
ECE 332 – Embedded Systems Lab

Lab 3: RLE Compression using Verilog and
Verification using Functional Simulation

Objectives

▪ Learn to write Verilog for a custom design

▪ Understand how to verify your design using functional simulation

▪ Learn to write Verilog test bench for your design

Embedded Systems LaboratoryECE 332 2

Run Length Encoding

▪ Takes data stream and records how many bits are the same

▪ Output the value of the bit and the number of iterations of that value
• ID Value
• Count Value

Embedded Systems LaboratoryECE 332 3

Run Length Encoding (Contd..)

▪ Input – 8 Bit data stream segments

▪ Output – 24 Bit data

▪ How does it work?
• First bit – ID Bit (0 or 1)
• Count value - 23 bits (Number of 0s or 1s)

▪ More of same value in sequence, more data is saved

▪ Worst Case - Interchanging data (01010101.....)

Embedded Systems LaboratoryECE 332 4

Illustration

1 1 1 0 0 0 0 0

1 3

0 7

23bit1bit

Original Data Stream Segment

Encoded Data Stream Segment

8bit

0 0 1 1 1 1 0 0

1 4

0 2

0 7

Embedded Sys tems Labora toryECE 332 5

RLE Implementation

▪ Implemented using a state machine written in Verilog (provided)
• Understand the state diagram (appendix)
• State transitions provided
• Fill in the commented sections

Embedded Systems LaboratoryECE 332 6

Functional Simulation

▪ Technique to verify the functionality of a hardware design (Design
verification)

▪ Standard procedure followed in the industry before implementing in a
target device

▪ Provide the inputs to your design and check the outputs to confirm
functionality

▪ ModelSim from Mentor Graphics is a well known tool used in the industry

Embedded Systems LaboratoryECE 332 7

ModelSim – Functional simulation tool

▪ Two ways to perform the design verification
• Set the inputs through wave editor and observe the outputs
• Design a test bench for your design

Embedded Systems LaboratoryECE 332 8

Wave Editor in ModelSim

Embedded Systems LaboratoryECE 332 9

Test Bench

▪ Verilog wrapper module which does the following
• Invokes the Design Under Test (DUT) - RLE
• Provides the inputs to the DUT
• Formats the outputs suitable for viewing

▪ Verilog provides constructs such as procedural blocks and timing controls

Good source: https://people.ece.cornell.edu/land/courses/ece5760/Verilog/LatticeTestbenchPrimer.pdf

Embedded Systems LaboratoryECE 332 10

https://people.ece.cornell.edu/land/courses/ece5760/Verilog/LatticeTestbenchPrimer.pdf

Test Bench Template

Module ‘RLE_test’

Instance ‘RLE_top’

RLE Verilog netlist
module (DUT)

Procedural blocks
with test bench code

DUT inputs

DUT outputs

Embedded Systems LaboratoryECE 332 11

Summary

▪ To implement hardware for RLE
• Encoding is done in Hardware (Verilog)

▪ Functional simulation
• Verify the design by providing the input stimulus and observe the output using Verilog

test bench

Embedded Systems LaboratoryECE 332 12

Appendix
Signals and their Description

RLE Internal Signals

▪ reg rd_reg
• connected to rd_req;

▪ reg wr_reg
• Connected to wr_req;

▪ reg [22:0] bit_count
• Stores number of same consecutive bit in bit stream
• value_type represent bit ID

▪ reg value_type
• Bit ID

Embedded Systems LaboratoryECE 332 14

RLE Internal Signals

▪ reg [7:0] shift_buf
• Store 8 bit segment of bit stream comes from input side FIFO
• Will be shifted out to calculate number of bits

▪ reg [3:0] shift_count
• Current shift amount of shift_buf

▪ reg new_bitstream
• Indicate new bit sequence is starting
• Current encoded data segment is passed to output side FIFO

