
Lab 4: HW/SW Compression and Decompression of the Captured Image

Objectives:
▪ Understand how to leverage the FPGA based hardware acceleration in an SoC design.

▪ Understand how communication is achieved between the FPGA fabric and the ARM hard core

processor system (HPS) in an SoC board

▪ Understand how to add new components to an existing QSYS design to implement new

functionalities

Tools:
1. Quartus Prime – Hardware design and compilation

a. QSYS – For adding new components (PIOs) to the given design which facilitate

communication between ARM HPS and Verilog RLE

2. Altera Monitor Program – Used for compiling, loading and debugging your program (image

capture, B&W conversion, transfer image to RLE, decompression, compression ratio display) for

ARM HPS on the DE1-SoC board

Detailed Procedure:

In Quartus Prime

1. For this lab, you shall modify the HW/SW files provided in lab 2 to implement new

functionalities. You can either re-download the files from the website or re-use the files in your

lab 2 directory.

2. Launch Quartus Prime, open the DE1_SoC_With_D5M QPF file present in the verilog folder.

Download the FIFO buffer (rle_fifo_8_24.v) from the course website. Add the RLE that you

designed and the FIFO buffer to your project. Open the Computer_System.qsys in QSYS.

3. Add eight new Parallel Inputs/Outputs (PIOs) for the connections described in the slides (follow

the same order). The PIO component can be found in the Library window of the QSYS. Rename

each PIO to the names given in the slide below. The information in the round brackets is to tell

you whether the signal is input or output. Don’t assign the base address after adding each PIO.

Base address assignment must be done after adding and making the necessary connections.

4. Make sure that each PIO has the correct parameters. Set the direction to input or output in relation

to the ARM core, and set the bit-width to match the bit-width of the signal. For example,

ODATA_PIO is an 8-bit output.

5. In the external_connection – Conduit row, find the export column and double click to export the

signal. The default name used for exporting should be the PIO name followed by

_external_connection. For example, ODATA_PIO corresponds to odata_pio_external_connection.

6. Connect each PIO to the clock signals, reset signals, and HPS-FPGA lightweight bridge as in the

following screenshot.

a. clk – System_PLL.sys_clk

b. reset – System_PLL.reset_clk and ARM_A9_HPS.h2f_reset

c. s1 – ARM_A9_HPA.h2f_lw_axi_master

7. You will see a number of errors in the messages segment relating to address overlaps. Fix these

errors by selecting Assign Base Addresses in the System menu.

Screenshot of QSYS before generating the design (Pay attention to the base addresses)

8. Add the wires necessary to connect your modules to each other and the ARM core in your top-

level DE1_SoC_With_D5M.v file.

9. Instantiate your Verilog modules in your top-level DE1_SoC_With_D5M.v file. Connect each

input or output of each module to the appropriate wire.

10. Add the PIO connections that you added in QSYS to the system in your top-level file. The

template for these connections can be found in QSYS – Generate – Show Instantiation Template.

11. Compile your design.

In Altera monitor program

12. Download the header files (hps_soc_system.h, socal.h, hps.h) from the website and move them to

your C code folder. These header files contain all the necessary functions required for

communication between ARM HPS and the FPGA. Go through these files thoroughly.

13. Open the Altera Monitor Program and download the compiled system onto the board.

14. In your C code, you will need to communicate with the RLE hardware. To do so, you will use the

alt_write_byte(), alt_read_byte(), and alt_read_word() functions defined in socal.h. To write, the

syntax is alt_write_byte(address, value). For the address, use ALT_FPGA_BRIDGE_LWH2F_OFST,

defined in hps.h, as the offset for the base address of the lightweight bridge and add the base

address of the device given in hps_soc_system.h. For example, to assert the FIFO read request

signal, we would use the line

alt_write_byte(ALT_FPGA_BRIDGE_LWH2F_OFST + FIFO_OUT_READ_REQ_PIO_BASE, 1);

15. Modify the C code to do the following.

a. Preprocessing - Convert the captured image to one-bit-per-pixel black and white

representation before compression.

b. Communicate with the RLE hardware to perform compression. Store the resultant

compressed image onto the SDRAM. Write a function in C to decompress the RLE-

compressed image. Display the decompressed image along with the compression ratio.

