
DE1-SoC Computer System
with ARM Cortex-A9

For Quartus Prime 16.0

1 Introduction

This document describes a computer system that can be implemented on the Altera DE1-SoC development and
education board. This system, called the DE1-SoC Computer, is intended for use in experiments on computer orga-
nization and embedded systems. To support such experiments, the system contains embedded processors, memory,
audio and video devices, and some simple I/O peripherals. The FPGA programming file that implements this system,
as well as its design source files, can be obtained from the University Program section of Altera’s web site.

2 DE1-SoC Computer Contents

A block diagram of the DE1-SoC Computer system is shown in Figure 1. As indicated in the figure, the components
in this system are implemented utilizing the Hard Processor System (HPS) and FPGA inside the Cyclone R©V SoC
chip. The HPS comprises an ARM Cortex A9 dual-core processor, a DDR3 memory port, and a set of peripheral
devices. The FPGA implements two Altera Nios II processors, and several peripheral ports: memory, timer modules,
audio-in/out, video-in/out, PS/2, analog-to-digital, infrared receive/transmit, and parallel ports connected to switches
and lights.

2.1 Hard Processor System

The hard processor system (HPS), as shown in Figure 1, includes an ARM Cortex A9 dual-core processor. The A9
dual-core processor features two 32-bit CPUs and associated subsystems that are implemented as hardware circuits
in the Altera Cyclone V SoC chip. An overview of the ARM A9 processor can be found in the document Introduction
to the ARM Processor, which is provided in Altera’s University Program web site. All of the I/O peripherals in the
DE1-SoC Computer are accessible by the processor as memory mapped devices, using the address ranges that are
given in this document. A summary of the address map can be found in Section 7.

A good way to begin working with the DE1-SoC Computer and the ARM A9 processor is to make use of a utility
called the Altera Monitor Program. It provides an easy way to assemble/compile ARM A9 programs written in either
assembly language or the C language. The Monitor Program, which can be downloaded from Altera’s web site, is
an application program that runs on the host computer connected to the DE1-SoC board. The Monitor Program
can be used to control the execution of code on the ARM A9, list (and edit) the contents of processor registers,
display/edit the contents of memory on the DE1-SoC board, and similar operations. The Monitor Program includes
the DE1-SoC Computer as a pre-designed system that can be downloaded onto the DE1-SoC board, as well as several
sample programs in assembly language and C that show how to use the DE1-SoC Computer’s peripherals. Section 8
describes how the DE1-SoC Computer is integrated with the Monitor Program. An overview of the Monitor Program
is available in the document Altera Monitor Program Tutorial, which is provided in the University Program web site.
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Figure 1. Block diagram of the DE1-SoC Computer.

2.2 Memory

The HPS includes a memory port that connects the ARM MPCORE to a 1 GB DDR3 memory. This memory is
normally used as the storage location of programs and data used by the ARM processors. The memory is organized
as 256M x 32-bits, and is accessible using word accesses (32 bits), halfwords, and bytes. The DDR3 memory is
mapped to the address space 0x00000000 to 0x3FFFFFFF. There is also a 64 KB on-chip memory available inside
each ARM A9 processor. This small memory is organized as 16K x 32-bits, and is mapped to the address space
FFFF0000 to FFFFFFFF.

2.3 Pushbutton KEY and LED Port

The HPS includes a general purpose I/O port, called GPIO1, that is accessible by the ARM A9 processor. As
illustrated in Figure 2, this parallel port is assigned the Base address 0xFF709000, and includes several 32-bit
registers. These registers can be read or written usign word accesses. Only two bit locations in GPIO1 are used for
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the DE1-SoC computer. Bit 24 of the data register (DR) is connected to a green light, LEDG, and bit 25 is connected
to a pushbutton switch, KEY. To use these devices, the data direction register (DDR) shown in the figure has to be
configured such that bit 24 is an output and bit 25 is an input. Writing a 1 into a corresponding bit position in the
DDR sets this bit as an output, while writing a 0 sets the bit as an input. After the direction bits have been set, the
green light LEDG can be turned on/off by writing to bit 24 in the data register. Similarly, the value of the pushbutton
switch KEY can be obtained by reading the data register and checking the value of bit 25. An example program for
the ARM A9 processor that uses GPIO1 is given in Section 2.4.

As indicated in Figure 2, the GPIO1 port includes several other registers in addition to the DR and DDR registers.
These other registers are mostly used for setting characteristics of input pins, which affects only the KEY input in
our system. Detailed information about these registers can be found in the Altera Cyclone V Hard Processor System
documentation, which is available on Altera’s website.

Address 02431 25. . .

0xFF709000 

0xFF709060 

0xFF709004

Unused Data register

Level sync register

Unused

Data direction register

... not shown

23 . . .

0xFF709030 Interrupt enable register

Figure 2. Parallel port GPIO1.

2.4 Timer Modules

The HPS includes several hardware timer modules that can be used to keep track of time intervals. The ARM A9
MPCore includes one private timer module for each A9 core, and the HPS provides four other timer modules that
can be used by either A9 core. The timers are described in more detail below.

2.4.1 ARM A9 MPCore Timers

Figure 3 shows the registers in the programmer’s interface for each A9 core private timer. These registers have the
base address 0xFFFEC600, as shown in the figure, and can be read or written using word accesses. To use the
timer, it is necessary to first write an initial count value into the Load register. The timer can then be started by
setting the enable bit E in the Control register to 1, and it can be stopped by setting E back to 0. Once enabled the
timer decrements its count value until reaching 0. When it reaches 0, the timer sets the F bit in the Interrupt status
register. The F bit can be checked by software using polled-I/O to determine when the timer period has expired. The
F bit can be reset to 0 by writing a 1 into it. Also, if bit I in the Control register is set to 1, then a processor interrupt
can be generated when the timer reaches 0. Using interrupts with the timer is discussed in Section 3.

When it reaches 0, the timer will stop if the auto bit (A) in the control register is set to 0. But if bit A is set to 1, then
the timer will automatically reload the value in the Load register and continue decrementing. The current value of
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the timer is available to software in the Counter register shown in Figure 3. The timer uses a clock frequency of 200
MHz. The Prescaler field in the Control register can be used to slow down the counting rate, as follows. The timer
decrements each Prescaler +1 clock cycle. Therefore, if Prescaler = 0, then the timer decrements every clock cycle,
if Prescaler = 1, the timer decrements every second clock cycle, and so on.

EAI

F

Address 01531 . . . . . . 116 2

Load value 0xFFFEC600 

Current value0xFFFEC604 

Unused0xFFFEC608 

Unused0xFFFEC60C 

7

Control

Interrupt status

Prescaler

8

Counter

Load

Unused

3 Register name

Figure 3. ARM A9 private timer port.

2.4.2 HPS Timers

Figure 4 shows the registers in the programmer’s interface for one of the HPS timers. These registers have the base
address 0xFFC08000, as shown in the figure, and can be read or written using word accesses. To configure the
timer, it is necessary to ensure that it is stopped by setting the enable bit E in the Control register to 0. A starting
count value for the timer can then be written into the Load register. To instruct the timer to use the specified starting
count value, the M in the Control register should be set to 1, and the timer can be started by setting E = 1. The timer
counts down to 0, and then sets both bit F in the End-of-interrupt register and bit S in the Interrupt status register to
1. Software can poll the value of S to determine when the timer period has expired. The S bit, and the F bit can be
reset to 0 by reading the contents of the End-of-Interrupt register. Also, if bit I , the interrupt mask bit, in the Control
register is set to 0, then an interrupt can be generated when the timer reaches 0 (note that bit I in the ARM A9 private
timer shown in Figure 3 has the opposite polarity). The use of interrupts with the timer is discussed in Section 3.

The current value of the timer is available to software in the Counter register shown in Figure 4. The timer uses a
clock frequency of 100 MHz.

There are three other identical timers in the HPS, with the following base addresses: 0xFFC09000, 0xFFD00000,
and 0xFFD01000. The first of these timers uses a 100 MHz clock, and the last two timers use a 25 MHz clock.

We should mention that other timer modules also exist in the HPS. The ARM A9 MPCore has a global timer that is
shared by both A9 cores, as well as a watchdog timer for each processor. Also, the HPS has two additional watchdog
timers. Documentation about the global timer and watchdog timers is available in the ARM Cortex A9 MPCore
Technical Reference Manual, and in the Altera Cyclone V Hard Processor System Technical Reference Manual.

2.4.3 Using a Timer with Assembly Language Code

An example of ARM A9 assembly language code is shown in Figure 5. The code configures the private timer for
the A9 core so that it produces one-second timeouts. An infinite loop is used to flash the green light connected to
GPIO1, discussed in Section 2.3. The light is turned on for one second, then off, and so on.
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EMI

F

Address 01531 . . . . . . 116 2

Load value 0xFFC08000 

Current value0xFFC08004 

Unused0xFFC08008 

Unused0xFFC0800C 

Control

End-of-Interrupt

Counter

Load

Register name

SUnused0xFFC08010 Interrupt status

Figure 4. HPS timer port.

.equ bit_24_pattern, 0x01000000
/* This program provides a simple example of code for the ARM A9. The program performs
* the following:
* 1. starts the ARM A9 private timer
* 2. loops forever, toggling the HPS green light LEDG when the timer expires
*/

.text

.global _start
_start:

LDR R0, =0xFF709000 // GPIO1 base address
LDR R1, =0xFFFEC600 // MPCore private timer base address

LDR R2, =bit_24_pattern // value to turn on the HPS green light LEDG
STR R2, [R0, #0x4] // write to the data direction register to set

// bit 24 (LEDG) of GPIO1 to be an output
LDR R3, =200000000 // timeout = 1/(200 MHz) x 200×10∧6 = 1 sec
STR R3, [R1] // write to timer load register
MOV R3, #0b011 // set bits: mode = 1 (auto), enable = 1
STR R3, [R1, #0x8] // write to timer control register

LOOP:
STR R2, [R0] // turn on/off LEDG

WAIT: LDR R3, [R1, #0xC] // read timer status
CMP R3, #0
BEQ WAIT // wait for timer to expire

STR R3, [R1, #0xC] // reset timer flag bit
EOR R2, R2, #bit_24_pattern // toggle LEDG value
B LOOP
.end

Figure 5. An example of assembly language code that uses a timer.
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2.4.4 Using a Timer with C Code

An example of C code is shown in Figure 6. This code performs the same actions as the assembly language program
in Figure 5—it flashes on/off the green light connected to GPIO1 at one-second intervals.

