
ECE 332 – Embedded Systems Laboratory

Big Picture Lab 4
Prof. Sandip Kundu

Acknowledgement

 These slides are a result of cumulative contributions from Prof. Burleson,
Koren, Kundu and Moritz.

 Materials have also been adopted from the textbook: Wolf, Computers as
Components, Morgan Kaufman, 2005

2Embedded Systems LaboratoryECE 332

Readings

 Wolf, Computers as Components, Chapter 6 pp. 293-352
 Multiple Tasks and Multiple Processes
 Pre-emptive Real-time Operating Systems
 Priority-Based Scheduling
 Interprocess Communication Mechanisms
 Evaluating OS Performance
 Power Management and Optimization for Processes
 Design Example Telephone Answering Machine

Embedded Systems LaboratoryECE 332 3

Operating system is just another program.. a big one

 The operating system controls resources:
• who gets the CPU;
• when I/O takes place;
• how much memory is allocated.

 The most important resource is the CPU itself.
• CPU access controlled by the scheduler of processes.

 OS needs to keep track of:
• process priorities;
• scheduling state;
• process activation record.

Embedded Systems LaboratoryECE 332 4

Where is the OS?

Embedded Systems LaboratoryECE 332 5

Process Concept

 Process = a program in execution (main thing to manage)
• process execution must progress in sequential fashion.

 Processes may be created:
• statically before system starts;
• dynamically during execution.

Embedded Systems LaboratoryECE 332 6

Process State

 As a process executes, it changes state
 Each process may be in one of the following states (names vary across

various OS):
• new: The process is being created.
• running: Instructions are being executed.
• waiting: The process is waiting for some event to occur.
• ready: The process is waiting to be assigned to a processor.
• terminated: The process has finished execution.

Embedded Systems LaboratoryECE 332 7

Diagram of Process State in the OS

Embedded Systems LaboratoryECE 332 8

Process Control Block (PCB)

 Information associated with each process in the OS, i.e., the process
related data structure.

 The PCB contains:
• Process state (running, waiting, …)
• Program counter (value of PC)
• Stack pointer, General purpose CPU registers
• CPU scheduling information (e.g., priority)
• Memory-management information
• Username of owner
• I/O status information
• Pointer to state queues, ..

Embedded Systems LaboratoryECE 332 9

Process Control Block (PCB)

Embedded Systems LaboratoryECE 332 10

Example Process State in Memory

What you wrote:

void X(int b){
If (b==1) ..

}

main(){
int a = 2;
X(a);

}

In memory:

PC->

Embedded Systems LaboratoryECE 332 11

Single and Multithreaded Processes

 A thread = stream of execution
 Benefits?

Embedded Systems LaboratoryECE 332 12

Example of Memory Layout with Threads

main() {
……
fork_thread(producer);
fork_thread(consumer);
……

}

producer() {
……

}

consumer(){
…….

}

Embedded Systems LaboratoryECE 332 13

Embedded vs. general-purpose scheduling

 Workstations try to avoid starving processes of CPU access.
• Fairness = access to CPU.

 Embedded systems must meet deadlines.
• Low-priority processes may not run for a long time.

 Priority Driven scheduling
• Each process has a priority.
• CPU goes to highest-priority process that is ready.

Embedded Systems LaboratoryECE 332 14

CPU Switch From Process to Process

Embedded Systems LaboratoryECE 332 15

Interprocess Communication

 Interprocess communication (IPC): OS provides mechanisms so that
processes can pass data.

Embedded Systems LaboratoryECE 332 16

IPC Styles

 Shared memory:
• processes have some memory in common;
• must cooperate to avoid destroying/missing messages.

 Message passing:
• processes send messages along a communication channel---no common address

space.

Embedded Systems LaboratoryECE 332 17

Critical Regions

 Critical region: section of code that cannot be interrupted by another
process.

 Examples:
• writing shared memory;
• accessing I/O device.

Embedded Systems LaboratoryECE 332 18

Shared Memory

 Shared memory on a bus:

CPU 1 CPU 2
memory

Embedded Systems LaboratoryECE 332 19

Race Condition in Shared Memory

 Problem when two CPUs try to write the same location:
• CPU 1 reads flag and sees 0.
• CPU 2 reads flag and sees 0.
• CPU 1 sets flag to one and writes location with 123.
• CPU 2 sets flag to one and overwrites location with 456.

• CPU 1 thinks value is 123 since it checked flag but it is 456!

Embedded Systems LaboratoryECE 332 20

Synchronization Hardware – ISA Support

 E.g.,: Test and modify the content of a word atomically
• Below pseudo-code for the hardware would implement in ISA.

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;
}

Embedded Systems LaboratoryECE 332 21

Mutual Exclusion Lock with Test-and-Set

 Can be used to implement a simple lock
 Shared data:

boolean lock = false;

Process Pi
do {

while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}

Wait here/test until/if Lock is TRUE, If
it is not, set it and continue

Embedded Systems LaboratoryECE 332 22

Semaphores

 Semaphore: OS primitive for controlling access to critical regions.
• Based on test-and-set or swap at implementation level

• Binary semaphors similar to mutex locks shown earlier conceptually
• Counting semaphors allow some # of players access to critical section

 Protocol:
• Get access to semaphore.
• Perform critical region operations.
• Release semaphore.

Embedded Systems LaboratoryECE 332 23

BACKUP

What do you need to design a real embedded system?

 You know how to interface to simple switches and lights
 You know how to use memory of different types (SRAM, DRAM, EEPROM,

Flash)
 You know how to interface to serial I/O (UART, USB, SPI, GPIO)
 You know how to interface to Ethernet/Internet
 You know how to write programs and process data in C
 What’s next?

• Running multiple programs
• Real-time?
• Reliability? Security? Upgradeability?

 You need an Operating System!

Embedded Systems LaboratoryECE 332 25

Atomic test-and-set in ARM ISA

 ARM test-and-set provided by SWP: single bus operation reads memory
location, tests it, writes it.

 Example mutex lock implementation

Embedded Systems LaboratoryECE 332 26

	ECE 332 – Embedded Systems Laboratory
	�Acknowledgement
	Readings
	Operating system is just another program.. a big one
	Where is the OS?
	Process Concept
	Process State
	Diagram of Process State in the OS
	Process Control Block (PCB)
	Process Control Block (PCB)
	Example Process State in Memory
	Single and Multithreaded Processes
	Example of Memory Layout with Threads
	Embedded vs. general-purpose scheduling
	CPU Switch From Process to Process
	Interprocess Communication
	IPC Styles
	Critical Regions
	Shared Memory
	Race Condition in Shared Memory
	Synchronization Hardware – ISA Support
	Mutual Exclusion Lock with Test-and-Set
	Semaphores
	Backup�
	What do you need to design a real embedded system?
	Atomic test-and-set in ARM ISA

