: We set
the quantity < Wq > equal to the zero-point energy, h̄ωLO/2, of the quantized excitation. Thus:

φ2q =
h̄ωLO

2q2ε
. (572)

Before identifying this with the coupling constant Bq we must recall that the field φq is associated not only
to the LO phonons, but it includes also the possible response of free carriers and of additional ionic modes.
Whatever we include is determined by our choice of ε. In order to isolate the contribution of the LO modes,
note that if we use in Eq. (572) the static dielectric function εlow = ε(ωlow) evaluated at a frequency
ωlow << ωLO, then we allow the LO phonons to respond fully. If, on the other hand, we set εhi = ε(ωhi)
evaluated at a frequency ωhi >> ωLO, then we prevent the LO phonons from responding. Therefore,

φ
2
q = e

2 h̄ωLO

2q2

(
1

εhi
− 1

εlow

)
, (573)

accounts only for the fraction of the potential energy due to the LO phonons alone. Therefore, identifying the
expression for φq above with the coupling constant Bq in Eq. (567), we arrive at the following expression for
the interaction Hamiltonian:

H(LO)
ep = e2

∑
kq

[
h̄ωLO

2q2

(
1

εhi
− 1

εlow

)]1/2
c
†
k+q(bq + b†q)ck . (574)

When only a single LO mode is present and in the absence of free carriers able to screen the interaction, typically
one sets εhi = ε∞ and εlow = ε0.
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The calculation of the scattering rate for this interaction proceeds in the usual way. Considering first emission
processes, we have for the rate at with an electron with wavevector k emits any LO phonon:

1

τ (em)(k)
=

2π

h̄

∫
dq

(2π)3
| < Nq−1;nk+q, 1−nk|H(LO)

ep |Nq; 1−nk+q, nk > |2 δ[E(k)−E(k+q)−h̄ωLO] ,
(575)

having considered the only matrix elements which will give a nonvanishing contribution and having assumed
dispersionless LO phonons. Thus, inserting Eq. (574) into (575) we have:

1

τ (em)(k)
=

2π

h̄

e2h̄ωLO

2

(
1

εhi
− 1

εlow

)
(1+NLO)

∫
dq

(2π)3
1

q2
δ[E(k)−E(k+ q)− h̄ωLO] .

(576)
Now let’s express q in polar coordinates with the z-axis along k. Thus, in the simple case of parabolic, spherical
bands with effective mass m∗, we can write the argument of the delta-function as:

E(k)− E(k + q) = −h̄
2q2

2m∗
− h̄2kq

m∗
cos θ , (577)

so that, after the trivial integration over the azimuthal angle φ we have:

1

τ (em)(k)
=

e2ωLO(1 +NLO)

4π

(
1

εhi
− 1

εlow

) ∫ ∞
0

dq

∫ π

0
dθ δ

[
h̄2q2

2m∗
+

h̄2kq

m∗
cos θ + h̄ωLO

]
.

(578)
Now consider the integral over the polar angle: Changing the integration variable θ to x = (h̄2kq/m∗) cos θ,
this integral becomes:

∫ π

0
dθ δ

[
h̄2q2

2m∗
+

h̄2kq

m∗
cos θ + h̄ωLO

]
=

1

a

∫ a

−a
dx δ(x+ b) , (579)
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with a = h̄2kq/m∗ and b = h̄2q2/(2m∗)+h̄ωLO. This integral yields 1/a = m∗/(h̄2kq) if the argument
of the delta-function vanishes for some x in the interval [−a,+a], that is for

|a| ≥ |b| → h̄2q2

2m∗
+ h̄ωLO ≤

h̄2kq

m∗
,

or
q− ≤ q ≤ q+ , (580)

with

q± = k ±
(
k
2 − 2m∗ωLO

h̄

)1/2

=

(
2m∗

h̄2

)1/2

[E
1/2 ± (E − h̄ωLO)

1/2
] , (581)

provided E > h̄ωLO (otherwise the integral vanishes, expressing the fact that the electron must have a kinetic
energy larger than h̄ωLO to emit a phonon). Thus, finally, for E > h̄ωLO:

1

τ (em)(k)
= θ(E − h̄ωLO)

e2m∗ωLO(1 +NLO)

4πh̄2k

(
1

εhi
− 1

εlow

) ∫ q+

q−
dq

1

q
=

= θ(E− h̄ωLO)
e2m∗ωLO(1 +NLO)

4πh̄2k

(
1

εhi
− 1

εlow

)
ln

(√
E +

√
E − h̄ωLO√

E −√E − h̄ωLO

)
,

(582)

where the function θ(x) is the Heavyside step-function, θ(x) = 1 for x > 0, θ(x) = 0 for x ≤ 0. For
absorption processes we find, following identical steps:

1

τ (abs)(k)
=

e2m∗ωLONLO

4πh̄2k

(
1

εhi
− 1

εlow

)
ln

(√
E + h̄ωLO +

√
E√

E + h̄ωLO −
√
E

)
. (583)
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Note the typical behavior of Coulomb processes: The scattering rate increases at first with the density of states
for small E, but at larger kinetic energy it decays as 1/k ≈ 1/

√
E. The reason is quite simple: At increasingly

large kinetic energies any Coulomb potential appears to be an increasingly smaller relative perturbation, thus
affecting the electron to an increasingly smaller extent.

Fröhlich scattering, obviously absent in covalent materials like Si and Ge (for which the absence of ionic
polarization implies εlow = εhi), is the dominant scattering process affecting the mobility of III-V compound
semiconductors. It also enters quite heavily in the dielectric breakdown of insulators (usually ionic materials –
often amorphous) at very high electric fields: As long as the electric field is low enough, LO-scattering keeps
the electrons at relatively low kinetic energies. In this low-energy range the scattering rates 1/τ(E) increases
with increasing E. But if the electric field increases above some critical value, electrons will be accelerated to
the range of higher kinetic energies in which 1/τ(E) decreases with increasing E: As they reach higher E,
electrons will scatter less frequently, thus losing a smaller fraction of their kinetic energy to LO-phonons, thus
gaining from the field even more kinetic energy,... etc. This diverging process, called electron run-away, could
trigger dielectric breakdown in the absence of additional inelastic processes.

Finally, recall that we have so far ignored completely the overlap integral Ik+q+G,k, having taken it as equal
to unity. Just to show that this approximation may be less than satisfactory in some important case, it is worth
stating – without proof – a result due to Fawcett: For polar materials characterized by a nonparabolic conduction
band with nonparabolicity parameter α, the scattering rate give by Eq. (583) above should be replaced by the
following expression:

1

τ(k)
= θ(E′)

e2ωLOm
∗1/2

25/2πh̄

(
1

εhi
− 1

εlow

)
1− 2αE′

γ(E)
cpo ×
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×
{
apo ln

[
|γ(E)1/2 + γ(E′)1/2|
|γ(E)1/2 − γ(E′)1/2|

]
+ bLO

}
(NLO+1/2±1/2) γ(E′)1/2(1+2αE′) ,

(584)
where E′ = E(k) ∓ h̄ωLO and γ(E) is simply the parabolic dispersion h̄2k2/(2m∗). The effect of the
overlap integral is seen in the terms:

apo = 2(1− αE′)(1− αE) − α[γ(E) + γ(E′)]2

bpo = 2α[γ(E)γ(E′)]1/2 [4(1− αE′)(1− αE) − α[γ(E) + γ(E′)] ,
and

cpo = [4(1− αE
′
)(1− αE) (1− 2αE

′
)(1− 2αE)]

−1
.

The step function θ(E′) is obviously always unity for absorption processes, but it accounts for the energy
threshold for emission. This expression is rigorously valid for spherical valleys, while it can be derived for arbitrary
ellipsoidal valleys by approximating

q ≡ |k− k′| �
(
md

mel

)1/2

q
∗
,

in the denominator of the matrix element given in Eq. (574).

• Dielectric screening and coupled plasmon/LO-phonon modes.

Consider now a polar material (say, as usual, GaAs, to fix the ideas) in which electrons are affected by polar
Fröhlich scattering. Suppose that the semiconductor is n-type doped, so that there is a uniform density of n
electrons per cubic centimeter. Clearly, the interaction between electrons and the LO phonons will be screened
by these free electrons, since the electrons feel the dipole field associated with the LO phonons and respond to
it by screening it. However, things are a little complicated. For very small electrons densities, the interaction
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can be assumed to be essentially unscreened: The plasma frequency is very small (as it vanishes as n1/2 as
n→ 0), so that the free electrons cannot respond to the oscillating dipole field of the LO phonons. But if we

consider increasing densities, we soon reach a situation where the plasma frequency, ωP = [e2n/(ε∞m∗)]1/2
and the frequency ωLO of the phonons become comparable. What this means physically is that the field due
to the LO phonons excites the plasma of the free electrons. This plasma responds near resonance causing, in
turn, the phonons to oscillate differently under the action of the longitudinal field of the plasma oscillations.
In other words: plasmons affect phonons and phonons affect plasmons. The two modes are not decoupled (or
’independent’) any longer. Rather, the system will exhibit oscillations at some new frequency and we cannot
talk any more of LO phonons and plasmons as independent entities. The excitations of the systems are now
‘coupled phonon-plasmon modes’.
In order to evaluate the frequency and the nature of these coupled modes we must go back at the basic definition
of longitudinal excitations. We must recall that when we discussed the dielectric response of the ions, we saw
that longitudinal excitations are those for which the dielectric function vanishes. In this case, indeed, we can
have a non-zero electric field E with a vanishing macroscopic displacement field D. The full dielectric function
of the system, accounting for both the ionic and the electronic response can be obtained from Eqns. (191) and
(231) of the Notes, Part III, in the long-wavelength limit:

ε(ω) = ε∞

(
1− ω2

P

ω2

)
+ (ε0 − ε∞)

ω2
TO

ω2
TO
− ω2

. (585)

In order to calculate the frequency of the longitudinal modes we find that ε(ω) = 0 for ω = ω±, where ω±
are the two solutions of the algebraic equation:

ω4 − ω2(ω2
P + ω2

LO) + ω2
Pω

2
TO = 0, (586)

or:

ω
2
± =

1

2

{
(ω

2
P + ω

2
LO) ±

[
(ω

2
P + ω

2
LO)

2 − 4ω
2
Pω

2
TO

]1/2}
. (587)
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Note that for n→ 0 we have:
ω2
± → (1/2)(ω2

LO ± ω2
LO) , (588)

while in the opposite limit n→∞ we have:

ω
2
± → (1/2)[ω

2
P ± (ω

2
P − 2ω

2
TO]) , (589)

so that the lower-frequency mode has a dispersion ω− vanishing in the limit of small density and asymptotically
approaching the unscreened phonon frequency ωTO in the limit of very large densities. In the same limits the
dispersion of the high-frequency approaches ωLO and ωP , respectively. The top-left frame of the figure at page
226 shows the dispersion of the two modes as a function of electron density for the case of GaAs.