#define bit_24_pattern 0x01000000
/* This program provides a simple example of code for the ARM A9. The program performs
* the following:
* 1. starts the ARM A9 private timer
* 2. loops forever, toggling the HPS green light LEDG when the timer expires
*/

int main(void)
{

/* Declare volatile pointers to I/O registers (volatile means that the locations will not be cached,
* even in registers) */

volatile int * HPS_GPIO1_pt = (int *) 0xFF709000; // GPIO1 base address
volatile int * MPcore_private_timer_ptr = (int *) 0xFFFEC600; // timer base address

int HPS_LEDG = bit_24_pattern; // value to turn on the HPS green light LEDG
int counter = 200000000; // timeout = 1/(200 MHz) x 200×10∧6 = 1 sec

*(HPS_GPIO1_ptr + 1) = bit_24_pattern; // write to the data direction register to set
// bit 24 (LEDG) of GPIO1 to be an output

*(MPcore_private_timer_ptr) = counter; // write to timer load register
*(MPcore_private_timer_ptr + 2) = 0b011; // mode = 1 (auto), enable = 1

while (1)
{

*HPS_GPIO1_ptr = HPS_LEDG; // turn on/off LEDG
while (*(MPcore_private_timer_ptr + 3) == 0)

; // wait for timer to expire
*(MPcore_private_timer_ptr + 3) = 1; // reset timer flag bit
HPS_LEDG ∧= bit_24_pattern; // toggle bit that controls LEDG

}
}

Figure 6. An example of C code that uses a timer.

The source code files shown in Figures 6 and 5 are distributed as part of the Altera Monitor Program. The files can
be found under the heading sample programs, and are identified by the name Timer Lights.
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2.4.5 FPGA Bridges

The FPGA bridges depicted in Figure 1 provide connections between the HPS and FPGA in the Cyclone V SoC
device. The bridges are enabled, or disabled, by using the Bridge reset register, which is illustrated in Figure 7 and
has the address 0xFFD0501C. Three distinct bridges exist, called HPS-to-FPGA, lightweight HPS-to-FPGA, and
FPGA-to-HPS. In the DE1-SoC Computer the first two of these bridges are used to connect the ARM A9 processor
to the FPGA. As indicated in Figure 7 the bridges are enabled/disabled by bits 0−2 of the Bridge reset register. To
use the memory-mapped peripherals in the FPGA, software running on the ARM A9 must enable the HPS-to-FPGA
and lightweight HPS-to-FPGA bridges by setting bits #0 and #1 of the Bridge reset register to 0. We should note
that if a user program is downloaded and run on the ARM A9 by using the Altera Monitor Program, described in
Section 8, then these bridges are automatically enabled before the user program is started.

Address 031 1

0xFFD0501C Unused Bridge reset

. . . 2

HPS2FPGA

Lightweight HPS2FPGA 

FPGA2HPS

Figure 7. FPGA bridge reset register.

In addition to the components described above, the HPS also provides a number of other peripheral devices, such
as USB, Ethernet, and a 3-D accelerometer (G-sensor). The G-sensor is described in the tutorial Using the DE1-
SoC Accelerometer with ARM, available from Altera’s University Program website. Documentation about the other
devices connected to the HPS can be found in the Altera Cyclone V Hard Processor System Technical Reference
Manual, as well as in the DE1-SoC Board User Manual.

2.5 FPGA Components

As shown in Figure 1 a number of components in the DE1-SoC Computer are implemented inside the FPGA in
the Cyclone V SoC chip. Several of these components are described in this section, and the others are presented in
Section 4.

2.5.1 Nios II Processor

The Altera Nios R©II processor is a 32-bit CPU that can be implemented in an Altera FPGA device. Three versions of
the Nios II processor are available, designated economy (/e), standard (/s), and fast (/f). The DE1-SoC Computer in-
cludes two instances of the Nios II/f version, configured with floating-point hardware support. Instructions for using
the Nios II processors in the DE1-SoC Computer are provided in a separate document, called DE1-SoC Computer
System with Nios II.
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2.5.2 Memory Components

The DE1-SoC Computer has an SDRAM port, as well as two memory modules implemented using the on-chip
memory inside the FPGA. These memories are described below.

2.5.3 SDRAM

An SDRAM Controller in the FPGA provides an interface to the 64 MB synchronous dynamic RAM (SDRAM) on
the DE1-SoC board, which is organized as 32M x 16 bits. It is accessible by the A9 processor using word (32-bit),
halfword (16-bit), or byte operations, and is mapped to the address space 0xC0000000 to 0xC3FFFFFF.

2.5.4 On-Chip Memory

The DE1-SoC Computer includes a 256 KB memory that is implemented inside the FPGA. This memory is organized
as 64K x 32 bits, and spans addresses in the range 0xC8000000 to 0xC803FFFF. The memory is used as a pixel
buffer for the video-out and video-in ports.

2.5.5 On-Chip Memory Character Buffer

The DE1-SoC Computer includes an 8 KB memory implemented inside the FPGA that is used as a character buffer
for the video-out port, which is described in Section 4.2. The character buffer memory is organized as 8K x 8 bits,
and spans the address range 0xC9000000 to 0xC9001FFF.

2.5.6 Parallel Ports

There are several parallel ports implemented in the FPGA that support input, output, and bidirectional transfers of
data between the ARM A9 processor and I/O peripherals. As illustrated in Figure 8, each parallel port is assigned
a Base address and contains up to four 32-bit registers. Ports that have output capability include a writable Data
register, and ports with input capability have a readable Data register. Bidirectional parallel ports also include a
Direction register that has the same bit-width as the Data register. Each bit in the Data register can be configured
as an input by setting the corresponding bit in the Direction register to 0, or as an output by setting this bit position
to 1. The Direction register is assigned the address Base + 4.

Address 02 14 331 30 . . .

Base 

Base + 8 

Base + C 

Base + 4

Input or output data bits

Direction bits

Edge bits

Mask bits

Data register 

Direction register 

Interruptmask register 

Edgecapture register 

Direction bits

Figure 8. Parallel port registers in the DE1-SoC Computer.

Some of the parallel ports in the DE1-SoC Computer have registers at addresses Base + 8 and Base + C, as indicated
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in Figure 8. These registers are discussed in Section 3.

2.5.7 Red LED Parallel Port

The red lights LEDR9−0 on the DE1-SoC board are driven by an output parallel port, as illustrated in Figure 9. The
port contains a 10-bit Data register, which has the address 0xFF200000. This register can be written or read by the
processor using word accesses, and the upper bits not used in the registers are ignored.

0xFF200000 

LEDR0LEDR9

Address

031 910 . . .Unused Data register

Figure 9. Output parallel port for LEDR.

2.5.8 7-Segment Displays Parallel Port

There are two parallel ports connected to the 7-segment displays on the DE1-SoC board, each of which comprises a
32-bit write-only Data register. As indicated in Figure 10, the register at address 0xFF200020 drives digits HEX3
to HEX0, and the register at address 0xFF200030 drives digits HEX5 and HEX4. Data can be written into these
two registers, and read back, by using word operations. This data directly controls the segments of each display,
according to the bit locations given in Figure 10. The locations of segments 6 to 0 in each seven-segment display on
the DE1-SoC board is illustrated on the right side of the figure.

0xFF200020 

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0xFF200030 

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

07 6815 142431 30 1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Unused

Figure 10. Bit locations for the 7-segment displays parallel ports.
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2.5.9 Slider Switch Parallel Port

The SW9−0 slider switches on the DE1-SoC board are connected to an input parallel port. As illustrated in Figure 11,
this port comprises a 10-bit read-only Data register, which is mapped to address 0xFF200040.

0xFF200040 

SW0SW9

Address

Data register031 910 . . .Unused

Figure 11. Data register in the slider switch parallel port.

2.5.10 Pushbutton Key Parallel Port

The parallel port connected to the KEY3−0 pushbutton switches on the DE1-SoC board comprises three 4-bit regis-
ters, as shown in Figure 12. These registers have the base address 0xFF200050 and can be accessed using word
operations. The read-only Data register provides the values of the switches KEY3−0. The other two registers shown
in Figure 12, at addresses 0xFF200058 and 0xFF20005C, are discussed in Section 3.

Address 02 14 331 30 . . .

0xFF200050 

0xFF200058 

0xFF20005C 

Unused

KEY3-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 12. Registers used in the pushbutton parallel port.

2.5.11 Expansion Parallel Port

The DE1-SoC Computer includes two bidirectional parallel ports that are connected to the JP1 and JP2 40-pin
headers on the DE1-SoC board. These parallel ports include the four 32-bit registers that were described previously
for Figure 8. The base address of the port for JP1 is 0xFF200060, and for JP2 is 0xFF200070. Figure 13 gives a
diagram of the 40-pin connectors on the DE1-SoC board, and shows how the respective parallel port Data register
bits, D31−0, are assigned to the pins on the connector. The figure shows that bit D0 of the parallel port is assigned
to the pin at the top right corner of the connector, bit D1 is assigned below this, and so on. Note that some of the
pins on the 40-pin header are not usable as input/output connections, and are therefore not used by the parallel ports.
Also, only 32 of the 36 data pins that appear on each connector can be used.
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D0
D1

D2 D3
D4 D5
D6 D7
Unused

D10 D11
D12 D13

D14
D15

D16 D17
D18 D19

D22 D23
D24 D25
D26 D27
D28 D29
D30 D31

Unused

JP1 JP2

Pin 1 Pin 1

Pin 40 Pin 40

D8 D9

D20 D21

D0
D1

D2 D3
D4 D5
D6 D7
Unused

D10 D11
D12 D13

D14
D15

D16 D17
D18 D19

D22 D23
D24 D25
D26 D27
D28 D29
D30 D31

Unused

D8 D9

D20 D21

Figure 13. Assignment of parallel port bits to pins on JP1 and JP2.

2.5.12 Using the Parallel Ports with Assembly Language Code and C Code

The DE1-SoC Computer provides a convenient platform for experimenting with ARM A9 assembly language code,
or C code. A simple example of such code is provided in Figures 14 and 15. Both programs perform the same
operations, and illustrate the use of parallel ports by using either assembly language or C code.