Embedded Systems LaboratoryECE 332 15

RLE Internal Signals

▪ reg [3:0] state
• Represent State.
• There are 9 states in total

▪ reg [3:0] next_state
• Represent Next state

Embedded Systems LaboratoryECE 332 16

RLE Interface - Input

▪ input clk,rst
• clk and reset

▪ input recv_ready
• Connected with (!fifo_empty) of input side FIFO

▪ input send_ready
• Connected with (!fifo_full) of output side FIFO

▪ input [7:0] in_data
• Input data from input side FIFO
• 8 bit segment of original bit stream

▪ input end_of_stream
• Indicate the end of bit stream
• Request flushing out the last segment

Embedded Systems LaboratoryECE 332 17

RLE Interface - Output

▪ output [23:0] out_data
• Output data to output side FIFO
• [23] has bit ID, [22:0] has bit counting value

▪ output rd_req
• Read request for input side FIFO

▪ output wr_req
• Write request for output side FIFO

Embedded Systems LaboratoryECE 332 18

READ_IN
PUT

shift_buf =
in_data

WAIT_INP
UT

rd_reg = 0

REQUEST
_INPUT

rd_reg = 1
shift_count

= 0

COUNT_B
ITS

Increase
bit_count
Set/reset
new_bitstr

eam

SHIFT_BI
TS

Shift
sift_buf

Increase
shift_count

Lookup
new_bitstr

eam

COUNT_D
ONE

wr_reg = 1

WAIT_OU
TPUT

wr_reg = 0

RESET_C
OUNT

bit_count =
0

INIT
bit_count =

0
shift_buf =

0
rd_reg = 0
wr_req_re

g = 0
new_bitstr
eam = 1

!recv_read

!recv_read&
end_of_stream&
bit_count != 0

new_bitstream

shift_count == 7
send_ready

end_of_stream

RLE State in detail

▪ INIT
• Initialize registers

▪ REQUEST_INPUT
• Assert rd_req signal to FIFO by setting rd_reg
• FIFO takes rd_req signal at next clock

▪ WAIT_INPUT
• 1 cycle stall is needed
• De-assert rd_req by setting rd_reg

▪ READ_INPUT
• FIFO provides valid data after taking rd_req
• shift_buf stores 8 bit input data

Embedded Systems LaboratoryECE 332 20

RLE State in detail

▪ COUNT_BITS
• Count number of consecutive bits in shift_buf
• If new type of bit starts, store bit ID in value_type register
• If current value_type and shift_buf[0] is not matched, notify current encoding is

completed and new encoding will be started
▪ SHIFT_BITS

• Right shift the shift_buf
• Increase shift_count
• Look up new_bitstream

▪ COUNT_DONE
• Assert wr_req by setting wr_reg
• FIFO will take wr_req signal in next clock cycle

Embedded Systems LaboratoryECE 332 21

RLE State in detail

▪ WAIT_OUTPUT
• 1 cycle stall is needed
• De-assert wr_req by setting wr_reg

▪ RESET_COUNT
• Reset bit counting register after passing encoded data to output side FIFO

Embedded Systems LaboratoryECE 332 22

Race Condition

▪ Produces different simulation
result from real hardware

▪ Keeping verilog design guideline is
important

always
@(posedge clk)

a = b;
always
@(posedge clk)

b = c;

Which statement
will be executed
first?

An Example

Embedded Systems LaboratoryECE 332 23

Important Design Guideline for LAB 3

▪ Do not mix BA and NBA in the same always block
▪ Use BA for combinational circuit in given design

• State transition
▪ Use NBA for sequential circuit in given design

• Updating registers

Embedded Systems LaboratoryECE 332 24

	ECE 332 – Embedded Systems Lab��
	Objectives
	Run Length Encoding
	Run Length Encoding (Contd..)
	Illustration
	RLE Implementation
	Functional Simulation
	ModelSim – Functional simulation tool
	Wave Editor in ModelSim
	 Test Bench
	Test Bench Template
	Summary
	Appendix�Signals and their Description �
	RLE Internal Signals
	RLE Internal Signals
	RLE Internal Signals
	RLE Interface - Input
	RLE Interface - Output
	Slide Number 19
	RLE State in detail
	RLE State in detail
	RLE State in detail
	Race Condition
	Important Design Guideline for LAB 3