The calculation of the rate at which electrons scatter with these modes can proceed along the same path we
have followed to reach Eq. (583), but a few comments and modifications are necessary. First, neither of the two
modes is purely a phonon or a plasmons. One must sort out the plasmon and phonons content of each coupled
mode in order to evaluate its coupling with the electrons. The text by Ridley (page 332) discusses this issue,
as well as the scattering strength, from a vary nice ‘mechanical’ perspective. Here we follow a more empirical
approach. It may be shown (but we’ll state the results without a rigorous proof) that the phonon content of
each mode is given by:

P (ω±) =
ω2± − ω2

P

ω2
+ − ω2−

. (590)

The result should be at least ‘intuitively’ correct: If the dispersion tracks exactly the plasma dispersion, the
excitations is indeed a pure plasmon and its phonon content vanishes. Moreover, if we define similarly the
plasmon content as

Q(ω±) =
ω2± − ω2

LO

ω2
+ − ω2−

, (591)

we have P (ω±) = 1 − Q(ω±) from Eq. (589), which shows that the plasmon and phonon content of each
mode do indeed add up to unity, as it should be. The top-right frame of the figure at page 226 shows that
the high-frequency mode is mostly phonon-like at small densities, but it becomes mostly a plasmon at large
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densities. The opposite is true for the low-frequency mode.
The scattering strength can be estimated following the semiclassical approach at pages 216 and 217: We may
calculate the total energy of the field associated with each mode and set it equal to the sero-point energy h̄ω±/2
of the mode. We can then isolate the contribution of the phonon-component of each mode by considering the
dielectric response when the phonon responds fully, the response when the phonon is assumed to be ‘frozen’,
and, finally, take the difference between these two fields and assign it exclusively to the phonon contribution to
the field. Thus, the ‘bare’ scattering strength

h̄ωLO

(
1

εhi
− 1

εlow

)
(592)

of the ‘bare’ (i.e., unscreened) LO-modes is replaced by:

S(ω±) = P (ω±) h̄ω±
(

1

εhi(ω±)
+

1

εlow(ω±)

)
, (593)

where

εhi(ω±) = ε∞

(
1− ω2

P

ω2±

)
, (594)

(the limit ω → ∞ has been taken in the ionic part of Eq. (585) to account for the fact that the phonon does
not respond) and

εlow(ω±) = ε∞

(
1− ω2

P

ω2±

)
+ (ε0 − ε∞) = ε0 − ε∞

ω2
P

ω2±
, (595)

having taken the limit ω → 0 in the ionic part of Eq. (585) to account for the fact that the phonon responds
fully. The last (bottom) frame of the following figure shows the scattering strength for both modes. Of interest
is the comparison with the bare scattering strength, Eq. (592) (yellow line): The ‘screened’ scattering strength
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is larger than the unscreened one! This phenomenon – as far as I know, first noted by Ridley himself, but I am
sure someone else must have noted it before – is called ‘anti-screening’, for obvious reasons.
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Scattering with Ionized Impurities

Semiconductors are obviously important because of the possibility of rendering them p-type or n-type
conductors when doping them. Thus, in most applications electrons and holes must carry current in the presence
of a large concentration of dopants. By definitions, we want these impurities to be ionized (so that the associated
free carriers contribute to the current carrying process). Thus, to each impurity there will be associated a Coulomb
field which, in the absence of screening, is long-range. Charge carriers will obviously be affected by this field. Here,
we evaluate the scattering rate between electrons and the field due to these ionized impurities.

Let’s assume that we have ND ionized impurites in a volume V and that they are located at positions ri for
i = 1,ND. If V (r− ri) is the potential due to impurity i, then the Hamiltonian expressing the electron-impurity
interactions will be, obviously,

Himp =
e

V

ND∑
i=1

∫
dr ψ†(r) V (r− ri) ψ(r) . (596)

Before proceeding we must pause and discuss a major difference between electron-phonon and electron-impurity
scattering. Scattering with phonons – as with any other excitation with internal degrees of freedom – is inherently
‘phase-breaking’. In other words, it is irreversible in time, as a single collision removes from the system information
about its phase: We assume that the thermal bath to which phonons belong is so large (that is, it has so many
degrees of freedom) that we cannot possibly keep track of the information carried by a single phonons. This
information is lost – either because of our inability to record this information, or because of the fast ‘decoherence’
or loss of information intrinsic to any large system – so that the system behaves irreversibly, like any thermodynamic
system. Impurities, on the other hand, do not carry any internal degree of freedom: The momentum transferred by
an electron to the impurity is so tiny (recall: The impurity is attached to the whole lattice, so that the momentum
transferred to the lattice is of the order of mel/Mlattice ≈ 0) that we can consider it as a fixed (in space and
time) potential. In principle, we could solve the exact Schrödinger equation in the presence of the potential due to
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all of the impurities and we would have a perfectly reversible, non dissipative system. In other words, we could lump
the Hamiltonian (596) into the unperturbed Hamiltonian and stop talking about impurity scattering altogether.
The effect of the presence of the impurities in transport would be that of modiying the wavefunctions, and so the
transmission amplitude across the sample, via the coherent interaction between the electron wavefunction and the
impurity potential.
However, some sort of loss of information is likely to arise from another consideration. In writing Eq. (596) we
have assumed that the positions of all the impurities are precisely known. In experimental situations this is clearly
not true: One must regard experiments on charge transport in a given sample as an ensemble-average over many
configurations α, each configuration corresponding to a different set of random (but still yielding the same average
impurity density) impurity positions, {ri}α. One may regard this averaging either over many different, equally
‘prepared’ samples, or as an average over different (microscopically large but macroscopically small) parts of the
sample. In doing this average, all interference among partial waves scattered from different impurities is lost (or
‘averaged out’), as in the usual random-phase approximation. Thus we are brought to an average expression for
Eq. (596):

〈Himp〉ensemble =
eND

V

∫
dr ψ†(r) V (r) ψ(r) = nD

∫
dr ψ†(r) eV (r) ψ(r) , (597)

where nD is the average impurity concentration.
To start, let’s consider the impurity potential V (r) as the bare Coulomb potential

eV (r) =
Ze2

4πε0r
, (598)

where Z is the ionization of the impurity (typically Z=1) and ε0 is the static, valence band dielectric constant of
the semiconductor. The Fourier components of V are (with the ‘regularization trick’ we discussed before, since
the ‘actual’ Fourier components do not exist):

eVq =
Ze2

ε0q2
. (599)
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Now we can follow the path we’ve followed from Eq. (542) through (544) to obtain (dropping the symbol of
ensemble-average, we shall assume as implicitly taken in the following):

Himp = e nD
∑
kqG

Ik+q+G;k c
†
k+q+G Vq ck , (600)

having assumed that only intra-band process are significant. This is indeed true, since the Coulomb potential not
sufficiently strong to trigger inter-band processes. Assuming Normal processes and ignoring the overlap factor, we
may write more simply:

Himp ≈ e nD
∑
kq

c
†
k+q Vq ck . (601)

We are now ready to calculate the scattering rate:

1

τ(k)
= nD

2π

h̄

∑
q
| < k + q|Himp|k > |2 δ[E(k + q)− E(k)] =

Z2e4nD

4π2ε20h̄

∫
dq

δ[E(k + q)− E(k)]

q4
=

Z2e4nD

2πε20h̄

∫ ∞
0

dq

q2

∫ π

0
dθ sin θ δ

(
h̄2q2

2m∗
+

h̄2kq

m∗
cos θ

)
.

(602)
Now, with the usual change of integration variable x = (h̄2kq/m∗) cos θ inside the angular integral we have:

∫ ∞
0

dq

q2

∫ π

0
dθ sin θ δ

(
h̄2q2

2m∗
+

h̄2kq

m∗
cos θ

)
=

m∗

h̄2k

∫ 2k

0

dq

q3
, (603)

(the upper integration limit 2k comes from the fact that we require the argument of the δ-function to vanish in
order to have a non-zero contribution and this happens only when cos θ ≤ 1 or q ≤ 2k), so that:

1

τ(k)
=

Z2e4m∗nD
2πε20h̄

3k

∫ 2k

0

dq

q3
=

Z2e4m∗1/2nD
23/2πh̄2ε20

1

E1/2

∫ 2k

0

dq

q3
. (604)
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The obvious problem with this expression lies in the fact that the integral diverges! This is a well-known result:
The quantum-mechanical cross section for scattering with a bare Coulomb potential (in first-order perturbation
theory, also known as the Born approximation) is infinity. Clearly, we must consider the effect of screening on the
bare potential of the impurities. Several models have been proposed in the past, each with its own merits and
especially accurate in a limited range of impurity density.