The code in the figures displays the values of the SW switches on the red lights LEDR. It also displays a rotating
pattern on 7-segment displays HEX3, . . ., HEX0. This pattern is rotated to the left by using an ARM rotate instruction,
and a delay loop is used to make the shifting slow enough to observe. The pattern on the HEX displays can be
changed to the values of the SW switches by pressing any of pushbuttons KEY3−0. When a pushbutton key is
pressed, the program waits in a loop until the key is released.

The source code files shown in Figures 14 and 15 are distributed as part of the Altera Monitor Program. The files
can be found under the heading sample programs, and are identified by the name Getting Started.
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/********************************************************************************
* This program demonstrates the use of parallel ports in the DE1-SoC Computer
* It performs the following:
* 1. displays the SW switch values on the red lights LEDR
* 2. displays a rotating pattern on the HEX displays
* 3. if KEY[3..0] is pressed, uses the SW switches as the pattern

********************************************************************************/
.text /* executable code follows */
.global _start

_start:
MOV R0, #31 // used to rotate a bit pattern: 31 positions to the

// right is equivalent to 1 position to the left
LDR R1, =0xFF200000 // base address of LEDR lights
LDR R2, =0xFF200020 // base address of HEX3_HEX0 7-segs
LDR R3, =0xFF200040 // base address of SW switches
LDR R4, =0xFF200050 // base address of KEY pushbuttons
LDR R5, HEX_bits // load the initial pattern for the HEX displays

DO_DISPLAY: LDR R6, [R3] // load SW switches
STR R6, [R1] // write to red LEDs

LDR R7, [R4] // load pushbutton keys
CMP R7, #0 // check if any key is presssed
BEQ NO_BUTTON
MOV R5, R6 // copy SW switch values onto HEX displays

WAIT:
LDR R7, [R4] // load pushbuttons
CMP R7, #0
BNE WAIT // wait for KEY release

NO_BUTTON: STR R5, [R2] // store to HEX3 ... HEX0
ROR R5, R0 // rotate the displayed pattern to the left

LDR R6, =50000000 // delay counter
SUB_LOOP: SUBS R6, R6, #1

BNE SUB_LOOP

B DO_DISPLAY

HEX_bits:
.word 0x0000000F // initial pattern for the HEX displays
.end

Figure 14. An example of ARM assembly language code that uses parallel ports.
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/********************************************************************************
* This program demonstrates the use of parallel ports in the DE1-SoC Computer
* It performs the following:
* 1. displays the SW switch values on the red lights LEDR
* 2. displays a rotating pattern on the HEX displays
* 3. if KEY[3..0] is pressed, uses the SW switches as the pattern

********************************************************************************/
int main(void)
{

/* Declare volatile pointers to I/O registers (volatile means that the locations will not be cached,
* even in registers) */

volatile int * LED_ptr = (int *) 0xFF200000; // red LED address
volatile int * HEX3_HEX0_ptr = (int *) 0xFF200020; // HEX3_HEX0 address
volatile int * SW_switch_ptr = (int *) 0xFF200040; // SW slider switch address
volatile int * KEY_ptr = (int *) 0xFF200050; // pushbutton KEY address

int HEX_bits = 0x0000000F; // initial pattern for HEX displays
int SW_value;
volatile int delay_count; // volatile so C compiler does not remove loop

while (1)
{

SW_value = *(SW_switch_ptr); // read the SW slider switch values
*(LED_ptr) = SW_value; // light up the red LEDs

if (*KEY_ptr != 0) // check if any KEY was pressed
{

HEX_bits = SW_value; // set pattern using SW values
while (*KEY_ptr != 0); // wait for pushbutton KEY release

}
*(HEX3_HEX0_ptr) = HEX_bits; // display pattern on HEX3 ... HEX0

/* rotate the pattern shown on the HEX displays */
if (HEX_bits & 0x80000000)

HEX_bits = (HEX_bits << 1) | 1;
else

HEX_bits = HEX_bits << 1;

for (delay_count = 500000; delay_count != 0; −−delay_count); // delay loop
}

}

Figure 15. An example of C code that uses parallel ports.
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2.5.13 JTAG Port

The JTAG port implements a communication link between the DE1-SoC board and its host computer. This link
can be used by the Altera Quartus II software to transfer FPGA programming files into the DE1-SoC board, and
by the Altera Monitor Program, discussed in Section 8. The JTAG port also includes a UART, which can be used
to transfer character data between the host computer and programs that are executing on the ARM A9 processor.
If the Altera Monitor Program is used on the host computer, then this character data is sent and received through
its Terminal Window. The programming interface of the JTAG UART consists of two 32-bit registers, as shown
in Figure 16. The register mapped to address 0xFF201000 is called the Data register and the register mapped to
address 0xFF201004 is called the Control register.

Address 0731 16. . .

0xFF201000 

0xFF201004 

DATARAVAIL

14 8. . . . . .

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 16. JTAG UART registers.

When character data from the host computer is received by the JTAG UART it is stored in a 64-character FIFO.
The number of characters currently stored in this FIFO is indicated in the field RAVAIL, which are bits 31−16 of the
Data register. If the receive FIFO overflows, then additional data is lost. When data is present in the receive FIFO,
then the value of RAVAIL will be greater than 0 and the value of bit 15, RVALID, will be 1. Reading the character
at the head of the FIFO, which is provided in bits 7−0, decrements the value of RAVAIL by one and returns this
decremented value as part of the read operation. If no data is present in the receive FIFO, then RVALID will be set
to 0 and the data in bits 7−0 is undefined.

The JTAG UART also includes a 64-character FIFO that stores data waiting to be transmitted to the host computer.
Character data is loaded into this FIFO by performing a write to bits 7−0 of the Data register in Figure 16. Note
that writing into this register has no effect on received data. The amount of space, WSPACE, currently available in
the transmit FIFO is provided in bits 31−16 of the Control register. If the transmit FIFO is full, then any characters
written to the Data register will be lost.

Bit 10 in the Control register, called AC, has the value 1 if the JTAG UART has been accessed by the host computer.
This bit can be used to check if a working connection to the host computer has been established. The AC bit can be
cleared to 0 by writing a 1 into it.

The Control register bits RE, WE, RI, and WI are described in Section 3.

2.5.14 Using the JTAG UART with Assembly Language Code and C Code

Figures 17 and 19 give simple examples of assembly language and C code, respectively, that use the JTAG UART.
Both versions of the code perform the same function, which is to first send an ASCII string to the JTAG UART, and
then enter an endless loop. In the loop, the code reads character data that has been received by the JTAG UART,
and echoes this data back to the UART for transmission. If the program is executed by using the Altera Monitor
Program, then any keyboard character that is typed into the Terminal Window of the Monitor Program will be echoed
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back, causing the character to appear in the Terminal Window.

The source code files shown in Figures 17 and 19 are made available as part of the Altera Monitor Program. The
files can be found under the heading sample programs, and are identified by the name JTAG UART.

.equ DDR_HIGH_WORD, 0x3FFFFFFC
/********************************************************************************
* This program demonstrates use of the JTAG UART port in the DE1-SoC Computer
* It performs the following:
* 1. sends an example text string to the JTAG UART
* 2. reads and echos character data from/to the JTAG UART

********************************************************************************/
.text /* executable code follows */
.global _start

_start:
/* set up stack pointer */
MOV SP, #DDR_HIGH_WORD // highest memory word address

/* print a text string */
LDR R4, =TEXT_STRING

LOOP:
LDRB R0, [R4]
CMP R0, #0
BEQ CONT // string is null-terminated

BL PUT_JTAG // send the character in R0 to UART
ADD R4, R4, #1
B LOOP

/* read and echo characters */
CONT: BL GET_JTAG // read from the JTAG UART

CMP R0, #0 // check if a character was read
BEQ CONT
BL PUT_JTAG
B CONT

.end

Figure 17. An example of assembly language code that uses the JTAG UART (Part a).
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/********************************************************************************
* Subroutine to send a character to the JTAG UART
* R0 = character to send

********************************************************************************/
.global PUT_JTAG

PUT_JTAG:
LDR R1, =0xFF201000 // JTAG UART base address
LDR R2, [R1, #4] // read the JTAG UART control register
LDR R3, =0xFFFF
ANDS R2, R2, R3 // check for write space
BEQ END_PUT // if no space, ignore the character
STR R0, [R1] // send the character

END_PUT:
BX LR

/********************************************************************************
* Subroutine to get a character from the JTAG UART
* Returns the character read in R0

********************************************************************************/
.global GET_JTAG

GET_JTAG:
LDR R1, =0xFF201000 // JTAG UART base address
LDR R0, [R1] // read the JTAG UART data register
ANDS R2, R0, #0x8000 // check if there is new data
BEQ RET_NULL // if no data, return 0
AND R0, R0, #0x00FF // return the character
B END_GET

RET_NULL: MOV R0, #0
END_GET: BX LR

TEXT_STRING:
.asciz "\nJTAG UART example code\n> "

.end

Figure 17. An example of assembly language code that uses the JTAG UART (Part b).

2.5.15 Second JTAG UART

The DE1-SoC Computer includes a second JTAG UART that is accessible by the ARM A9 MPCORE. This second
UART is mapped to the base address 0xFF201008, and operates as described above. The reason that two JTAG
UARTs are provided is to allow each processor in the ARM A9 MPCORE to have access to a separate UART.
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/* function prototypes */
void put_jtag(char);
char get_jtag(void);
/********************************************************************************
* This program demonstrates use of the JTAG UART port in the DE1-SoC Computer
* It performs the following:
* 1. sends a text string to the JTAG UART
* 2. reads and echos character data from/to the JTAG UART

********************************************************************************/
int main(void)
{

char text_string[] = "\nJTAG UART example code\n> \0";
char *str, c;

/* print a text string */
for (str = text_string; *str != 0; ++str)

put_jtag (*str);
/* read and echo characters */
while (1)
{

c = get_jtag ( );
if (c != ’\0’)

put_jtag (c);
}

}

/********************************************************************************
* Subroutine to send a character to the JTAG UART

********************************************************************************/
void put_jtag( char c )
{

volatile int * JTAG_UART_ptr = (int *) 0xFF201000; // JTAG UART address
int control;
control = *(JTAG_UART_ptr + 1); // read the JTAG_UART control register
if (control & 0xFFFF0000) // if space, echo character, else ignore

*(JTAG_UART_ptr) = c;
}

Figure 18. An example of C code that uses the JTAG UART (Part a).
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/********************************************************************************
* Subroutine to read a character from the JTAG UART
* Returns \0 if no character, otherwise returns the character

********************************************************************************/
char get_jtag( void )
{

volatile int * JTAG_UART_ptr = (int *) 0xFF201000; // JTAG UART address
int data;
data = *(JTAG_UART_ptr); // read the JTAG_UART data register
if (data & 0x00008000) // check RVALID to see if there is new data

return ((char) data & 0xFF);
else

return (’\0’);
}

Figure 19. An example of C code that uses the JTAG UART (Part b).

