Version 04/14/2015

Extra Credit Assignment II for ECE 375

Learning Switch
Due: 05/10/2015 at midnight

Note: If you get full credits for this assignment you can improve your final grade by
5%

Preparations:

To be able to carry out this experiment you initially have to carry out the steps listed
below.

Note: If you have successfully performed Extra Assignment [you can ignore the
information given under “Account” and “Credentials” below.

Account:
1. Go to https://portal.geni.net/ press the “Use GENI” button and log in with
your UMass OIT credentials.
2. Click “Join a Project” and select “UMASS-ECE374".
3. T'will then get a notification and invite you to join the project.

Credentials:

1. Open browser and go to:
https://portal.geni.net/

2. Login using your UMass OIT credentials.

3. When you are logged in, select “Profile” from the top, right menu.

4. Next, click on “Generate SSH keypair” and enter your passphrase. Make sure
you remember that passphrase.

5. On the next page click on “Download Private Key” and save key to ~/.ssh
locally.

6. In the browser, still on the same page click on the link “SSL”.

Download the certificate to ~/.ssl locally.

8. Make sure the files that hold your secret keys are adequately protected. To
make sure that’s the case you can execute the following commands:
chmod 0600 .ssh/id_geni_ssh_rsa
chmod 0600 .ssl/geni-mzink.pem (remember that your .pem file is named
differently)

~

Congratulations. You know have set up everything to get started with carrying out
your experiment.

Setting up your slice through GENI Portal:
You can reserve the resources either through the Portal.

https://portal.geni.net/

Version 04/14/2015

The link below shows a video that teaches you how to setup a GENI slice for Extra
Assignment [:

http://server.casa.umass.edu/~zink/ECE374 /recordings/assignl topo setip.mp4

In the case of this assignment the only thing that is different is the name of the
RSpec you have to choose. So instead of using “ECE3743Node” (as shown around
1:50 minutes into the video) you now have to use RSpec titled
“ECE374_UMass_EG_Assignment2”. This is very important! If you don’t choose the
right RSpec you will not succeed in finishing this assignment!

Resource reservation:

1)
2)
3)
4)

5)
6)
7)
8)

9)

When you are logged in, select the “Home” tab from the top, right menu.
Click on the project name “UMASS-ECE374”.

Next, click on the “Create Slice” button.

On the next page, give a name and description for the slice and click “Create
Slice” button.

You will then get a message confirming the creation of the slice.

Click on the Slice page. Click on “Add Resources”

Select “ECE374_Umass_EG_Assignment2” from the list of RSpecs.

Click on “Site” in the GUI (Jacks) . You can use any of the ExoGENI aggregate
managers shown on the list.

After a while, you will be able to see the topology. The node switch will be
connected to five other nodes as shown in the screen shot below.

Congratulations! You are ready to start the experiment.

https://portal.geni.net/secure/project.php?project_id=69e0393f-f1ca-4645-847c-1559de17b51a
http://server.casa.umass.edu/~zink/ECE374/recordings/assign1_topo_setip.mp4
http://server.casa.umass.edu/~zink/ECE374/recordings/assign1_topo_setip.mp4
http://server.casa.umass.edu/~zink/ECE374/recordings/assign1_topo_setip.mp4

Version 04/14/2015

Experiment

Resources on RENCI ExoGENI are ready.

nodes \:K f(

/j/ s nodeb
des

| Renew | Renew Date | Delete | SSH | | Restart | | Details | | Add Resources | Expand |

Figure A

The goal of this assignment is to implement the learning switch capability that is
used by Ethernet switches (see Chapter 5 slides 63-66) by using a software-based
OpenFlow switch. In the case of the topology shown in Figure A, this software switch
is to be implemented in node “switch”. All the other nodes represent regular hosts.
To realize this implementation of a learning switch it is your task to implement a
trema-based OpenFlow controller. You will have to verify the correct functionality
of the learning switch by creating an experiment script in which node A pings all
other nodes (B - E) in LabWiki.

Working:

In the topology shown in figure A, the switch node will act as the learning switch,
which connect nodes A-E with each other. Whenever a regular node pings any
regular node for the first time, the switch does not know the destination address of
the node. At this point, the switch node floods the packet to all the nodes it is
connected to. When it receives a reply to the flood, this information will be used to
populate its switching table. Hereafter, whenever any node wants to ping any other
nodes, the switch node will fetch the information from the table. For this purpose,
two scripts are already preloaded in the switch node, namely learning-switch.rb and
fdb.rb. The second script offers rudimentary database functionality that is used to
maintain the switching table.

Version 04/14/2015

Step-by-Step Instructions
1. The first step is to add the openflow switch and configure the bridge with
interfaces. To do so, SSH into the “switch” node and execute the following
commands:

a)

b)

d)

sudo bash

source /etc/bash/bash.bashrc

ifconfig

Check if all the five interfaces from eth1-eth5 are up in the switch node.
ovs-vsctl add-br test

This command creates an ovs bridge named test. Any name can be
given for the bridge.

ovs-vsctl add-port test eth1

ovs-vsctl add-port test eth2

ovs-vsctl add-port test eth3

ovs-vsctl add-port test eth4

ovs-vsctl add-port test eth5

These commands configure the bridge with the interfaces. eth1-eth5
specifies the interfaces on node “switch”

ovs-vsctl set-controller test tcp:<IP.OF.CONTROLLER>:6653

In this case, the IP.OF.CONTROLLER should be set to 127.0.0.1
ovs-ofctl show test

dpid is “data path id” that uniquely identifies an OpenFlow instance on
the device. This command gives the 16 digit dpid. Make note of this
dpid.

Rl k]

normal misas_send len=0

Version 04/14/2015

f) We have already installed a template for the OpenFlow controller in
/root. The name of the template is “learning-switch_copy.rb”. Open this
file using any text editor and replace the copied dpid into this file.

def start
puts "Start"
@fdb = FDB.new

@switches =|f"myswitch" => 0x0000925fc530a747
end

def switch_ready dpid
puts "Switch #{@switches.index(dpid)} (#{dpid.to_hex}) has signed in"
puts "Switch #{dpid} has signed in"
info " datapath_id: #{ dpid.to_hex }"
send_message dpid, FeaturesRequest.new

2. This scriptis used to implement the learning switch functionality. To achieve
that you have to add additional functionality to the “def packet_in
datapath_id, message” routine. That is the only routine that you need to work
on. The others are all set. This routine implements the functionality required
when a packet enters the switch.

3. The controller makes use of a simple database implementation, which is
installed in the same directory as the controller. The name of the script is
“fdb.rb”. This is where the information is populated on flooding to all the
nodes.

4. You can start the controller with the following commands:
trema run /root/learning-switch_copy.rb

5. After you have started the controller switch over to LabWiki. To prove the
functionality of your learning switch controller re-use the
“ECE374_assignment2.oedl” experiment script. This script does automatic
pinging between nodes.

6. Modify that script such that node A pings all other hosts (nodes B - E).

Further information:
e Trema: http://trema.github.io/trema/
e OpenFlow:
https://www.opennetworking.org/images/stories/downloads/sdn-resource
s/white-papers/wp-sdn-newnorm.pdf