• Brooks-Herring model.
The first model we consider is based on the simple assumption that the impurity potential, Eq. (598), should be
screened statically by the static free-carrier dielectric function with screening wavevctor β given by Eq. (449) or
(451) (Notes, Part 3; see also Eqns. (498) and (499)). Thus:

eVq =
Ze2

ε0(q2 + β2)
. (605)

Equation (602) then becomes:

1

τBH(k)
=

Z2e4nD

2πε20h̄

∫ ∞
0

dq
q2

[q2 + β2]2

∫ π

0
dθ sin θ δ

(
h̄2q2

2m∗
+

h̄2kq

m∗
cos θ

)
=

2Z2e4m∗nD
πh̄3ε20

k

β2(β2 + 4k2)
. (606)

This expression was first derived by Brooks and Herring, hence the subscript BH in the formula above. Note that
screening, via the term β, removes the divergence of the integral at q → 0, that is, at long distances. Indeed
screening makes the Coulomb potential a ‘short range’ potential. The source of the divergence we have met before
was due to the fact that electrons feel the potential of the impurity at all distances: Screening avoids this problem.

ECE618 Spring 2010 230



• Conwell-Weisskopf model.
Mahan, however, has noticed an inconsistency in the way screening is employed in the Brooks-Herring approach:
On the one hand we assume that electrons are plane wave in deriving the scattering rate (606): Indeed our
initial and final states are pure plane waves and all electrons participate equally in the scattering process, all
of remaining pure plane waves. On the other hand, we also assume that all electrons participate fully in
the screening process. We are clearly double-counting the electrons. He went on and did some variational
calculations trying to see what the actual electron wavefunctions look like in a homogeneous electron system
in the presence of ionized impurities. He found that at small densities electrons do indeed ‘pile up’ around the
attractrive potentials of donors (or away from the repulsive potential of acceptors), as implied by Debye-Hückel
screening. But at larger densities (when the inter-impurity separations, the inter-electron separation, and the
screening length β−1 become comparable, about 1-3 nm in Si at densities of the order of 1018 to 1019 electrons
or impurities per cubic centimeters), he found that the electron wavefunctions are spread almost uniformly,
without ‘piling up’ around the impurities: The average distance between the impurities is now smaller than the
electron wavelength, so that they are not able to screen the potential. (This is accounted somewhat by the q
dependence of β in the better model of Eq. (463) at page 180 of the Notes, Part 3). Thus, at large densities it
makes more sense to go back to the original model proposed by Conwell and Weisskopf. They assumed that the
Coulomb potential is unscreened. However, electrons can interact only with the nearest impurity, assumption
consistent with our early assumption of independent collisions with impurities implicit in Eq. (597). So, let’s
define the average inter-impurity separation r0 such that

nD =
1

4πr30/3
→ r0 =

(
3

4πnD

)1/3

. (607)

This will be the maximum ‘impact parameter’ of the collision. The Fourier components of the Coulomb potential
so ‘chopped’ at large distances will be:

V (CW )
q =

Ze2

ε0q

∫ r0

0
dr sin(qr) =

Ze2

ε0q2
[1− cos(qr0)] . (608)
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Thus:

1

τCW (k)
=

Z2e4

2πh̄ε20

∫ ∞
0

dq
1

q2
[1− cos(qr0)]

2
∫ π

0
dθ sin θ δ

(
h̄2q2

2m∗
+

h̄2kq

m∗
cos θ

)
. (609)

Proceeding as usual with the azimuthal integral, we finally have:

1

τCW (k)
=

Z2e4m∗nDr30
2πh̄3ε20

F(2kr0) , (610)

where

F(x) =
1

x

∫ x

0
dt

(1− cos t)2

t3
.

Note that the scattering rate (610) does not depend on the impurity density nD, as can be seen from Eq. (607).
There are several variations of this expressions (such as still using the bare Coulomb potential at infinity, but
‘chopping’ the integration over q above), but the essence of the method remains unaltered: Rather than relying
on screening to avoid the divergence at q → 0 in Eq. (603), the cut-off at small q is obtained from the
maximum impact parameter allowed. If the impact parameter exceeds r0 (however this might be defined), then
another impurity will exhibit a smaller impact parameter and scattering will occur via that second impurity center.

• Ridley’s statistical screening model.

Ridley (see the text, pages 148-152) has attempted to find a model reconciling the BH and CW approaches.
He notices that in the CW approach the impurity with the smallest impact parameter is always chosen, even
if it happens to be farther away than another impurity with a larger impact parameter. But he thinks this is
inconsistent with a true two-body, single-scattering-center collision. Thus, he is led to consider the probability
that another scattering center may be closer, even if it happens to be associated with a larger impact parameter.
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This method (which we shall not discuss furher and is known as ‘statistical screening’) results in a correction to
the BH scattering rate as follows:

1

τR(k)
=

υ(k)
d

{
1− exp

[
d

τBH(k)υ(k)

]}
, (611)

where υ(k) is the group velocity and d = (2πnD)
−1/3 is the average inter-impurity distance.

• Additional corrections to the impurity potential.

There are several even more sophisticated models which attempt to find a better approximation to the potential
of the substitutional impurity. An article by Chattopadhaya and Qeisser (Rev. Mod. Phys.) discusses the
state of the art. Since impurity scattering is important in determining the carrier mobility in heavily-doped
semiconductors, and since the average doping of semiconductors increases with the shrinking dimensions of the
devices, it is easy to understand why there is such an interest.
A first correction is an attempt to account for wavelength-dependent screening by valence electrons. So far,
screening by valence electrons has been treated simply via the static dielectric constant ε0, but some dependence
on the wavelength may be included. Let’s follow Nara and Morita. They consider the bare core potential,
V (ZI, n; r), of a substitutional donor n-fold ionized, taken isotropic since only core electrons are considered.
They express this as:

V (ZI, n; r) = − e2

4πεvacr
[ n+ (ZI − n) e

−σIr] , (612)

where εvac is the permittivity of vacuum and the atomic radii 1/σI are obtained from a fit to the Hartree-Fock
potential. Their values are of the order of 0.01 nm for the species usually considered (1/σI = 0.0124 nm for
Si4+, 0.0111 nm for P5+, 0.0148 nm for As5+, and 0.0156 nm for Sb5+), consistent with the use of the
vacuum permittivity εvac in Eq. (612).

Valence electrons are now brought in first as frozen in their anisotropic, perfect-lattice distribution. Thus, the
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net potential of the substitutional impurity, vi(r), is obtained by replacing the Si4+ ion with the n-fold ionized
donor, that is:

vimp(r) = V (ZI, n; r)− V (ZSi, 4; r) . (613)

Finally, in the linear response approximation, the valence electrons are allowed to readjust and screen vimp(r)
via the static valence dielectric function of Si, εv(q). A possible model for εv(q) – by no means unique, but
approximated by a convenient analytic expression – has the following isotropic form:

εvac

εv(q)
=

Aq2

q2 + a2
+

Bq2

q2 + b2
+

Cc2

q2 + c2
, (614)

where A = 1.175, B = –0.175, C = ε0/εsc ≈ 0.08547, a = 0.7572, b = 0.3123, and c = 2.044, a, b, and
c being in atomic units. Finally, the Fourier components of the screened isotropic impurity potential, vimp(q),
become:

vimp(q) =
e2

εv(q)

HI(q)

q2
, (615)

where

HI(q) = (n− 4) + (ZI − n)
q2

q2 + σ2
I

− (ZSi − 4)
q2

q2 + σ2
Si

, (616)

where n = 3 for acceptors, 5 for donors. Equation (615) should replace the Fourier transform of the impurity
potential we have used before in Eq. (605) or, appropriately ’chopped’ at large distances, in Eq. (608).
In practice, this corrections do not matter too much quantitatively. Only at very large energies, when the
electron approach the impurities at very short distances (large q) one sees some differences between ddifferent
donor or acceptor species, because of some differences in the core potentials of different ions. These are known
as ‘central cell’ corrections.

Finally, Friedel’s sum rule as well as partial-waves approaches can tackle another interesting problem. The Born
approximation we have used so far does not distinguish between repulsive and attractive potentials. Yet, we
expect some differences: In the case of attractive potentials (electron-donors) the electronic wavefunction gets
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closer to the impurity core than in the case of repulsive potentials (electron-acceptors). Partial-wave analysis
(which we saw above dealing with Friedel’s sum rule, pages 191-195 of the Notes), which go beyond the
first-order Born approximation, can account for this difference. The practical interest lies in the context of
transport of electrons (holes) in the p-type (n-type) base of npn (pnp) bipolar transistors. These so-called
‘minority carrier mobilities’ are indeed experimetally observed to be different (usually larger, as expected) than
the majority carrier mobilities.
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Coulomb interactions among free carriers

In the first part of these Notes (pages 50 and following) we have considered a ‘mean field’ approximation
to treat the Coulomb interactions among valence electrons. The same approximation is usually embraced also
when dealing with free carriers (say: electrons in the conducxtion band of an n-type doped semiconductor).
This approximation is obtained by replacing the ‘fluctuating’ inter-particle Coulomb potential with a smoother
Hartree potential obtained by averaging out (spatially and temporally) the instantaneous and local potential over
all electron configurations. The Hartree-Fock approximation is similar, since it only adds exchange effects, but it
employes the same averaging procedure. In order to re-capture the ‘oscillating’ nature of the interaction, we must
consider the fluctuations of the electron positions and the associated fluctuations of the potential.

• Electron-electron Hamiltonian.