2.5.16 Interval Timers

The DE1-SoC Computer includes a timer module implemented in the FPGA that can be used by the A9 processor.
This timer can be loaded with a preset value, and then counts down to zero using a 100-MHz clock. The program-
ming interface for the timer includes six 16-bit registers, as illustrated in Figure 20. The 16-bit register at address
0xFF202000 provides status information about the timer, and the register at address 0xFF202004 allows control
settings to be made. The bit fields in these registers are described below:

• TO provides a timeout signal which is set to 1 by the timer when it has reached a count value of zero. The TO
bit can be reset by writing a 0 into it.

• RUN is set to 1 by the timer whenever it is currently counting. Write operations to the status halfword do not
affect the value of the RUN bit.

• ITO is used for generating interrupts, which are discussed in section 3.

• CONT affects the continuous operation of the timer. When the timer reaches a count value of zero it auto-
matically reloads the specified starting count value. If CONT is set to 1, then the timer will continue counting
down automatically. But if CONT = 0, then the timer will stop after it has reached a count value of 0.

• (START/STOP) is used to commence/suspend the operation of the timer by writing a 1 into the respective bit.

The two 16-bit registers at addresses 0xFF202008 and 0xFF20200C allow the period of the timer to be changed
by setting the starting count value. The default setting provided in the DE1-SoC Computer gives a timer period
of 125 msec. To achieve this period, the starting value of the count is 100 MHz × 125 msec = 12.5× 106. It is
possible to capture a snapshot of the counter value at any time by performing a write to address 0xFF202010. This
write operation causes the current 32-bit counter value to be stored into the two 16-bit timer registers at addresses
0xFF202010 and 0xFF202014. These registers can then be read to obtain the count value.

A second interval timer, which has an identical interface to the one described above, is also available in the FPGA,
starting at the base address 0xFF202020.
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Address 01531 . . .

0xFF202000 

0xFF202004 

. . .

Unused RUN TO

1

START CONT ITOSTOP

16 217

Unused

Counter start value (low) 0xFF202008 

Counter start value (high)0xFF20200C 

Counter snapshot (low)0xFF202010 

Counter snapshot (high)0xFF202014 

3

Not present
(interval timer has
16-bit registers)

Status register

Control register

Figure 20. Interval timer registers.

3 Exceptions and Interrupts

The A9 processor supports eight types of exceptions, including the reset exception and the interrupt request (IRQ)
exception, as well a number of exceptions related to error conditions. All of the exception types are described in the
document Introduction to the ARM Processor, which is provided in Altera’s University Program web site. Exception
processing uses a table in memory, called the vector table. This table comprises eight words in memory and has
one entry for each type of exception. The contents of the vector table have to be set up by software, which typically
places a branch instruction in each word of the table, where the branch target is the desired exception service routine.
When an exception occurs, the A9 processor stops the execution of the program that is currently running, and then
fetches the instruction stored at the corresponding vector table entry. The vector table usually starts at the address
0x00000000 in memory. The first entry in the table corresponds to the reset vector, and the IRQ vector uses the
seventh entry in the table, at the address 0x00000018.

The IRQ exception allows I/O peripherals to generate interrupts for the A9 processor. All interrupt signals from the
peripherals are connected to a module in the processor called the generic interrupt controller (GIC). The GIC allows
individual interrupts for each peripheral to be either enabled or disabled. When an enabled interrupt happens, the GIC
causes an IRQ exception in the A9 processor. Since the same vector table entry is used for all interrupts, the software
for the interrupt service routine must determine the source of the interrupt by querying the GIC. Each peripheral is
identified in the GIC by an interrupt identification (ID) number. Table 1 gives the assignment of interrupt IDs for
each of the I/O peripherals in the DE1-SoC Computer. The rest of this section describes the interrupt behavior
associated with the timers and parallel ports, while interrupts for the other devices are discussed in Section 4.

3.1 Interrupts from the ARM A9 Private Timer

Figure 3, in Section 2.4.1, shows four registers that are associated with the A9 private timer. As we said in Section
2.4.1, bit F in the Interrupt status register is set to 1 when the timer reaches a count value of 0. It is possible to
generate an A9 interrupt when this occurs, by using bit I of the Control register. Setting bit I to 1 causes the timer to
send an interrupt signal to the GIC whenever the timer reaches a count value of 0. The F bit can be cleared to 0 by
writing writing a 1 into the Interrupt status register.
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I/O Peripheral Interrupt ID #

A9 Private Timer 29
HPS GPIO1 197
HPS Timer 0 199
HPS Timer 1 200
HPS Timer 2 201
HPS Timer 3 202
FPGA Interval Timer 72
FPGA Pushbutton KEYs 73
FPGA Second Interval Timer 74
FPGA Audio 78
FPGA PS/2 79
FPGA JTAG 80
FPGA Infrared (IrDA) 81
FPGA JP1 Expansion 83
FPGA JP2 Expansion 84
FPGA PS/2 Dual 89

Table 1. Interrupt IDs in the DE1-SoC Computer.

3.2 Interrupts from the HPS Timers

Figure 4, in Section 2.4.2, shows five registers that are associated with each HPS timer. As we said in Section 2.4.2,
when the timer reaches a count value of zero, bit F in the End-of-Interrupt register is set to 1. The value of the F bit
is also reflected in the S bit in the Interrupt status register. It is possible to generate an A9 interrupt when the F bit
becomes 1, by using the I bit of the Control register. Setting bit I to 0 unmasks the interrupt signal, and causes the
timer to send an interrupt signal to the GIC whenever the F bit is 1. After an interrupt occurs, it can be cleared by
reading the End-of-Interrupt register.

3.3 Interrupts from the FPGA Interval Timer

Figure 20, in Section 2.5.16, shows six registers that are associated with the interval timer. As we said in Section
2.5.16, the TO bit in the Status register is set to 1 when the timer reaches a count value of 0. It is possible to generate
an interrupt when this occurs, by using the ITO bit in the Control register. Setting the ITO bit to 1 causes an interrupt
request to be sent to the GIC whenever TO becomes 1. After an interrupt occurs, it can be cleared by writing any
value into the Status register.

3.4 Interrupts from Parallel Ports

Parallel ports implemented in the FPGA in the DE1-SoC Computer were illustrated in Figure 8, which is reproduced
as Figure 21. As the figure shows, parallel ports that support interrupts include two related registers at the addresses
Base + 8 and Base + C. The Interruptmask register, which has the address Base + 8, specifies whether or not an
interrupt signal should be sent to the GIC when the data present at an input port changes value. Setting a bit location

20 Altera Corporation - University Program
May 2016

https://www.altera.com/support/training/university/overview.html


DE1-SOC COMPUTER SYSTEM WITH ARM CORTEX-A9 For Quartus Prime 16.0

in this register to 1 allows interrupts to be generated, while setting the bit to 0 prevents interrupts. Finally, the
parallel port may contain an Edgecapture register at address Base + C. Each bit in this register has the value 1 if the
corresponding bit location in the parallel port has changed its value from 0 to 1 since it was last read. Performing a
write operation to the Edgecapture register sets all bits in the register to 0, and clears any associated interrupts.

Address 02 14 331 30 . . .

Base 

Base + 8 

Base + C 

Base + 4

Input or output data bits

Direction bits

Data register 

Direction register 

Interruptmask register 

Edgecapture register Edge bits

Mask bits

Direction bits

Figure 21. Registers used for interrupts from the parallel ports.

3.4.1 Interrupts from the Pushbutton Switches

Figure 12, reproduced as Figure 22, shows the registers associated with the pushbutton parallel port. The Interrupt-
mask register allows interrupts to be generated when a key is pressed. Each bit in the Edgecapture register is set to
1 by the parallel port when the corresponding key is pressed. An interrupt service routine can read this register to
determine which key has been pressed. Writing any value to the Edgecapture register deasserts the interrupt signal
being sent to the GIC and sets all bits of the Edgecapture register to zero.

Address 02 14 331 30 . . .

0x10000050 

0x10000058 

0x1000005C 

Unused

KEY3-0Unused Data register

Interruptmask register

Edgecapture register

Unused

Edge bits

Mask bitsUnused

Unused

Figure 22. Registers used for interrupts from the pushbutton parallel port.

3.5 Interrupts from the JTAG UART

Figure 16, reproduced as Figure 23, shows the data and Control registers of the JTAG UART. As we said in Section
2.5.13, RAVAIL in the Data register gives the number of characters that are stored in the receive FIFO, and WSPACE
gives the amount of unused space that is available in the transmit FIFO. The RE and WE bits in Figure 23 are used to
enable processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated
when RAVAIL for the receive FIFO, or WSPACE for the transmit FIFO, exceeds 7. Pending interrupts are indicated
in the Control register’s RI and WI bits, and can be cleared by writing or reading data to/from the JTAG UART.
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Address 0731 16. . .

0xFF201000 

0xFF201004 

DATARAVAIL

14 8. . . . . .

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 23. Interrupt bits in the JTAG UART registers.

3.6 Using Interrupts with Assembly Language Code

An example of assembly language code for the DE1-SoC Computer that uses interrupts is shown in Figure 24, which
has three main parts. The beginning part of the code, in Figure 24a, sets up the exception vector table. This code
must be in a special assembler section called .section, as shown. The entries in the table provide branches to the
various exception service routines; they are discussed later in this section.

When the program is executed it flashes a green LED at one-second intervals, and also displays a rotating pattern
on the HEX3−0 seven-segment displays. The pattern rotates to the right if pushbutton KEY1 is pressed, to the left
if KEY2 is pressed, and stops rotating if KEY3 is pressed. Pressing KEY0 causes the pattern to be set using the SW
switch values. Three types of interrupts are used in the code. The flashing green light is controlled by interrupts
from an HPS timer, the HEX displays are controlled by interrupts from the FPGA interval timer, and the KEYs are
also handled through interrupts.

