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Readings

 Wolf, Computers as Components, Chapter 6 pp. 293-352
 Multiple Tasks and Multiple Processes
 Pre-emptive Real-time Operating Systems
 Priority-Based Scheduling
 Interprocess Communication Mechanisms
 Evaluating OS Performance
 Power Management and Optimization for Processes
 Design Example Telephone Answering Machine
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Operating system is just another program.. a big one

 The operating system controls resources:
• who gets the CPU;
• when I/O takes place;
• how much memory is allocated.

 The most important resource is the CPU itself.
• CPU access controlled by the scheduler of processes.

 OS needs to keep track of:
• process priorities;
• scheduling state;
• process activation record.
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Where is the OS?
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Process Concept

 Process = a program in execution (main thing to manage)
• process execution must progress in sequential fashion.

 Processes may be created:
• statically before system starts;
• dynamically during execution.
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Process State

 As a process executes, it changes state
 Each process may be in one of the following states (names vary across 

various OS):
• new:  The process is being created.
• running:  Instructions are being executed.
• waiting:  The process is waiting for some event to occur.
• ready:  The process is waiting to be assigned to a processor.
• terminated:  The process has finished execution.
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Diagram of Process State in the OS
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Process Control Block (PCB)

 Information associated with each process in the OS, i.e., the process 
related data structure.

 The PCB contains:
• Process state (running, waiting, …)
• Program counter (value of PC)
• Stack pointer, General purpose CPU registers  
• CPU scheduling information  (e.g., priority)
• Memory-management information
• Username of owner
• I/O status information
• Pointer to state queues, ..
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Process Control Block (PCB)
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Example Process State in Memory

What you wrote:

void X(int b){
If (b==1) ..

}

main(){
int a = 2;
X(a);

}

In memory:

PC->
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Single and Multithreaded Processes

 A thread = stream of execution
 Benefits?
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Example of Memory Layout with Threads

main() {
……
fork_thread(producer);
fork_thread(consumer);
……

} 

producer() {
……

}

consumer(){
…….

}
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Embedded vs. general-purpose scheduling

 Workstations try to avoid starving processes of CPU access.
• Fairness = access to CPU.

 Embedded systems must meet deadlines.
• Low-priority processes may not run for a long time.

 Priority Driven scheduling
• Each process has a priority.
• CPU goes to highest-priority process that is ready.
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CPU Switch From Process to Process
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Interprocess Communication

 Interprocess communication (IPC): OS provides mechanisms so that 
processes can pass data.
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IPC Styles

 Shared memory:
• processes have some memory in common;
• must cooperate to avoid destroying/missing messages.

 Message passing:
• processes send messages along a communication channel---no common address 

space.
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Critical Regions

 Critical region: section of code that cannot be interrupted by another 
process.

 Examples:
• writing shared memory;
• accessing I/O device.
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Shared Memory

 Shared memory on a bus:

CPU 1 CPU 2
memory
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Race Condition in Shared Memory

 Problem when two CPUs try to write the same location:
• CPU 1 reads flag and sees 0.
• CPU 2 reads flag and sees 0.
• CPU 1 sets flag to one and writes location with 123.
• CPU 2 sets flag to one and overwrites location with 456.

• CPU 1 thinks value is 123 since it checked flag but it is 456!
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Synchronization Hardware – ISA Support

 E.g.,: Test and modify the content of a word atomically
• Below pseudo-code for the hardware would implement in ISA.

boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;

return rv;
}
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Mutual Exclusion Lock with Test-and-Set

 Can be used to implement a simple lock
 Shared data: 

boolean lock = false;

Process Pi
do {

while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}

Wait here/test until/if Lock is TRUE, If 
it is not, set it and continue 
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Semaphores

 Semaphore: OS primitive for controlling access to critical regions.
• Based on test-and-set or swap at implementation level

• Binary semaphors similar to mutex locks shown earlier conceptually
• Counting semaphors allow some # of players access to critical section

 Protocol:
• Get access to semaphore. 
• Perform critical region operations.
• Release semaphore. 
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BACKUP



What do you need to design a real embedded system? 

 You know how to interface to simple switches and lights
 You know how to use memory of different types (SRAM, DRAM, EEPROM, 

Flash)
 You know how to interface to serial I/O  (UART, USB, SPI, GPIO)
 You know how to interface to Ethernet/Internet 
 You know how to write programs and process  data in C
 What’s next?  

• Running multiple programs
• Real-time?
• Reliability?  Security?  Upgradeability?

 You need an Operating System!
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Atomic test-and-set in ARM ISA

 ARM test-and-set provided by SWP: single bus operation reads memory 
location, tests it, writes it.

 Example mutex lock implementation
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