Let’s consider the free-particle case (no additional potential) and ignore spin for now. The associated Hamiltonian
has the ‘obvious’ form:

Hee =
1

2

∫
dr
∫

dr′ ψ†(r′, t) ψ(r′, t) V (r′ − r) ψ†(r, t) ψ(r, t) , (617)

where V (r) = e2/(4πε∞r), since ψ†(r, t) ψ(r, t) is the density operator which satifies the expected

property
∫
dr ψ†(r, t) ψ(r, t) =

∑
k c
†
k(t) ck(t). Using Eqns. (291) and (292) (page 134), the Hamiltonian

(617) can be written as:

Hee =
1

2

∑
k,p,q

Vq c
†
k+q c

†
p−q ck cp , (618)

where Vq = e2/(ε∞q2) is the Fourier transform of the Coulomb potential. We use the high-frequency dielectric
response ε∞ for now. We shall worry about screening later on. This expression has a simple interpretation:
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The Coulomb Hamiltonian destroys two electrons in the states k and p and creates two new electrons in states
k + q and p− q via the exchange of momentum h̄q.
In taking the Hartree or Hartree-Fock approximation we would look at a single electron of wavevector k and
replace the effect of all ‘other’ electrons by considering only the limit q → 0 (that is, a spatial average over

large distances), so that we would retain only the ‘diagonal’ part of c
†
p−qcp, that is, the number operator

np = c
†
pcp. We would then take a suitable ensemble average, < np >, over the electron ensemble, obtaining

just the average charge density ρp = enp. This would give raise to the average ‘mean field’ felt by each
electron. On the contrary, now we want to isolate deviations from this mean field. Thus, we shall assume
that the Hartree (or Hartree-Fock) potential is substracted and isolated into another term eVHartree(r) in the
Hamiltonian and assume that Eq. (618) represents only deviations from the mean field. Thus, we should consider

in the Hamiltonian above the terms c
†
p−qcp as representing the fluctuating part c

†
p−qcp− < c

†
p−qcp >,

and similarly for c
†
k+qck as representing the fluctuating part c

†
k+−qck− < c

†
k+qck >. How exactly this is

done accounting for the Hartree and the exchange component we may see (if time allows) when we shall derive
the Boltzmann Transport Equation from the quantum transport equation, the so-called Liouville-von Neumann
equation.

In a series of articles published in the Physical Review in the 1950’s David Bohm and his student David Pines
have studied the effects of Eq. (618) and have reached the following general conclusions:

– When the magnitude q of the momentum transfer q is small, the interaction of an electron with all of the
other electrons occurs via ‘collective excitations’: The ‘initial’ electron with wavevector k triggers (via emission
or absorption) a plasma wave in the surrounding gas of free carriers. The interaction is an electron-plasmon
collision. It may be characterized by the same procedure we have followed to study the Fröhlich interaction,
simply replacing the coupling constant (h̄ωLO/2)[1/εhi−1/εlow] with (h̄ωP/2)(1/ε∞) (see Eqns. (348)
of Part 3 and (573)). Note, however, that in this process momentum is not lost by the electron gas: It is
simply re-distributed among electrons.

– When the magnitude q of the momentum transfer grows beyond a certain limit, plasmons cease to be good
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excitations: They decay into single-particle excitations. Think of a surfer extracting energy from the wave as
the surfer’s velocity matches the phase velocity of the wave. Similarly, when the wavelength of the plasmon
matches the Fermi wavelength, electrons at the Fermi surface will ‘surf’ the plasmon, thus absorbing energy
from it and damping it. This damping occurs via excitations of electrons from the ‘Fermi sea’ which gain
the plasma energy This process is called ‘Landau damping’. Energy and momentum conservation allow this
process to happen whenever the plasmon wavevector q satisfies the condition

E(kF + q) − E(kF ) = h̄ωP , (619)

or, for parabolic and spherical bands,

h̄2

2m∗
(q

2 − 2kFq) ≤ h̄ωP ≤
h̄2

2m∗
(q

2
+ 2kFq) . (620)

For q in this range of values, the interaction between an electron and all other free electrons occurs via
single-particle (two-body) collisions, as in the case of a classical collision between two charged particles. The
figure below shows the region in the (h̄ω, q)-space in which plasmons are damped.
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• Collision rate: General expression.
We can calculate the scattering rate for electron-electron collisions in the single-particle picture as follows. We
consider as usual Fermi Golden rule (the first order perturbation, more appropriately known as the first Born
approximation for an electron gas which is diluted enough), looking at the matrix element of the dynamically
screened Coulomb potential between antisymmetrized wavefunction of spin-1/2 particles. As briefly mentioned
below, we must apply some approximated phase-shift corrections in order to account for the difference between
repulsive and attractive interactions. Thus, for a ‘primary’ particle of crystal momentum k in band ν, the
Coulomb scattering rate at location r at time t is approximated by:

1

τee(k, r, ν)
=

2π

h̄

∑
G,µ,ν′,µ′

∫
dp

(2π)3
f(p, µ, r, t)

∫
dk′

(2π)3
|M(kν,pµ; k′ν′, p′µ′;G)|2×

δ[Eν(k) + Eµ(p)− Eν′(k
′)− Eµ′(p

′)][1− f(k′, ν′, r, t)][1− f(p′, µ′, r, t)]. (621)

Let’s recall here the meaning of all terms occurring in this equation:

– p′ = k + p − k′ is the final state of the scattering partner of the ‘primary’ particle with crystal momentum
k. Momentum is of course conserved.

– f(k, µ, r, t) is the distribution function, i.e., the phase-space density at the phase-space location (r, p) in
band µ, at time t, normalized so that the real-space density at r is:

n(r, t) = 2
∑
µ

∫
dk

(2π)3
f(k, µ, r, t)

Note that in Eq. (621) the integral over the states of the ‘partner’ electrons of crystal momentum p is done
over 1/2 of them, since the sum over spin states is already included in the matrix element (with the associated
overlap factors).
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– The G’s are the reciprocal-lattice wavevectors.
The figures above show the ratio of the dynamic and static screening parameter to the Thomas-Fermi approximation β as a function

of momentum transfer (left) and the interparticle scattering rate as a function of electron energy in a variety of approximations:

classical particles (no spin), spin-1/2 but no phase-shift corrections, and spin-1/2 with phase-shift corrections for attractive and

repulsive potentials, the latter being of course appropriate to e-e scattering.
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– Phase-shift corrections – obtained via the partial-wave analysis we have seen before dealing with Friedel’s sum
rule – can be implemented and some of the following figures show the effect of these corrections (labeled as
‘phase shift’) They do indeed yield a different scattering rate for repulsive (weaker scattering) and attractive
(stronger) interactions.

– M(kν,pµ; k′ν′, p′µ′;G) is the Coulomb matrix element. In the case of scattering between two
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indistinguishable particles (electron-electron or hole-hole), it is the antisymmetrized Coulomb matrix element
obtained by summing over all spin states: If

Md =
e2

εs

Ikν,k′ν′Ipµ,p′µ′
|k− k′ + G|2 + β2(qd, ωd)

, (622)

where β(q, ω) is defined below, is the matrix element for the ‘direct’ process (kµ)→ (k′µ′), (pν)→ (p′ν′),
and

Mx =
e2

εs

Ikν,p′µ′Ipµ,k′ν′
|k− p′ + G|2 + β2(qx, ωx)

(623)

is the matrix element for the ‘exchange’ process (kµ) → (p′ν′), (pν) → (k′µ′), the matrix element for
scattering of spin-1/2 particles is given by the sum of the scattering probability in the singlet state and the
scattering probability in the triplet state, i.e. :

|M |2 =
1

4
|Md +Mx|2 +

3

4
|Md −Mx|2 = |Md|2 + |Mx|2 −

1

2
|M∗dMx +MdM

∗
x|. (624)

The last ‘interference term’, the ‘exchange term’, is responsible for depressing the cross section at small
relative energies, k− p� β.

In the case of scattering between distinguishable particles (electron-hole scattering), these terms do not appear.
Since, after integration, |Md|2 and |Mx|2 yield the same result, one could obtain an equivalent result by
ignoring spin altogether and replacing the integral over p above with twice that, i.e., by summing over all
spin states. The figure on page 241 (right frame) shows the effect of (anti)symmetrization on the short-range
scattering rate for a simple parabolic band of Si at 300 K.

At low relative energies, Goodnik and Lugli, in dealing with scattering between indistinguishable particles, have
assumed that only the direct term |Md|2 matters (since the interaction between electron of parallel spins is
reduced by exclusion) thus effectively obtaining a scattering rate equal to half the rate for indistinguishable
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particles.

– Ikν,k′ν′ is the overlap integral between the Bloch states, accounting for the sum over spin states.

– β(q, ω) is the dynamic screening parameter, i.e. the quantity such that the dielectric function can be written as
ε(q, ω)/εs = 1+β(q, ω)2/q2. It must be evaluated at the crystal momentum transfer qd = |k−k′+G|,
and at the energy transfer h̄ωd = Eν(k) − Eν′(k

′) for the direct process, at qx = |k − p′ + G|, and at

h̄ωx = Eν(k)− Eµ′(p
′) for the exchange process.
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The figure above shows the effect of dynamic screening on the short-range inter-particle scattering rate for a parabolic band model

of Si at 300 K. Three cases are shown: the dotted line is for the case of static Debye-Hückel screening, the dashed line for a

wavevector dependent static screening parameter, corresponding to a ‘head-on’ collision. Finally, the solid line is relative to the case
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of a collision in which one electron is at rest in the frame of the electron gas.

• Some common approximations.

– The effect of degeneracy, represented by the factors (1 − f) in Eq. (621) is often included by replacing the
distribution functions f with their equilibrium values,

f(k, µ, r, t) � f0[k, µ, Tp, EF ], (625)

where f0(k, µ, T, EF ) = {1+exp[(Eµ(k)−EF )/(kBT )]}−1 is the Fermi-Dirac function at temperature
T for band µ and Fermi energy EF , Tp is the equivalent particle temperature. Note that both this degeneracy
correction as well as the appearance of the distribution function in the screening corrections render the transport
problem non-linear: Typically, we use scattering rates to solve the transport problem in which f is the unknown.
But when the scattering rates depend on f itself, either iterative or self-consistent schemes are devised, or
the dependence on f of the rates must be approximated. In typical cases, as we have seen here, a Fermi
expression with an equivalent electron temperature is used.