/********************************************************************************
* Initialize the exception vector table

********************************************************************************/
.section .vectors, "ax"
LDR PC, =SERVICE_RESET // reset vector
LDR PC, =SERVICE_UND // undefined instruction vector
LDR PC, =SERVICE_SVC // software interrrupt vector
LDR PC, =SERVICE_ABT_INST // aborted prefetch vector
LDR PC, =SERVICE_ABT_DATA // aborted data vector
.word 0 // unused vector
LDR PC, =SERVICE_IRQ // IRQ interrupt vector
LDR PC, =SERVICE_FIQ // FIQ interrupt vector

Figure 24. An example of assembly language code that uses interrupts (Part a).

The main program is shown in part b of Figure 24. It first initializes the A9 banked stack pointer (sp) registers
for interrupt (IRQ) mode and supervisor (SVC) mode, because these are the processor modes that are used in the
program. The code then calls subroutines to initialize the HPS timer, FPGA interval timer, and FPGA pushbutton
KEYs. Finally, the code initializes the HPS GPIO1 port, enables IRQ interrupts in the A9 processor, and then enters
an infinite loop. The loop code turns on and off a green light whenever the global variable named tick is set to 1.
This variable is set to 1 by the exception service routine for the HPS timer, which is described later in this section.
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/********************************************************************************
* Main program

********************************************************************************/
.text
.global _start

_start: /* set up stack pointers
MOV R1, #0b11010010
MSR CPSR_c, R1 // change to IRQ mode with interrupts disabled
LDR SP, =0xFFFFFFFF − 3 // set IRQ stack to top of A9 on-chip memory

MOV R1, #0b11010011
MSR CPSR_c, R1 // change to SVC mode with interrupts disabled
LDR SP, =0x3FFFFFFF − 3 // set SVC stack to top of DDR3 memory

BL CONFIG_GIC // configure the ARM generic interrupt controller
BL CONFIG_HPS_TIMER // configure the HPS timer
BL CONFIG_KEYS // configure the pushbutton KEYs
BL CONFIG_INTERVAL_TIMER // configure the FPGA interval timer

/* initialize the GPIO1 port */
LDR R0, =0xFF709000 // GPIO1 base address
MOV R4, #0x01000000 // value to turn on the HPS green light LEDG
STR R4, [R0, #0x4] // write to the data direction register to set

// bit 24 (LEDG) to be an output
/* enable IRQ interrupts in the processor */
MOV R1, #0b01010011 // IRQ unmasked, MODE = SVC
MSR CPSR_c, R1

LDR R1, =0xFF200040 // slider switch base address
LDR R2, =0xFF200000 // LEDR base address
LDR R3, =TICK // global variable

LOOP:
LDR R5, [R1] // read the SW port
STR R5, [R2] // light up the red lights
LDR R5, [R3] // read tick variable
CMP R5, #0 // HPS timer expired?
BEQ LOOP
MOV R5, #0
STR R5, [R3] // reset tick variable
STR R4, [R0] // turn on/off LEDG
EOR R4, R4, #0x01000000 // toggle bit that controls LEDG
B LOOP

Figure 24. An example of assembly language code that uses interrupts (Part b).
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Figure 24c shows the subroutine that initializes the GIC. This code performs the minimum-required steps needed to
configure the three interrupts used in the program, by writing to the processor targets (ICDIPTRn) registers in the
GIC, and the set enable (ICDISERn) registers. For the HPS timer, the registers used have addresses 0xFFFED8C4
and 0xFFFED118, as shown in the figure. For the FPGA interval timer and KEYs, the register addresses are
0xFFFED848 and 0xFFFED108. Instructions for calculating these addresses, and determining the bit patterns to
write into them can be found in the tutorial Using the Generic Interrupt Controller, available in Altera’s University
Program website. The last part of the code in Figure 24c enables the CPU Interface and Distributor in the GIC.

/* Configure the Generic Interrupt Controller (GIC) */
CONFIG_GIC:

/* configure the HPS timer interrupt */
LDR R0, =0xFFFED8C4 // ICDIPTRn: processor targets register
LDR R1, =0x01000000 // set target to cpu0
STR R1, [R0]
LDR R0, =0xFFFED118 // ICDISERn: set enable register
LDR R1, =0x00000080 // set interrupt enable
STR R1, [R0]

/* configure the FPGA interval timer and KEYs interrupts */
LDR R0, =0xFFFED848 // ICDIPTRn: processor targets register
LDR R1, =0x00000101 // set targets to cpu0
STR R1, [R0]
LDR R0, =0xFFFED108 // ICDISERn: set enable register
LDR R1, =0x00000300 // set interrupt enable
STR R1, [R0]

/* configure the GIC CPU interface */
LDR R0, =0xFFFEC100 // base address of CPU interface
/* Set Interrupt Priority Mask Register (ICCPMR) */
LDR R1, =0xFFFF // enable interrupts of all priorities levels
STR R1, [R0, #0x04] // ICCPMR
/* Set the enable bit in the CPU Interface Control Register (ICCICR). This bit allows
* interrupts to be forwarded to the CPU(s) */
MOV R1, #1
STR R1, [R0, #0x00] // ICCICR

/* Set the enable bit in the Distributor Control Register (ICDDCR). This bit allows
* the distributor to forward interrupts to the CPU interface(s) */
LDR R0, =0xFFFED000
STR R1, [R0, #0x00] // ICDDCR

BX LR

Figure 24. An example of assembly language code that uses interrupts (Part c).
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Figure 24d shows the subroutines used to initialize the timers and pushbutton KEYs. The CONFIG_HPS_TIMER
routine sets up the HPS timer 0 so that it will produce an interrupt every one second. Since this timer uses a 100
MHz clock, the timer load register is initialized to the value 100×106. The CONFIG_INTERVAL_TIMER routine
configures the FPGA interval timer to produce interrupts every 50 msec. Since this timer uses a 100 MHz clock,
the required starting count value is 5×106. The CONFIG_KEYS routine sets up the FPGA KEYs parallel port to
produce an interrupt when any KEY is pressed.

/* Configure the HPS timer to create interrupts at one-second intervals */
CONFIG_HPS_TIMER:

LDR R0, =0xFFC08000 // HPA timer 0 base address
MOV R1, #0 // used to stop the timer
STR R1, [R0, #0x8] // write to timer control register
LDR R1, =100000000 // period = 1/(100 MHz) × (100x106) = 1 sec
STR R1, [R0] // write to timer load register
MOV R1, #0b011 // int mask = 0, mode = 1, enable = 1
STR R1, [R0, #0x8] // write to timer control register
BX LR

/* Configure the FPGA interval timer to create interrupts at 50-msec intervals */
CONFIG_INTERVAL_TIMER:

LDR R0, =0xFF202000 // Interval timer base address
LDR R1, =5000000 // 1/(100 MHz) ×(5000000) = 50 msec
STR R1, [R0, #0x8] // store the low half word of counter start value
LSR R1, R1, #16
STR R1, [R0, #0xC] // high half word of counter start value

// start the interval timer, enable its interrupts
MOV R1, #0x7 // START = 1, CONT = 1, ITO = 1
STR R1, [R0, #0x4]
BX LR

/* Configure the pushbutton KEYS to generate interrupts */
CONFIG_KEYS:

// write to the pushbutton port interrupt mask register
LDR R0, =0xFF200050 // pushbutton key base address
MOV R1, #0xF // set interrupt mask bits
STR R1, [R0, #0x8] // interrupt mask register is (base + 8)
BX LR

Figure 24. An example of assembly language code that uses interrupts (Part d).

Part e of Figure 24 shows the global data used by the program. It includes the tick variable that was discussed for
the code in Figure 24b, and three other variables. The pattern variable holds the bit-pattern that is written to the
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HEX3−0 seven-segment displays, the key_pressed variable indicates which FPGA KEY has been recently pressed,
and the shift_dir variable specifies the direction of shifting for the HEX displays.

/* Global variables */
.global TICK

TICK:
.word 0x0 // used by HPS timer
.global PATTERN

PATTERN:
.word 0x0000000F // initial pattern for HEX displays
.global KEY_PRESSED

KEY_PRESSED:
.word 1 // recent pushbutton KEY pressed
.global SHIFT_DIR

SHIFT_DIR:
.word 1 // pattern shifting direction
.end

Figure 24. An example of assembly language code that uses interrupts (Part e).

The exception service routines for the main program in Figure 24 are given in Figure 25. Part a of the figure gives
the IRQ exception handler. This routine first reads from the interrupt acknowledge register in the GIC to determine
the interrupt ID of the peripheral that caused the interrupt. The code then checks which of the three possible sources
of interrupt has occurred, and calls the corresponding interrupt service routine for the HPS timer, FPGA interval
timer, or FPGA KEY parallel port. These interrupt service routine are shown in Figures 26 to 28.

Finally, the exception handler in Figure 25 writes to the end-of-interrupt register in the GIC to clear the interrupt,
and then returns to the main program by using the instruction “SUBS PC, LR, #4”.

