ECE374: Homework 3

Homework 3 assignment for ECE374

Posted: 03/13/15

Due: 03/27/15

Note: *In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your work.* If you make a mistake, it will also help the grader show you where you made a mistake.

Problem 1 (10 Points):

Assume a datagram of size 5000 bytes crosses 5 different networks segments on its way from sender to receiver. The smallest MTU of all network segments is 820 bytes.

- a. In how many datagrams does the original datagram have to be fragmented in?
- b. At which point in the network does the fragmentation occur?
- c. Show the length, ID, fragflag, and offset fields of the IP header of each fragment.
- d. At which location are the IP fragments reassembled? Explain your answer.

Problem 2 IP (20 Points):

In the figure below, assign an IP address to each of the hosts and routers interfaces and specify the number of subnets.

Figure 1

Problem 3 (16 Points):

Consider the network setup shown in Figure 2. Suppose that the ISP instead assigns the router the address 24.34.112.235 and that the network address of the home network is 192.168.1/24.

- a. Assign addresses to all interfaces in the home network.
- b. Suppose each host has two ongoing TCP connections, all to port 80 at host 128.119.40.186. Provide the six corresponding entries in the NAT translation table.

Figure 2

Problem 4 (20 Points):

To calculate the timeout value the TCP sender uses to trigger a retransmission (if an acknowledgement is not received) an exponential weighted moving average is uses. For this problem you should familiarize yourself with how TCP calculates Estimated RTT.

- a. Capture 20 individual RTTs from your host to www.umass.edu and store them in an Excel table. SUBMIT the resulting Excel file as additional material with your homework!
- b. For each of these RTTs calculate EstimatedRTT (α = 0.125) and enter these values also in the table.
- c. Plot the values for RTT and EstimatedRTT.
- d. Repeat steps b. and c. for $\alpha = 0.25$ and $\alpha = 0.5$.

Problem 5 (20 Points):

Consider the following network. With the indicated link costs, use Djikstra's shortest-path algorithm to compute the shortest path from *A* to all network nodes. Show how the algorithm works by computing a table below.

-6	uı	•	•

St	N'	D(A),p(A)	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E), p(E)	D(F),p(F)	D(G),p(G)	D(H),p(H)
ер									
0									
1									
2									
3									
4									
5									
6									
7									
8									
9									

Problem 6: (14 Points)

For this problem consider Figure 4 and answer the following questions. In all cases provide a short discussion justifying your answer.

- a. For the *TCP 1* transmission, identify the time intervals when TCP slow start is operating.
- b. For the *TCP 2* transmission, identify the time intervals when TCP slow start is operating.
- c. For *TCP 1* transmission, identify the time intervals when congestion avoidance is operating.
- d. For *TCP 2* transmission, is the segment loss detected by triple duplicate ACK or by timeout?
- e. What is the initial value of ssthresh?
- f. What TCP flavor is shown by the TCP 1 transmission?
- g. What TCP flavor is shown by the TCP 2 transmission?

Figure 4