– Accordingly, dynamic screening may be treated in the high temperature, nondegenerate limit valid for a single
parabolic and spherical valley, as we have seen in the Notes, Part 3, Eqns. (232) and (233), page 180 and 181.
We have seen in a figure above (left frame, page 241) the ratio of the squared dynamic screening parameter
to the squared Debye-Hückel parameter for the case of a ‘parabolic’ relative energy transfer ω = h̄q2/(2md)
in Si. The same figure also shows the behavior of the static screening parameter β2(q, 0).
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The figures above show – at the left – the short-range electron-electron scattering as a function of electron
energy in Si at 300 K at a uniform field of 200 kV/cm, averaged over the distribution function during Monte
Carlo runs at the two densities indicated. At the right we see the short-range electron-electron scattering as
a function of electron energy in Si at 300 K at a density of 1018 cm−3 at a field of 100 kV/cm. The effect
of spin and dynamic screening is also shown. The figure below shows the same information, but at a field of
200 kV/cm and at a density of 1020 cm−3.
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The figure above shows the effect of the phase-shift corrections on the short-range, (anti)symmetrized electron-
electron scattering rate for the ‘usual’ parabolic band model for Si at 300 K and static screening.

• Electron-electron scattering in the parabolic-band approximation.
In the simple case in which a parabolic approximation is used, the electron-electron scattering rate between
two electrons can be evaluated analytically when ignoring degeneracy effects, Umklapp processes, and taking
the overlap integrals as unity. Note the words in italic: Equation (621) expresses the collision rate for a given
‘primary’ electron of wavevector k in band ν with any other electron in the system. Here we consider the
collision rate between our primary electron and one particular ‘partner’ electron with wavevector p in band µ,
lumping the effect of all other electrons into the electron density n(r, t) appearing as a multiplicative factor. In
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other words, we approximate f(p′, µ′, r, t) with n(r, t)δµµ′δ(p− p′).

Thus, Eq. (621) simplifies to:

1

τee(kν,pµ, r, t)
=

2π

h̄

e4n(r, t)
4ε2∞

∑
k′

δ[E(k) + E(p)− E(k′)− E(p′)] ×

×
{

1

(|k′ − k|2 + β2
d
)2

+
1

(|k′ − p|2 + β2x)
2
− 2

(|k′ − k|2 + β2
d
)(|k′ − p|2 + β2x)

}
, (626)

where βd is avaluated at q = k′ − k and h̄ωd = E(k′) − E(k) while βx is avaluated at q = k′ − p and
h̄ωx = E(k′)− E(p). Additional approximations are required in order to reach an analytic expression:

1. Screening must be taken in the long-wavelength static limit. The justification lies in the fact that dynamic
screening corrections are typically very small. Note, however, that this is not true in general: In cases wher
a ‘hot’ electron interacts with a pool of ‘cold’ electrons (such as an electron entering the drain region of a
highly-biased MOSFET), the large energy transfer renders either the direct or the exchange matrix element
essentially unscreened, thus rendering the interaction stronger than what static screening would suggest. When
static screening is considered, the screening parameter takes the form:

β2pm � β2sg1(qλ),

where

λ =

(
2πh̄2

mredkBT

)1/2

g1(x) =
2π1/2

x
Φ

(
x

4π1/2

)
,

At the long wavelengths which dominate scattering when screening is not too strong, β± � βs.

ECE618 Spring 2010 247



2. Intervalley processes must also be ignored, since the valley separation would appear to the fourth power in the
denominators of the Coulomb matrix elements, thus depressing their contribution.

Using the approximations above, Eq. (626) can be integrated analytically. Go to the center-of-mass frame by
putting:

g = k− p , g′ = k′ − p′ ,
so that:

|k− k′| =
1

2
|g − g′| ,

keeping also in mind that p′ = k + p− k′. Then:

E(k) + E(p)− E(k′)− E(p′) =
h̄2g2

2m∗
− h̄2g′2

2m∗
.

Consider now just the first (direct) term inside the integral in Eq. (626):

πe4n(r, t)

2h̄ε2∞

∫
dg′

(2π)3
δ[E(g)− E(g′)

[|g − g′|2/4 + β2]2
. (627)

This expression is identical to the integration we had to perform in order to calculate the electron-impurity
scattering rate and we find:

e4n(r, t)m∗

2πh̄3ε3∞

g

β2(g2 + β2)
. (628)

Accounting for the other two terms, we finally obtain:

1

τee, self (g)
� e4m∗g n(r, t)

2πε2sh̄
3

[
1

β2s(β
2
s + 4g2)

− ln(1 + 4g2/β2s)

8g2(β2s + 2g2)

]
. (629)

Note that the cross section, σ = 2m∗/(τnh̄g), corresponding to this process equals the result reported by
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Ridley (Eq. (4.136) of the text). Replacing 2g with kr = |k− p|, Eq. (629) takes the form:

1

τee(kr)
� e4m∗krn(r, t)

4πε2sh̄
3

[
1

β2s(β
2
s + k2r)

− ln(1 + k2r/β
2
s)

2k2r(β
2
s + k2r/2)

]
. (630)

For the case of spinless, distinguishable particles (i.e., classical statistics, unsymmetrized wavefunctions) and
using the first Born approximation, the equation above reduces to the (familiar?) form:

1

τee(kr)
� e4m∗krn(r, t)

4πε2sh̄
3

1

β2s(β
2
s + k2r)

, (631)

since only the first term in Eq. (630) contributes. This is result of ‘classical mechanics’. This limit is reached in
the limit of high relative energies: In this limit, kr/βs  1, exchange does not play a dominant role, because
particles can approach one another even if they have parallel spins, since the large relative energy pushes them
sufficiently close. Not so in the opposite limit of small relative energies, kr/βs � 1. In this case Eqn (630)
approaches half of the classical result,

1

τee, self (kr)
→ e4m∗krn(r, t)

8πε2sh̄
3β4s

(
kr

βs
→ 0),

since particles with parallel spins remain separated by the exclusion principle and their interaction vanishes. This
is the limit considered by Goodnik and Lugli.

• Long-range Coulomb interactions and band-gap narrowing.

The subject of Coulomb interactions in an electron gas has been discussed for decades. Even for the ‘simple’ case
of a homogeneous electron gas the calculations are daunting, because of the complex nature of the many-body
interactions with exchange and correlation effects, as well as of the interactions between the electrons and the
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‘jellium’ of the background positive charge required to keep the system at charge neutrality, without ‘exploding’
as a result of Coulomb repulsion. Here, let’s see the basic features of this system in a classical picture, mentioning
later the main quantum-mechanical corrections.

– Classical Model.
Consider a homogeneous electron gas of density n = N/Ω, where N is the number of electrons and Ω the
volume occupied by the gas. Ignoring Coulomb interactions, the total energy W per electron is purely the
Fermi kinetic energy KF :

W = KF =
g

n

∫
dk

(2π)3
E0(k) fFD[E0(k)] , (632)

where fFD(E) = {1+ exp[(E0−EF )/(kBT )]}−1, is the equilibrium Fermi function at temperature T ,
kB is the Boltzmann constant, E0(k) is the g-fold degenerate electron dispersion, and the Fermi energy EF
is determined so that

n = g

∫
dk

(2π)3
fFD[E0(k)] . (633)

In the simplest possible picture, the Hartree model, the spatial distribution of both electrons and background
positive charge (donors), required by charge neutrality, is assumed to be homogenous and uniform. In
this model the Coulomb interaction between electrons and donors vanishes. The first correction to this
model consists in what Kittel calls the ‘modified Hartree’ approximation. In this model one assumes that the
electrons still constitute a uniform distribution of charge, but they are now embedded in a lattice of background,
positively charged, pointlike donors. Customarily, one thinks of the donor potential as statically screened by the
electrons according to the Debye-Hückel theory, resulting in a Yukawa-like potential e−βsr/(4πε∞s r), where

βs = [(e2/ε∞s )(∂n/∂EF )]
1/2 is the screening parameter, ε∞s being the static (valence) permittivity of Si,

and e the magnitude of the electron charge. However, as we already saw when dealing with the potential of an
ionized impurity, Mahan, employing quantum-mechanical variational calculations, has shown that this picture
is correct only at moderate densities (∼ 1019 cm−3 or below in Si), but at higher densities the assumption
of a uniform electron distribution gives better agreement with the variational results. This is because the
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Yukawa-model overcounts the electrons: On the one hand, they are assumed to completely screen the donors,
and so to be fully localized around each dopant ion. On the other hand, they are assumed to be uniformly
distributed.
In order to compute the Coulomb energy of this model system, in principle one should follow a procedure
similar to what is required to compute the Madelung energy in crystals and derive the positions of the donors
by minimizing their total energy. Here we assume the impurities frozen in a cubic lattice, and consider spherical

volumes of radius r0 = [3/(4πn)]1/3 around each donor. Thus, the total energy per dopant (i.e., in a
volume (4/3)πr30 around each impurity) of the electron gas and background pointlike donors will be lowered
by the electron-impurity Coulomb attraction,

δWed ≈ −
e2

(4/3)πr30

∫ r0

0
dr

r

ε∞s
= −3

2

e2

4πε∞s r0
= −3

2

(
4π

3

)1/3 e2n1/3

4πε∞s
≈ −2.418 κ n

1/3
,

(634)
where κ = e2/(4πε∞s ), and raised by the Coulomb repulsion of the uniform electron distribution with itself
within an elemental spherical volume ,

δWee ≈
e2

[(4/3)πr30]
2

∫ r0

0
dr

4

3
πr

3
4πr

2 1

4πε∞s r

=
3

5

e2

4πε∞s r0
=

3

5

(
4π

3

)1/3 e2n1/3

4πε∞s
≈ 0.967 κ n

1/3
. (635)

Note that the mutual donor-donor repulsion vanishes in this model, since the impurities in different volume
elements are viewed as fully screened by the surrounding electrons when frozen in their minimum-energy
configuration. Therefore, the total energy per impurity atom due to the Coulomb interaction will be:

δWC = δWed + δWee ≈ −1.451 κ n
1/3

. (636)

Depending on the configuration of the impurities, one may actually obtain for the ‘Madelung coefficient’ 1.451
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above a slightly different value of 1.444 for close-packed fcc, hcp, or bcc lattices. Here, we shall not worry
about these numerically small differences.
At densities low enough for the standard Debye-Hückel screening to be valid, an expression given by Lanyon
and Tuft may more appropriately replace Eq. (636),