Figure 25b shows handlers for exceptions that correspond to the reset exception, various types of error conditions,
and the FIQ interrupt. The reset handler shows a branch to the start of the main program in Figure 24. This
handler is just an indicator of the result of performing a reset of the A9 processor—the actual reset process involves
executing code from a special boot ROM on the processor, and then executing a program called the pre-loader before
actually starting the main program. More information about the reset process for the A9 processor can be found in
the document “Using the Pre-loader Software for the A9 Processor,” which is available from Altera’s University
Program website. The other handlers in Figure 25b , which are just loops that branch to themselves, are intended
to serve as placeholders for code that would handle the corresponding exceptions. More information about each of
these types of exceptions can be found in the document Introduction to the ARM Processor, also available in Altera’s
University Program web site.
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/*****************************************************************************
* Define the IRQ exception handler

******************************************************************************/
.global SERVICE_IRQ

SERVICE_IRQ:
PUSH R0-R7, LR // save registers

/* get the interrupt ID from the GIC */
LDR R4, =0xFFFEC100 // GIC CPU interface base address
LDR R5, [R4, #0x0C] // read the ICCIAR

HPS_TIMER_CHECK:
CMP R5, #199 // check for HPS timer interrupt
BNE INTERVAL_TIMER_CHECK
BL HPS_TIMER_ISR
B EXIT_IRQ

INTERVAL_TIMER_CHECK:
CMP R5, #72 // check for FPGA timer interrupt
BNE KEYS_CHECK
BL TIMER_ISR
B EXIT_IRQ

KEYS_CHECK:
CMP R5, #73 // check for KEYs interrupt

UNEXPECTED:
BNE UNEXPECTED // if not recognized, stop here

BL KEY_ISR
EXIT_IRQ:

STR R5, [R4, #0x10] // Write to end-of-interrupt register (ICCEOIR)

POP R0-R7, LR
SUBS PC, LR, #4

Figure 25. Exception handlers assembly language code (Part a).
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/* Define the remaining exception handlers */
.global SERVICE_RESET /* Reset */

SERVICE_RESET:
B _start
.global SERVICE_UND /* Undefined instructions */

SERVICE_UND:
B SERVICE_UND
.global SERVICE_SVC /* Software interrupts */

SERVICE_SVC:
B SERVICE_SVC
.global SERVICE_ABT_DATA /* Aborted data reads */

SERVICE_ABT_DATA:
B SERVICE_ABT_DATA
.global SERVICE_ABT_INST /* Aborted instruction fetch */

SERVICE_ABT_INST:
B SERVICE_ABT_INST
.global SERVICE_FIQ /* FIQ */

SERVICE_FIQ:
B SERVICE_FIQ
.end

Figure 25. Exception handlers assembly language code (Part b).

/******************************************************************************
* HPS timer interrupt service routine
*
* This code increments the TICK global variable, and clears the interrupt

******************************************************************************/
.extern TICK // externally-defined variable
.global HPS_TIMER_ISR

HPS_TIMER_ISR:
LDR R0, =0xFFC08000 // base address of timer
LDR R1, =TICK // used by main program

LDR R2, [R1]
ADD R2, R2, #1
STR R2, [R1] // ++tick
LDR R0, [R0, #0xC] // read timer end-of-interrupt

// register to clear the interrupt
BX LR
.end

Figure 26. Interrupt service routine for the HPS timer.

28 Altera Corporation - University Program
May 2016

https://www.altera.com/support/training/university/overview.html


DE1-SOC COMPUTER SYSTEM WITH ARM CORTEX-A9 For Quartus Prime 16.0

/****************************************************************************************
* Pushbutton KEY interrupt service routine
*
* This routine checks which KEY has been pressed. It writes this value to the global variable
* KEY_PRESSED.

****************************************************************************************/
.extern KEY_PRESSED // externally defined variable
.global KEY_ISR

KEY_ISR:
LDR R0, =0xFF200050 // base address of KEYs
LDR R1, [R0, #0xC] // read edge capture register
STR R1, [R0, #0xC] // clear the interrupt

LDR R0, =KEY_PRESSED // global variable to return the result
CHECK_KEY0:

MOVS R3, #0x1
ANDS R3, R1 // check for KEY0
BEQ CHECK_KEY1
MOVS R2, #0
STR R2, [R0] // return KEY0 value
B END_KEY_ISR

CHECK_KEY1:
MOVS R3, #0x2
ANDS R3, R1 // check for KEY1
BEQ CHECK_KEY2
MOVS R2, #1
STR R2, [R0] // return KEY1 value
B END_KEY_ISR

CHECK_KEY2:
MOVS R3, #0x4
ANDS R3, R1 // check for KEY2
BEQ IS_KEY3
MOVS R2, #2
STR R2, [R0] // return KEY2 value
B END_KEY_ISR

IS_KEY3:
MOVS R2, #3
STR R2, [R0] // return KEY3 value

END_KEY_ISR:
BX LR

.end

Figure 27. Interrupt service routine for the pushbutton KEYs.

Altera Corporation - University Program
May 2016

29

https://www.altera.com/support/training/university/overview.html


DE1-SOC COMPUTER SYSTEM WITH ARM CORTEX-A9 For Quartus Prime 16.0

/*****************************************************************************
* Interval timer interrupt service routine
*
* Shifts a PATTERN being displayed on the HEX displays. The shift direction is set by the
* external variable KEY_PRESSED.

******************************************************************************/
.extern KEY_PRESSED
.extern SHIFT_DIR
.extern PATTERN
.global TIMER_ISR

TIMER_ISR:
PUSH R4-R7
LDR R1, =0xFF202000 // interval timer base address
MOVS R0, #0
STR R0, [R1] // clear the interrupt

LDR R1, =0xFF200020 // HEX3_HEX0 base address
LDR R2, =PATTERN // set up a pointer to the pattern for HEX displays
LDR R3, =KEY_PRESSED // set up a pointer to the key pressed
LDR R7, =SHIFT_DIR // set up a pointer to the shift direction variable

LDR R6, [R2] // load pattern for HEX displays
STR R6, [R1] // store to HEX3 ... HEX0

LDR R4, [R3] // check which key has been pressed
CHK_KEY0: CMP R4, #0 // KEY0

BNE CHK_KEY1
LDR R1, =0xFF200040 // SW switches base address
LDR R6, [R1] // load a new pattern from the SW switches
B SHIFT

CHK_KEY1: CMP R4, #0 // KEY1
BNE CHK_KEY2
MOVS R5, #1 // set rotation direction to the right (1)
STR R5, [R7]
B SHIFT

CHK_KEY2: CMP R4, #0 // KEY2
BNE CHK_KEY3
MOVS R5, #2 // set rotation direction to the left (2)
STR R5, [R7]
B SHIFT

Figure 28. Interrupt service routine for the interval timer (Part a).
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CHK_KEY3: CMP R4, #0 // KEY3
BNE SHIFT
MOVS R5, #4 // set rotation direction to none (4)
STR R5, [R7]

SHIFT:
MOVS R5, #4 // R5 = NONE (4)
STR R5, [R3] // key press handled, so clear
LDR R5, [R7] // get shift direction
CMP R5, #1 // RIGHT
BNE SHIFT_L
MOVS R5, #1 // used to rotate right by 1 position
RORS R6, R5 // rotate right for KEY1
B END_TIMER_ISR

SHIFT_L:
CMP R5, #2 // LEFT
BNE END_TIMER_ISR
MOVS R5, #31 // used to rotate left by 1 position
RORS R6, R5

END_TIMER_ISR:
STR R6, [R2] // store HEX display pattern
POP R4-R7
BX LR

.end

Figure 28. Interrupt service routine for the interval timer (Part b).
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3.7 Using Interrupts with C Code

An example of C code for the DE1-SoC Computer that uses interrupts is shown in Figure 29. This code performs
exactly the same operations as the code described in Figure 24.

Before it call subroutines to configure the generic interrupt controller (GIC), timers, and pushbutton KEY port, the
main program first initializes the IRQ mode stack pointer by calling the routine set_A9_IRQ_stack(). The code for
this routine uses in-line assembly language instructions, as shown in Part b of the figure. This step is necessary
because the C compiler generates code to set only the supervisor mode stack, which is used for running the main
program, but the compiler does not produce code for setting the IRQ mode stack. To enable IRQ interrupts in the A9
processor the main program uses the in-line assembly code shown in the subroutine called enable_A9_interrupts().

The exception handlers for the main program in Figure 29 are given in Figure 30. These routines have unique names
that are meaningful to the C compiler and linker tools, and they are declared with the special type of __attribute__
called interrupt. These mechanisms cause the C compiler and linker to use the addresses of these routines as the
contents of the exception vector table.

The function with the name __cs3_isr_irq is the IRQ exception handler. As discussed for the assembly language
code in Figure 25 this routine first reads from the interrupt acknowledge register in the GIC to determine the interrupt
ID of the peripheral that caused the interrupt, and then calls the corresponding interrupt service routine for either
the HPS timer, FPGA interval timer, or FPGA KEY parallel port. These interrupt service routines are shown in
Figures 31 to 33.

Figure 30 also shows handlers for exceptions that correspond to the various types of error conditions and the FIQ
interrupt. These handlers are just loops that are meant to serve as place-holders for code that would handle the
corresponding exceptions.

The source code files shown in Figure 24 to Figure 32 are distributed as part of the Altera Monitor Program. The
files can be found under the heading sample programs, and are identified by the name Interrupt Example.
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void set_A9_IRQ_stack (void);
void config_GIC (void);
void config_HPS_timer (void);
void config_interval_timer (void);
void config_KEYs (void);
void enable_A9_interrupts (void);

/* These global variables are written by interrupt service routines; we have to declare these as volatile
* to avoid the compiler caching their values in registers */

volatile int tick = 0; // set to 1 every time the HPS timer expires
volatile int key_pressed = 4; // stores a KEY value when pressed (4 = NONE)
volatile int pattern = 0x0000000F; // pattern for HEX displays
volatile int shift_dir = 2; // direction to shift the pattern (2 = LEFT)
/********************************************************************************
* Main program

********************************************************************************/
int main(void)
{

volatile int * HPS_GPIO1_ptr = (int *) 0xFF709000; // GPIO1 base address
volatile int * LEDR_ptr = (int *) 0xFF200000; // LEDR base address
volatile int * slider_switch_ptr = (int *) 0xFF200040; // SW base address
volatile int HPS_timer_LEDG = 0x01000000; // value to turn on the HPS green light LEDG

set_A9_IRQ_stack (); // initialize the stack pointer for IRQ mode
config_GIC (); // configure the general interrupt controller
config_HPS_timer (); // configure the HPS timer
config_KEYs (); // configure pushbutton KEYs to generate interrupts
config_interval_timer (); // configure Altera interval timer to generate interrupts

*(HPS_GPIO1_ptr + 0x1) = HPS_timer_LEDG; // write to the data direction register to set
// bit 24 (LEDG) to be an output

enable_A9_interrupts (); // enable interrupts in the A9 processor
while (1)
{

*(LEDR_ptr) = *(slider_switch_ptr); // light up the red lights
if (tick)
{

tick = 0;
*HPS_GPIO1_ptr = HPS_timer_LEDG; // turn on/off the green light LEDG
HPS_timer_LEDG ∧= 0x01000000; // toggle the bit that controls LEDG