δWC = −3
4
κ βs . (637)

As discussed by Mahan, the numerical values provided by Eqns. (636) and (637) are very similar in the range
of densities of interest here, since the three characteristic lengths one can consider, the inverse wavevector at
the Fermi surface kF , the screening length β−1s , and the average donor separations r0, are not too different
in Si.
In the presence of random motion, induced by the Fermi kinetic energy and, at nonzero temperatures, by the
electron-phonon interactions, the electrons will move around their ‘frozen’ uniform configuration and set-up
a fluctuating potential whose spatial Fourier components are identified with plasmons. In this case the total
energy δWC will redistribute into a potential energy, δUC , and a kinetic energy component δKC . The virial
theorem can be used to estimate the time-average of the kinetic energy δKC once δWC is known. Since for
N particles interacting via a central potential V (r), a function only of the interparticle distance r,

< δKC > =
1

2
<
∑
i 	=j
∇iV (ri − rj) · ri > , (638)

where the brackets < ... > denote time-average, for a purely Coulomb system

< δKC > = −1
2

< δUC > , (639)

so that (dropping the time-average brackets here and in the following, since we shall deal exclusively with
time- or ensemble-average, equivalent by the ergodic theorem)

δKC ≈ 1.451 κ n
1/3

. (640)
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The final quantity to consider is the shift of the chemical potential, δµ, (in principle different from the Fermi
energy EF for interacting particles, as discussed below) induced by the Coulomb interactions among the N
electrons and the ND donors. At zero temperature or, more generally, in degenerate situations, δµ gives
the electron contribution to the narrowing of the energy gap. In general the chemical potential µ of a grand
canonical ensemble is defined as (see any text on Statistical Mechanics, such as Kubo’s 1964 book):

µ =
1

Ω

∂F

∂n
, (641)

at constant temperature and volume Ω, where F = Wtot−TS is the (Helmholtz) free energy of the system,
Wtot being its total energy and S its entropy. Therefore, at zero temperature the change of the chemical
potential caused by the Coulomb interactions will be:

δµ =
1

Ω

∂δWC,tot

∂n
, (642)

where δWC,tot = NDδWC is the total Coulomb energy of the system. Keeping the volume Ω constant
means that the identity ND = N should be used only after having taken the derivative. Thus

δµ =
∂

∂N
(ND δWC) = −0.481 κ n

1/3
. (643)

Ignoring band-tailing and renormalization of the electron dispersion, since the total number of particles remains
constant when accounting for Coulomb interactions, this shift of the chemical potential must be accompanied
by an equal downward shift of the reference energy, that is, the bottom of the conduction band, δECB = δµ.

– Quantum corrections
The modified Hartree model considered so far ignores the effect of the electron spin: Since Pauli’s principle
prevents electrons with parallel spins from getting too close to each other, their mutual Coulomb repulsion will
be reduced by an amount known as exchange energy, δWx. Following Haas and Mahan, for Si the exchange
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energy per particle is given by

δWx = −3
4

e2ΛkF

4π2ε∞s
≈ −0.3861 κ n1/3 , (644)

where Λ = (ml/mt)
1/3 (tan−1 δ/δ), δ = [(ml/mt) − 1]1/2, mt/l denoting the

transverse/longitudinal mass in the six ellipsoidal valleys of the Si conduction band. This second correction
amounts to the Hartree-Fock results. The difference between this result and the energy of the ground state one
would obtain performing an ‘exact’ calculation is called ‘correlation’ energy: The electrons are not uniformly
distributed, but the energy of the system is lowered when accounting for a correlation of electron wavefunctions
(or positions) which minimizes their mutual Coulomb repulsion. In the range of densities considered here, an
expression for the correlation energy, δWcorr has been given by Gell-Mann and Brueckner:

δWcorr = −0.096 + 0.00622 ln rs (645)

while Nozières and Pines give:

δWcorr = −0.115 + 0.0031 ln rs , (646)

where the unit of energy is the Rydberg (≈ 32.1 meV in Si) and rs is the average separation r0 in units of

the Bohr radius (≈ 1.92 nm in Si), so that rs ≈ 3.231 (n/1018)−1/3, where the electron density n is
measured in cm−3. Re-expressing Eq. (636) in atomic units, we have

δWC = − 1.798

rs
, (647)

while the exchange term, Eq. (644), is

δWx = − 0.479

rs
, (648)
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so we see that the correlation energy can be neglected, while ignoring the exchange term, Eq. (644), amounts
to underestimating the Coulomb energy by about 26%. Correspondingly, the kinetic energy of the system will
be modified only by a small term, usually called ‘correlation kinetic energy’.
Finally, note that these corrections to the total energy of the electron gas at high densities are some of the
causes of the well-known band-gap narrowing in semiconductors: We have already noticed above how the

Coulomb interactions in a classical three-dimensional electron gas cause a shift δECB = −0.481κn1/3
of the bottom of the conduction band. Mahan has evaluated the shifts of the chemical potential

δµx = [e2/(4π2ε∞s )]kFΛ ≈ −0.515 κ n1/3 and δµcorr associated to exchange and correlation
effects, and so the corresponding shifts δECB. When accounting also for the contribution to the Coulomb
energies due to the (minority) hole in the valence band (hole-donor and hole-electron interaction), Mahan
has accounted for all of the contributions to the band-gap narrowing, with the exception of band-tailing, not
discussed here. Clearly, the semiclassical model errs in ignoring exchange and correlation. As for its small
contribution to the total energy, correlation can be safely ignored. Not so for exchange terms: Since the shift
δµ due to the electron-donor and the hole-donor interaction cancel, exchange is now a dominant contribution.
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• Impact Ionization.

Another example of electron-electron collision is ‘impact ionization’. This is essentially a two-body collision,
identical to what we have discussed above, but it involves interband transitions: Picture an electron traveling
in the condution band with a large kinetic energy. If this energy is sufficiently large, the ‘primary’ electron can
collide with an electron in the valence band, ‘kicking’ this ‘partner’ electron into the conduction band, leaving a
’secondary’ hole in the valence band. This process, which is the inverse of the Auger recombination mechanism,
is responsible for avalanche breakdown phenomena in semiconductors and semiconductor devices.

The formal expression for the ionization rate can be obtained in a way very similar to the path we have followed
above to calculate the collision rate for short-range electron-electron collisions. Within the Born approximation,
the rate, 1/τii(kn), at which an electron of quasi-momentum h̄k in band n creates an electron-hole pair is
given by:

1

τii(kn)
=

2π

h̄

∑
GG′

∑
nvn′cn′′c

∫
dk′

(2π)3

∫
dp′

(2π)3
|MGG′(kn,pnv; k

′
n
′
c, p
′
n
′′
c )|2

×δ[En(k) + Env(p)− En′c(k
′)− En′′c (p

′)] (649)

where En(k) the energy of the state k in band n, and M is the (anti-)symmetrized screened Coulomb matrix
element obtained by adding the scattering probabilities in the singlet and triplet states (as we saw before):

|MGG′|2 = |Md|2 + |Mx|2 −
1

2
|M∗dMx +M∗xMd| (650)
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Md and Mx being the ‘direct’ and ‘exchange’ matrix elements,

Md = e2 ε−1
GG′(qd, ωd)

IG(kn; k
′n′c)IG′(pnv; p

′n′′c )
|qd + G|2 , (651)

Mx = e2 ε−1
GG′(qd, ωx)

IG(kn; p
′n′′c )IG′(pnv; k

′n′c)
|qx + G|2 . (652)

Here qd, h̄ωd and qx, h̄ωx are the direct and exchange quasi-momentum and energy transfers, respectively,
defined as:

qd = k− k′ h̄ωd = En(k)− En′c(k
′
) (653)

qx = k− p′ h̄ωx = En(k)− En′′c (p
′). (654)

The vectors k′, p, and p′ are the quasi-momenta of the final state of the primary particle and of the initial and
final states of the ‘partner’ particle, respectively. By momentun conservation they are related via p′ = k+p−k′,
up to a vector of the reciprocal lattice, already accounted for in the sums entering Eq. (649). The functions
IG(kn; k

′n′) are overlap integrals between Bloch states, summed over spin states σ = ±:

|IG(kn; k′n′)|2 =
1

2

∑
σσ′
|IG(knσ; k′n′σ′)|2, (655)

where:

IG(knσ; k
′n′σ′) =

1

Ωc

∫
cell

dr u(σ
′)

k′n′(r)
∗ u(σ)kn (r) eiG·r, (656)
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where Ωc is the cell volume and u
(σ)
kn (r) =

∑
G u

(σ)
G (kn)eiG·r is the periodic part of the

(pseudo)wavefunction. Finally, the sum over reciprocal-lattive wavevectors G in Eq. (649) includes Normal
(G = 0) as well as Umklapp (G 	= 0) processes (referred to as N- and U-processes in the following). A similar
expression, with the obvious changes, describes the rate for hole-initiated processes.

The difficulties in the evaluation of Eq. (649) are of both a physical and numerical nature, since, given the large
energies involved, any form of approximation for the electron dispersion is going to be less than satisfactory
(except for very few cases, like small band-gap materials). The full band-structure must be used if we want to
get realistic results and this requires intensive state-of-the-art numerical work.

Physically, the major difficulty lies in choosing an accurate yet manageable expression for the (dynamic) dielectric
matrix εGG′(q, ω). Within the random phase approximation (RPA), we saw that the dielectric function is given
by the ‘usual’ Lindhard expression:

εGG′(q, ω) = ε0 δGG′ −
e2

|q + G|2
∑
nn′k

fn′(k + q)− fn(k)

En′(k + q)− En(k) + h̄ω

× < k, n|e−i(q+G)·r|k + q, n′ >< k + q, n′|ei(q+G′)·r|k, n >, (657)

where ε0 is the permittivity of vacuum and fn(k) the occupation of the state |k, n > of quasi-momentum k
in band n. It is customary to consider only the longitudinal response (i.e., the diagonal terms of the dielectric
function) and it is convenient to separate Eq. (657) into the two terms representing the response of the valence

electrons ε
(v)
GG (simply written now as ε

(v)
G ) and of the free carriers, by setting fn(k) = f0n(k) + pn(k),

f0n(k) being unity for all states in the valence bands, zero otherwise, and pn(k) being the population of the
free carriers. Thus, Eq. (657) can be recast as follows:

εG(q, ω) = ε
(v)
G (q, ω)

[
1 + ε

(v)−1
G (q, ω)

ε0β
2(q + G, ω)

|q + G|2

]
, (658)
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having made use of a free-carrier screening parameter β2(q, ω) defined as:

β2(q, ω) = −e
2

ε0

∑
nn′k

pn′(k + q)− pn(k)

En′(k + q)− En(k) + h̄ω
| < k, n|e−iq·r|k + q, n′ > |2. (659)

An approximation usually tacitly made consists in considering only the G-vector which minimizes the denominator
of the Coulomb matrix elements, because of their small contribution (as |q + G|−4) at short wavelengths
in Eq. (649). Thus, one can drop the subscript G and write simply ε(q, ω), understanding that all vectors
in k-space must be mapped to the first BZ. The calculation can proceed by ignoring the contribution of the

free carriers, and employing the RPA and the pseudopotential band structure to evaluate ε(v)(q, ω) while
retaining its frequency dependence. In general, though, in treating the response of the carriers in the valence
bands, the static approximation (i.e., setting ω = 0 in Eq. (657)) is a satisfactory simplification, since the
energy exchanged in a pair-production process in realistic situations is relatively small (< 3 eV or so), so
that the static value is adequate. So, several approximations have been made, ranging from the use of the

static, wavevector dependent expression for ε(v)(q) to approximating ε0β
2(q)/ε(v)(q) with β2s , the ‘usual’

Thomas-Fermi screening parameter (e2/εs)∂nf/∂EF , where EF is the Fermi level , εs = ε(v)(q = 0) is
the static, long-wavelength dielectric function of the semiconductor, and nf the density of free carriers, so that:

ε(q) � ε(v)(q)

[
1 +

β2s
q2

]
, (660)

This expression approaches correctly ε(v)(q) at short-wavelengths, and is generally valid at long wavelengths,

independent of the form of ε(v)(q). Note also that dynamic corrections – in principle important in treating the
response of the free carriers whose plasma energy is much lower than the typical energy exchanged in ionization
events – become neglible at long wavelengths, so that the use of a static β(q, ω) appears justified in this
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context. Finally, in an attempt to simplify the calculation as much as possible, one may consider the static,
long wavelength limit for the response of the valence carriers, by setting εv(q) = εs at all wavelengths, despite
its questionable validity, and the Thomas-Fermi approximation for the free carriers. One possibility is the use

of Eq. (660), using an expression proposed by Nara and Morita (see page 234, Eq. (614)) for ε(v)(q), and
assuming a small density of free electrons (say, nf = 1016 cm−3), so that the Thomas-Fermi expression for β2s
reduces to its non-degenerate Debye-Hückel form e2nf/(εskBT ).

From a numerical point of view, local (Cohen-Bergstresser) or nonlocal (Cohen-Chelikowsky) empirical
pseudopotentials have been used to evaluate the band structure and the pseudo-wavefunctions for 152 points
in the irreducible wedge of the first Brillouin zone (BZ). The evaluation of Eq. (649) provides an anisotropic
ionization rate, function of the quasi-momentum k of the ionizing carrier and of the band index n.

In addition to the ‘correct’ evaluation of the anisotropic ionization rate expressed by Eq. (649), other useful
approximations can be employed. The first one, the ‘constant matrix element’ (CME) approximation, emphasizes
the role played (or, more likely, not played) by the matrix element in determining the energy dependence of the
ionization rate. Accordingly, one assumes that the Coulomb matrix element M in Eq. (649) is a constant, equal
to its average value over all k-points in the whole BZ, over all bands, and over both N and U -processes. Thus:

|MGG′|2 � < M2 > =
e4a40

(2π)4 ε2s
m2 , (661)

where m is a number of order 1 and:

1

τ
(CME)
ii (kn)

� 2π

h̄
< M2 >

∑
G

∑
nvn′cn′′c

∫
dp

(2π)3
δ(k + p− k′ − p′ + G)

×
∫

dk′

(2π)3

∫
dp′

(2π)3
δ[En(k) + Env(p)− En′c(k

′)− En′′c (p
′)]. (662)
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Note that we have explictily re-introduced the delta-function expressing momentum conservation in the first
(trivial) integral in the equation above, in order to make it clear in the following how the CME and random-k
approximations can be related. The actual value of the average matrix element < M2 > can be determined,
whenever Eqns. (649) and (662) exhibit the same isotropic energy dependence, by adjusting its value in Eq. (662)
in order to match the result of Eq. (649).

An even stronger approximation, motivated by its success in the case of electron-initiated ionizations in Si
(Kane, 1967), consists in assuming that the kinematics of the ionization process is not controlled by momentum
conservation, but mainly by the (joint) density of states available to the final (recoil and ionized) particles.
This is expected to be approximately true when momentum randomization via U -processes is the most probable
pair-production channel. In this case, many nonzero G-vectors contribute in the sum in Eq. (662) above.
Thus, it is sensible to make the approximation, known as the ‘random-k approximation’ (E. O. Kane, 1967),
of replacing the the many ‘spikes’ of the momentum-conserving delta function with a uniform sampling of the
entire Brillouin Zone, thus rewriting Eq. (662) as:

1

τ
(CME→relx)
ii (kn)

=
2π

h̄
< M

2
>

∑
nvn′cn′′c

∫
BZ

dp
ΩBZ

×
∫

dk′

(2π)3

∫
dp′

(2π)3
δ[En(k) + Env(p)− En′c(k

′
)− En′′c (p

′
)] , (663)

where now, in place of the sum over G-vectors, p runs over the Brillouin Zone, restricted only by energy
conservation. Let’s now recall that the volume of the Brillouin Zone, ΩBZ , is given by (4π/a)3/2 =
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(2π)3/Ωc, and employ the identity:

∫
dE ρc/v(E) = 2

∑
nc/v

∫
dk

(2π)3
,

where ρc and ρv are the densities of states in the conduction and valence bands, respectively, accounting for
spin degeneracy and always measuring energies from the band extrema with (kinetic hole) energies taken as
positive in the valence bands. Thus, the ionization rate obtained within the CME approximation and having
relaxed momentum conservation reduces to:

1

τ
(rk)
ii (E)

=
2π

h̄

Ωc

8
< M

2
>

∫ E−Eg

0
dEc

∫ E−Eg−Ec

0
dEv ρc(Ec)ρv(Ev)ρc(E −Eg −Ec −Ev),

(664)
where Eg is the energy gap and noting that (2π)3/(8 ΩBZ) = Ωc/8 and having considered throughout
electron-initiated processes, to fix the ideas. The quality of this approximation can be judged by whether the
value of < M2 > in Eq. (664) required to fit quantitatively the CME results matches the value used in Eq. (662).

Finally, we report here the popular Keldysh form of the ionization rate,

1

τii(kn)
=

P

τep(Eth)

(
E − Eth

Eth

)2

, (665)

where Eth is some ionization-threshold energy, P a coupling parameter related to the Coulomb matrix
element, and τep(Eth) is either the carrier-phonon scattering rate at threshold, according the Keldysh’s original
formulation (Keldysh, 1960), or the energy relaxation rate at threshold, according to Ridley’s lucky drift theory
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(Ridley, 1987). This expression has been used extensively in the past, treating the parameters P and Eth as
fitting quantities.

In the figures on the next page we see the ionization rates for electrons in Si as well as the so-called ‘ionization
coefficient’, the number of pairs created per unit length in the presence of a uniform electric field F :

α(F ) =
1

vd(F )

∫
dk

(2π)3
fF (k)

τii(k)
, (666)

where vd(F ) is the average electron drift velocity in the field F and fF is the electron distribution. An
empirical epression commonly used is:

α(F ) =
eFth
Eth

e
−Fth/F ,

where Fth is some threshold field and Eth the energy threshold for pair generation.
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Radiative Transitions

So far we have considered processes in which electrons either did not gain or lose energy (elastic processes,
as impurity scattering), or in which energy is exchanged within the lattice (with ions, as in electron-phonon
interactions, or with other electrons). These are called ‘non-radiative’ processes, since energy is not transferred
to radiation (that is, electromagnetic waves, light). Here let’s consider processes in which electrons interact with
light. We shall focus on light absorption across the band-gap and mention only the existence of other processes.