}
}

}

Figure 29. An example of C code that uses interrupts (Part a).
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/* Initialize the banked stack pointer register for IRQ mode */
void set_A9_IRQ_stack(void)
{

int stack, mode;
stack = 0xFFFFFFFF − 7; // top of A9 on-chip memory, aligned to 8 bytes
/* change processor to IRQ mode with interrupts disabled */
mode = 0b11010010;
asm("msr cpsr, %[ps]" : : [ps] "r" (mode));
/* set banked stack pointer */
asm("mov sp, %[ps]" : : [ps] "r" (stack));

/* go back to SVC mode before executing subroutine return! */
mode = 0b11010011;
asm("msr cpsr, %[ps]" : : [ps] "r" (mode));

}

/* Turn on interrupts in the ARM processor */
void enable_A9_interrupts(void)
{

int status = 0b01010011;
asm("msr cpsr, %[ps]" : : [ps]"r"(status));

}

/* Configure the Generic Interrupt Controller (GIC) */
void config_GIC(void)
{

/* configure the HPS timer interrupt */
*((int *) 0xFFFED8C4) = 0x01000000;
*((int *) 0xFFFED118) = 0x00000080;

/* configure the FPGA interval timer and KEYs interrupts */
*((int *) 0xFFFED848) = 0x00000101;
*((int *) 0xFFFED108) = 0x00000300;

// Set Interrupt Priority Mask Register (ICCPMR). Enable interrupts of all priorities
*((int *) 0xFFFEC104) = 0xFFFF;

// Set CPU Interface Control Register (ICCICR). Enable signaling of interrupts
*((int *) 0xFFFEC100) = 1; // enable = 1

// Configure the Distributor Control Register (ICDDCR) to send pending interrupts to CPUs
*((int *) 0xFFFED000) = 1; // enable = 1

}

Figure 29. An example of C code that uses interrupts (Part b).
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/* setup HPS timer */
void config_HPS_timer()
{

volatile int * HPS_timer_ptr = (int *) 0xFFC08000; // timer base address

(HPS_timer_ptr + 0x2) = 0; // write to control register to stop timer
/* set the timer period */
int counter = 100000000; // period = 1/(100 MHz) x (100x106) = 1 sec
*(HPS_timer_ptr) = counter; // write to timer load register

/* write to control register to start timer, with interrupts */
*(HPS_timer_ptr + 2) = 0b011; // interrupt mask = 0, mode = 1, enable = 1

}

/* setup the interval timer interrupts in the FPGA */
void config_interval_timer()
{

volatile int * interval_timer_ptr = (int *) 0xFF202000; // interal timer base address

/* set the interval timer period for scrolling the HEX displays */
int counter = 5000000; // 1/(100 MHz)×(5000000) = 50 msec
*(interval_timer_ptr + 0x2) = (counter & 0xFFFF);
*(interval_timer_ptr + 0x3) = (counter » 16) & 0xFFFF;

/* start interval timer, enable its interrupts */
*(interval_timer_ptr + 1) = 0x7; // STOP = 0, START = 1, CONT = 1, ITO = 1

}

/* setup the KEY interrupts in the FPGA */
void config_KEYs()
{

volatile int * KEY_ptr = (int *) 0xFF200050; // pushbutton KEY address

*(KEY_ptr + 2) = 0xF; // enable interrupts for all four KEYs
}

Figure 29. An example of C code that uses interrupts (Part c).
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void HPS_timer_ISR (void);
void interval_timer_ISR (void);
void pushbutton_ISR (void);

/* Define the IRQ exception handler */
void __attribute__ ((interrupt)) __cs3_isr_irq (void)
{

// Read the ICCIAR from the processor interface
int int_ID = *((int *) 0xFFFEC10C);

if (int_ID == 199) // check if interrupt is from the HPS timer
HPS_timer_ISR ();

else if (int_ID == 72) // check if interrupt is from the Altera timer
interval_timer_ISR ();

else if (int_ID == 73) // check if interrupt is from the KEYs
pushbutton_ISR ();

else
while (1) // if unexpected, then stay here

// Write to the End of Interrupt Register (ICCEOIR)
*((int *) 0xFFFEC110) = int_ID;
return;

}

// Define the remaining exception handlers */
void __attribute__ ((interrupt)) __cs3_isr_undef (void)
{

while (1);
}
void __attribute__ ((interrupt)) __cs3_isr_swi (void)
{

while (1);
}
void __attribute__ ((interrupt)) __cs3_isr_pabort (void)
{

while (1);
}
void __attribute__ ((interrupt)) __cs3_isr_dabort (void)
{

while (1);
}
void __attribute__ ((interrupt)) __cs3_isr_fiq (void)
{

while (1);
}

Figure 30. Exception handlers C code.
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/******************************************************************************
* HPS timer interrupt service routine
* This code increments the TICK global variable, and clears the interrupt

******************************************************************************/
extern volatile int tick;
void HPS_timer_ISR( )
{

volatile int * HPS_timer_ptr = (int *) 0xFFC08000; // HPS timer base address
++tick; // used by main program

*(HPS_timer_ptr + 3); // Read timer end of interrupt register to
// clear the interrupt

return;
}

Figure 31. Interrupt service routine for the HPS timer.

/******************************************************************************
* Pushbutton - Interrupt Service Routine
* This routine checks which KEY has been pressed. It writes this value to the global
* variable key_pressed.

******************************************************************************/
extern volatile int key_pressed;
void pushbutton_ISR( void )
{

volatile int * KEY_ptr = (int *) 0xFF200050;
int press;

press = *(KEY_ptr + 3) // read the pushbutton interrupt register
*(KEY_ptr + 3) = press; // clear the interrupt

if (press & 0x1) // KEY0
key_pressed = 0;

else if (press & 0x2) // KEY1
key_pressed = 1;

else if (press & 0x4) // KEY2
key_pressed = 2;

else // press & 0x8, which is KEY3
key_pressed = 3;

return;
}

Figure 32. Interrupt service routine for the pushbutton KEYs.
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/******************************************************************************
* Interval timer interrupt service routine
* Shifts a PATTERN being displayed on the HEX displays. The shift direction is determined
* by the external variable key_pressed.

******************************************************************************/
extern volatile int key_pressed;
extern volatile int pattern;
extern volatile int shift_dir;
void interval_timer_ISR( )
{

volatile int * interval_timer_ptr = (int *) 0xFF202000; // Altera timer address
volatile int * slider_switch_ptr = (int *) 0xFF200040; // SW base address
volatile int * HEX3_HEX0_ptr = (int *) 0xFF200020; // HEX3_HEX0 address

*(interval_timer_ptr) = 0; // clear the interrupt

*(HEX3_HEX0_ptr) = pattern; // display pattern on HEX3 ... HEX0

/* rotate the pattern shown on the HEX displays */
if (key_pressed == 0) // for KEY0 read new pattern

pattern = *(slider_switch_ptr); // read a new pattern from the SW slider switches
else if (key_pressed == 1) // for KEY1 rotate right

shift_dir = 1; // 1 = RIGHT
else if (key_pressed == 2) // for KEY2 rotate right

shift_dir = 2; // 2 = LEFT
else if (key_pressed == 3) // for KEY3 don’t rotate

shift_dir = 4; // 4 = NONE

key_pressed = 4; // key press handled, so clear (4 = NONE)

if (shift_dir == 2) // LEFT
if (pattern & 0x80000000)

pattern = (pattern << 1) | 1;
else

pattern = pattern << 1;
else if (shift_dir == 1) // RIGHT

if (pattern & 0x00000001)
pattern = (pattern >> 1) | 0x80000000;

else
pattern = (pattern >> 1) & 0x7FFFFFFF;

// else don’t shift
return;

}
Figure 33. Interrupt service routine for the interval timer.
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4 Media Components

This section describes the audio in/out, video-out, video-in, PS/2, IrDA, and ADC ports.

4.1 Audio In/Out Port

The DE1-SoC Computer includes an audio port that is connected to the audio CODEC (COder/DECoder) chip on
the DE1-SoC board. The default setting for the sample rate provided by the audio CODEC is 48K samples/sec. The
audio port provides audio-input capability via the microphone jack on the DE1-SoC board, as well as audio output
functionality via the line-out jack. The audio port includes four FIFOs that are used to hold incoming and outgoing
data. Incoming data is stored in the left- and right-channel Read FIFOs, and outgoing data is held in the left- and
right-channel Write FIFOs. All FIFOs have a maximum depth of 128 32-bit words.

The audio port’s programming interface consists of four 32-bit registers, as illustrated in Figure 34. The Control
register, which has the address 0xFF203040, is readable to provide status information and writable to make control
settings. Bit RE of this register provides an interrupt enable capability for incoming data. Setting this bit to 1 allows
the audio core to generate a Nios II interrupt when either of the Read FIFOs are filled 75% or more. The bit RI will
then be set to 1 to indicate that the interrupt is pending. The interrupt can be cleared by removing data from the
Read FIFOs until both are less than 75% full. Bit WE gives an interrupt enable capability for outgoing data. Setting
this bit to 1 allows the audio core to generate an interrupt when either of the Write FIFOs are less that 25% full. The
bit WI will be set to 1 to indicate that the interrupt is pending, and it can be cleared by filling the Write FIFOs until
both are more than 25% full. The bits CR and CW in Figure 34 can be set to 1 to clear the Read and Write FIFOs,
respectively. The clear function remains active until the corresponding bit is set back to 0.

Address 01531 . . .

0xFF203040 

0xFF203044 

. . .

Unused WE RE

1

WSRC RALC RARCWSLC

16 223

Left data0xFF203048 

Right data0xFF20303C 

3

ControlCW CR

. . .89

WI RI

710. . .24

Fifospace

Leftdata

Rightdata

Figure 34. Audio port registers.

The read-only Fifospace register in Figure 34 contains four 8-bit fields. The fields RARC and RALC give the number
of words currently stored in the right and left audio-input FIFOs, respectively. The fields WSRC and WSLC give the
number of words currently available (that is, unused) for storing data in the right and left audio-out FIFOs. When all
FIFOs in the audio port are cleared, the values provided in the Fifospace register are RARC = RALC = 0 and WSRC
= WSLC = 128.