• Electron-photon Hamiltonian.
We have already used before (see Notes, Part 1, page 108, Eq. (194)) the fact that the Hamiltonian of an
electron in the presence of an electromagnetic field can be obtained from the Hamiltonian in the absence of
the field but replacing the electron momentum p = −ih̄∇ with p − eA, where A is the vector potential.
Therefore, the single-electron Schrödinger equation reads:

ih̄
∂ψ

∂t
=

1

2m
(p− eA)2ψ − eϕ(r)ψ . (667)

Assuming that the electrostatic potential ϕ vanishes (so, assuming a purely electromagnetic field, such as in
interactions with light) and retaining only terms first-order in the ‘perturbation’ A, we have:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + ih̄

e

m
A · ∇ψ . (668)

The Lagrangian density yielding Eq. (668) via the Euler-Lagrange equations is (see Eq. (282) on page 132 of
the Notes):

L(ψ, ψ̇, t) = ih̄ψ∗
∂ψ

∂t
− h̄2

2m
∇ψ∗ · ∇ψ − ih̄

e

m
ψ∗A · ∇ψ , (669)
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so that we can identify the perturbation Lagrangian with the last term. Therefore the perturbation Hamiltonian
density will be:

Hem(ψ, π, t) =
e

m
π A · ∇ψ = ih̄

e

m
ψ
∗A · ∇ψ . (670)

Using the second-quantized version of the vector potential (Eq. (399), page 162 of the Notes) in terms
of the photon creation and annihilation operators, we can write the Hamiltonian as (using a finite-volume
normalization):

Hem =

∫
dr Hem(ψ, π, t) = ih̄

e

m

∫
dr ψ∗A · ∇ψ =

∑
kk′qλnn′

ih̄
e

m

(
h̄

2ε∞ωq

)1/2

c
†
k′(bqλ+b

†
qλ)ck eqλ ·

1

V

∫
dr e−ik

′·r u∗k′n′(r) e
−iq·r ∇ eik·r ukn(r) ,

(671)
where n and n′ are band indices. This expression is identical to the expression we have derived before for the
electron-phonon interaction. The only nonzero matrix elements are those in which the final state differs from the
initial by the presence of one fewer or additional photon of momentum q and polarization λ (for absorption and

emission processes, respectively associated to the term bqλ and b
†
qλ) and by the conversion of the wavevector

of one electron from k to k′. Such a matrix element will have the form:

< k′, n′|Hem|k, n > =
ieh̄

m

∑
qλ

{
N

1/2
qλ

(1 +Nqλ)
1/2

} (
h̄

2ε∞ωq

)1/2

×

× eqλ ·
1

V

∫
dr e−ik

′·r u∗k′n′(r) e
−iq·r ∇ eik·r ukn(r) , (672)

the factor Nqλ being valid for absorption, 1 + Nqλ for emission. If the wavelength of the photon is much
longer than the electron wavelength (which is always the case up into the visible/UV portion of the spectrum),
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we can set e−iq·r ≈ 1 and

< k′, n′|Hem|k, n >≈
∑
qλ

{
Nqλ

1 +Nqλ

}
ieh̄

m

(
h̄

2ε∞ωq

)1/2

eqλ ·
1

V

∫
dr e−ik

′·r u∗k′n′(r)∇ eik·r ukn(r) .

(673)
This is called the ‘dipole approximation’. Now:

∫
dr e−ik

′·r u∗k′n′(r) ∇ eik·r ukn(r) =

=

∫
dr ei(k−k′)·r

u
∗
k′n′(r) ∇ ukn(r) +

∫
dr e−ik

′·r
u
∗
k′n′(r) ukn(r)∇eik·r . (674)

The second term contains an integral which is significantly different from zero only when k′ ≈ k. In this case
the Bloch functions uk′n′(r) and ukn(r) are orthogonal and the exponential is slowly varying. Therefore the
second integral is usually neglected. The first term can be treated in the ‘usual’ way, by splitting the integral
over the entire volume into a sum of integrals over individual cells by setting r→ Rl + r:

< k′n′|Hem|kn >≈ ieh̄

m

∑
qλ

{
N

1/2
qλ

(1 +Nqλ)
1/2

} (
h̄

2ε∞ωq

)1/2

eqλ ·
∑
l

ei(k−k′)·Rl 1

V

∫
Ω
dr u∗k′n′(r)∇ ukn(r)

=
ieh̄

m

∑
qλ

{
N

1/2
qλ

(1 +Nqλ)
1/2

} (
h̄

2ε∞ωq

)1/2

eqλ ·
1

Ω

∫
Ω

dr u∗kn′(r)∇ ukn(r) δk′k , (675)

since Ncells/V = 1/Ω. Thus, the optical matrix element vanishes unless k′ = k. Only ‘vertical (or direct)
transitions’ can happen. Transitions which involve a change in (crystal) momentum can only happen at higher
orders in perturbation theory, requiring extra momentum which must be provided by phonons, traps, etc.
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Now let’s define the ‘momentum matrix element’ between two Bloch functions:

< n
′|p|n > = −ih̄

Ω

∫
Ω
dr u∗kn′(r)∇ ukn(r) . (676)

Then:

< k′n′|Hem|kn > ≈ − e

m

∑
qλ

{
N

1/2
qλ

(1 +Nqλ)
1/2

} (
h̄

2ε∞ωq

)1/2

eqλ · < n′|p|n > . (677)

Note that this is the most notable example of a type of transition for which the form of the Bloch functions
matters. In particular, well-known selection rules apply. For example, the the momentum matrix between atomic
orbitals is nonzero only when the azimuthal quantum number mJ of the final and initial orbitals differs by zero or
one. Similarly in a crystal, photon absorption can occur only between bands whose orbital character satisfies this
selection rule. In addition, the knowledge of the Bloch functions is required to calculate the matrix element (677).

• Transition rates.
The rate at which a photon of momentum q and polarization λ is absorbed by an electron of wavevector k in
band n can be calculated from Fermi Golden Rule:

Wabs,n =
2π

h̄

∫
dk

(2π)3

∑
n′

h̄e2

2ε∞ωqm2
Nqλ|eqλ · < n

′|p|n > |2 δ[En(k)−En′(k)− h̄ωqλ] =

=
πe2

m2ωε∞
Nω

∑
n′
|eqλ · < n

′|p|n > |2 ρn′(E + h̄ω) , (678)

where ρn′(E) is the density of (final) electron states in band n′.
On the contrary, for the rate at which an electron of wavevector k in band n emits a photon, we have (assuming
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spontaneous emission only) will be:

Wem =
2π

h̄

∫
dq

(2π)3

∑
n′

h̄e2

2ε∞ωqm2
|eqλ · < n′|p|n > |2 δ[E(k + q)− E(k)− h̄ωqλ] =

=
πe2

m2ε∞
| < n

′|p|n > |2ave
∫

q2dq

8π3ω
=

πe2

m2ε∞
| < n

′|p|n > |2ave
∫

d(h̄ω)ρ(h̄ω) , (679)

where | < n′|p|n > |ave is the dipole matrix element summed over all bands and averaged over the photon
polarizations and ρ(h̄ω) = ω2/(2π2v3ω) is the photon density of states expressed as a function of the phase
velocity vω = ω/q.

• Absorption spectrum.
In the particular case in which n′ labels the conduction band and n the valence band, the matrix element for the
process in which a photon of momentum q and polarization λ is absorbed by the solid triggering the excitation
of an electron from the valence to the conduction band will be:

< kc|Hem|kv > ≈ −
e

m
Nqλ

(
h̄

2ε∞ωq

)1/2

eqλ · < c|p|v > (680)

The absorption rate will be, according to Eq. (678):

I(h̄ω) =
πe2

m2ε∞ω
Nω

∫
dE |e· < c|p|v > |2ρc(E+h̄ω−Egap) [1−fc(E+h̄ω−Egap)] ρv(E) fv(E) ,

(681)

where ρv and ρc are the DOS in the valence and conduction bands, respectively, and fv and fc the corresponding
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Fermi occupation factors. Assuming a completely full VB and empty CB,

I(h̄ω) ≈ πe2

m2ε∞ω
Nω

∫
dE |e· < c|p|v > |2ρc(E + h̄ω − Egap) ρv(E) . (682)

The factor ρc(E + h̄ω − Egap) ρv(E) is the ‘joint density of states’ of the valence and conduction bands.
The absorption spectrum of a direct-gap semiconductor will show a sharp threshold at h̄ω = Egap. For
indirect-gap materials, instead, a weaker and softer threshold occurs at the gap, since the help of a phonon is
necessary to conserve momentum and the matrix element in Eq. (681) is replaced by a second-order electron-
phonon-photon matrix element.
One important feature of the absorption spectrum of several semiconductors is the appearance of ‘exciton peaks’.
When an electron-hole pair is formed by the absorption of a photon, the pair can remain weakly bound, as in an
hydrogen atom. The binding energy of the pair will be exactly the binding energy of the H atom in its ground
state, corrected for the different dielectric constant and for the reduced mass, 1/mred = 1/me + 1/mh:

∆E =
e2

(4πε∞)2
mred

2h̄2
. (683)

Thus, the absorption spectrum shows a peak at a photon frequency h̄ω = Egap−∆E (see Fig. 5.4 in Ridley’s
book).

• A summary of radiative and non-radiative transitions.
The theoretical scheme we have employed so far can be used in a variety of different situations. Electronic
transitions can occur within the conduction band, from valence to conduction band, from valence or conduction
band to localized defect or impurity states (traps). They can be radiative (when assisted by photons) or
non-radiative (when assisted by interparticle Coulomb forces, also called ‘Auger processes’, by phonons or by
a more complicated lattice rearrangement). We have seen the cases of photon, phonon, and Coulomb matrix
elements at first order. The general transition rate can be evaluated using first-order perturbation theory (Fermi
Golden Rule or Born approximation for direct transitions). The major cases we have not tretaed are transitions
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involving traps (which requires the knowledge of the localized wavefunction, often hard to estimate) while
non-radiative transitions involving large energy exchange (such as an conduction electron being trapped into a
localized state energetically located aroung the middle of the gap) may require multi-phonon processes (such
as emission of many phonons or processes relying on an-harmonic corrections to the phonon Hamiltonian) or
even more complicated processes in which the lattice re-arranges itself. Ridley’s text describes in Chapter 5
radiative transitions of types different from the VB-to-CB direct absorption we have considered above: Free
carrier absorption (that is: absorption of a photon by a free electron in the CB, involving an analysis of the
requirements posed by energy and momentum conservation), photoionization of localized states of exciton
absorption (requiring some discussion of the localized or excitonic wavefunctions), indirect transitions (assisted
by phonons and so requiring second-order perturbation theory) and light scattering by free electrons (which
depends on the second-order term e2A2/(2m) we have so far neglected in Eq. (667)). In Chapter 6 Ridley
discusses non-radiative transitions. While the details (mainly dictated by energy/momentum conservation and
by the particular form of the initial/final wavefunctions involved) change significantly from one case to the next,
the general scheme employed is always the same. We shall not discuss these issues in detail, as the examples we
have seen so far should be sufficient to give the gist of the matter.
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