The Leftdata and Rightdata registers are readable for audio in, and writable for audio out. When data is read from
these registers, it is provided from the head of the Read FIFOs, and when data is written into these registers it is
loaded into the Write FIFOs.
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A fragment of C code that uses the audio port is shown in Figure 35. The code checks to see when the depth of either
the left or right Read FIFO has exceeded 75% full, and then moves the data from these FIFOs into a memory buffer.
This code is part of a larger program that is distributed as part of the Altera Monitor Program. The source code can
be found under the heading sample programs, and is identified by the name Media.

volatile int * audio_ptr = (int *) 0xFF203040; // audio port address
int fifospace, int buffer_index = 0;
int left_buffer[BUF_SIZE];
int right_buffer[BUF_SIZE];
. . .
fifospace = *(audio_ptr + 1); // read the audio port fifospace register
if ( (fifospace & 0x000000FF) > 96) // check RARC, for > 75% full
{

/* store data until the audio-in FIFO is empty or the memory buffer is full */
while ( (fifospace & 0x000000FF) && (buffer_index < BUF_SIZE) )
{

left_buffer[buffer_index] = *(audio_ptr + 2); //Leftdata
right_buffer[buffer_index] = *(audio_ptr + 3); //Rightdata
++buffer_index;
fifospace = *(audio_ptr + 1); // read the audio port fifospace register

}
}
. . .

Figure 35. An example of code that uses the audio port.

4.2 Video-out Port

The DE1-SoC Computer includes a video-out port with a VGA controller that can be connected to a standard VGA
monitor. The VGA controller supports a screen resolution of 640 × 480. The image that is displayed by the VGA
controller is derived from two sources: a pixel buffer, and a character buffer.

4.2.1 Pixel Buffer

The pixel buffer for the video-out port holds the data (color) for each pixel that is displayed by the VGA controller.
As illustrated in Figure 36, the pixel buffer provides an image resolution of 320 × 240 pixels, with the coordinate
0,0 being at the top-left corner of the image. Since the VGA controller supports the screen resolution of 640 × 480,
each of the pixel values in the pixel buffer is replicated in both the x and y dimensions when it is being displayed on
the VGA screen.

Figure 37a shows that each pixel color is represented as a 16-bit halfword, with five bits for the blue and red
components, and six bits for green. As depicted in part b of Figure 37, pixels are addressed in the pixel buffer by
using the combination of a base address and an x,y offset. In the DE1-SoC Computer the default address of the pixel
buffer is 0xC8000000, which corresponds to the starting address of the FPGA on-chip memory. Using this scheme,
the pixel at location 0,0 has the address 0xC8000000, the pixel 1,0 has the address base + (00000000 000000001 0)2
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Figure 36. Pixel buffer coordinates.

= 0xC8000002, the pixel 0,1 has the address base + (00000001 000000000 0)2 = 0xC8000400, and the pixel at
location 319,239 has the address base + (11101111 100111111 0)2 = 0xC803BE7E.
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(a) Pixel values

(b) Pixel buffer addresses
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Figure 37. Pixel values and addresses.

You can create an image by writing color values into the pixel addresses as described above. A dedicated pixel buffer
controller continuously reads this pixel data from sequential addresses in the corresponding memory for display on
the VGA screen. You can modify the pixel data at any time, simply by writing to the pixel addresses. Thus, an
image can be changed even when it is in the process of being displayed. However, it is also possible to avoid making
changes to the pixel buffer while it is being displayed, by using the concept of double-buffering. In this scheme, two
pixel buffers are involved, called the front and back buffers, described below.

4.2.2 Double Buffering

As mentioned above, a pixel buffer controller reads data out of the pixel buffer so that it can be displayed on the
VGA screen. This pixel buffer controller includes a programming interface in the form of a set of registers, as
illustrated in Figure 38. The register at address 0xFF203020 is called the Buffer register, and the register at address
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0xFF203024 is the Backbuffer register. Each of these registers stores the starting address of a pixel buffer. The
Buffer register holds the address of the pixel buffer that is displayed on the VGA screen. As mentioned above, in the
default configuration of the DE1-SoC Computer this Buffer register is set to the address 0xC8000000, which points
to the start of the FPGA on-chip memory. The default value of the Backbuffer register is also 0xC8000000, which
means that there is only one pixel buffer. But software can modify the address stored in the Backbuffer register,
thereby creating a second pixel buffer. The pixel buffer can be located in the SDRAM memory in the DE1-SoC
Computer, which has the base address 0xC0000000. Note that the pixel buffer cannot be located in the DDR3
memory in the DE1-SoC Computer, because the pixel buffer controller is not connected to the DDR3 memory. An
image can be drawn into the second buffer by writing to its pixel addresses. This image is not displayed on the VGA
monitor until a pixel buffer swap is performed, as explained below.

A pixel buffer swap is caused by writing the value 1 to the Buffer register. This write operation does not directly
modify the content of the Buffer register, but instead causes the contents of the Buffer and Backbuffer registers to
be swapped. The swap operation does not happen right away; it occurs at the end of a VGA screen-drawing cycle,
after the last pixel in the bottom-right corner has been displayed. This time instance is referred to as the vertical
synchronization time, and occurs every 1/60 seconds. Software can poll the value of the S bit in the Status register,
at address 0xFF20302C, to see when the vertical synchronization has happened. Writing the value 1 into the Buffer
register causes S to be set to 1. Then, when the swap of the Buffer and Backbuffer registers has been completed S is
reset back to 0.

Address 01531 . . .

0xFF203020 

0xFF203024 

. . .

A S

1

XY

16 223

front buffer address

0xFF203028 

back buffer address

0xFF20302C 

3

B

. . .7

m n

48. . .24

Backbuffer register

Resolution register

Status register

Buffer register

Unused Unused

Figure 38. Pixel buffer controller registers.

In a typical application the pixel buffer controller is used as follows. While the image contained in the pixel buffer
that is pointed to by the Buffer register is being displayed, a new image is drawn into the pixel buffer pointed to by
the Backbuffer register. When this new image is ready to be displayed, a pixel buffer swap is performed. Then, the
pixel buffer that is now pointed to by the Backbuffer register, which was already displayed, is cleared and the next
new image is drawn. In this way, the next image to be displayed is always drawn in the “back” pixel buffer, and the
two pixel buffer pointers are swapped when the new image is ready to be displayed. Each time a swap is performed
software has to synchronize with the VGA controller by waiting until the S bit in the Status register becomes 0.

As shown in Figure 38 the Status register contains additional information other than the S bit. The fields n and m
give the number of address bits used for the X and Y pixel coordinates, respectively. The B field specifies the number
of bytes used for each pixel, with the minimum being 1 and the maximum 4. The A field allows the selection of
two different ways of forming pixel addresses. If configured with A = 0, then the pixel controller expects addresses
to contain X and Y fields, as we have used in this section. But if A = 1, then the controller expects addresses to be
consecutive values starting from 0 and ending at the total number of pixels−1.
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In Figure 37b the default values of the status register fields in the DE1-SoC Computer are used when forming
pixel addresses. The defaults are n = 9, m = 8, B = 2, and A = 0. If the pixel buffer controller is changed to provide
different values of these fields, then the way in which pixel addresses are formed has to be modified accordingly. The
programming interface also includes a Resolution register, shown in Figure 38, that contains the X and Y resolution
of the pixel buffer(s).

4.2.3 Character Buffer

The character buffer for the video-out port is stored in on-chip memory in the FPGA on the DE1-SoC board. As
illustrated in Figure 39a, the buffer provides a resolution of 80 × 60 characters, where each character occupies an
8 × 8 block of pixels on the VGA screen. Characters are stored in each of the locations shown in Figure 39a using
their ASCII codes; when these character codes are displayed on the VGA monitor, the character buffer automat-
ically generates the corresponding pattern of pixels for each character using a built-in font. Part b of Figure 39
shows that characters are addressed in the memory by using the combination of a base address, which has the value
(C9000000)16, and an x,y offset. Using this scheme, the character at location 0,0 has the address (C9000000)16, the
character 1,0 has the address base + (000000 0000001)2 = (C9000001)16, the character 0,1 has the address base +
(000001 0000000)2 = (C9000080)16, and the character at location 79,59 has the address base + (111011 1001111)2

= (C9001DCF)16.
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(a) Character buffer coordinates

(b) Character buffer addresses

Figure 39. Character buffer coordinates and addresses.

4.2.4 Using the Video-out Port with C code

A fragment of C code that uses the pixel and character buffers is shown in Figure 40. The first for loop in the figure
draws a rectangle in the pixel buffer using the color pixel_color. The rectangle is drawn using the coordinates x1, y1

and x2, y2. The second while loop in the figure writes a null-terminated character string pointed to by the variable
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text_ptr into the character buffer at the coordinates x, y. The code in Figure 40 is included in the sample program
called Media that is distributed with the Altera Monitor Program.

int pixel_ptr, row, col;
· · ·
/* Draw a box with corners (x1, y1) and (x2, y2). Assume that the box coordinates are valid */
for (row = y1; row <= y2; row++)

for (col = x1; col <= x2; ++col)
{

pixel_ptr = 0xC8000000 | (row << 10) | (col << 1);
*(short *)pixel_ptr = pixel_color; // set pixel color

}
}

· · ·

int offset;
char *text_ptr;
· · ·
/* Display a null-terminated text string at coordinates x, y. Assume that the text fits on one line */
offset = (y << 7) + x;
while ( *(text_ptr) )
{

*(0xC9000000 + offset) = *(text_ptr); // write to the character buffer
++text_ptr;
++offset;

}

Figure 40. An example of code that uses the video-out port.

4.3 Video-in Port

The DE1-SoC Computer includes a video-in port for use with the composite video-in connector on the DE1-SoC
board. The video analog-to-digital converter (ADC) connected to this port is configured to support an NTSC video
source. The video-in port provides frames of video at a resolution of 320 x 240 pixels. These video frames can be
displayed on a VGA monitor by using the video-out port described in Section 4.2. The video-in port writes each
frame of the video-in data into the pixel buffer described in Section 4.2.1. The video-in port can be configured to
provide two types of images: either the “raw” image provided by the video ADC, or a version of this image in which
only “edges” that are detected in the image are drawn.

The video-in port has a programming interface that consists of two registers, as illustrated in Figure 41. The Control
register at the address 0xFF20306C is used to enable or disable the video input. If the EN bit in this register is set
to 0, then the video-in core does not store any data into the pixel buffer. Setting EN to 1 and then changing EN to 0
can be used to capture a still picture from the video-in port.

The register at address 0xFF203070 is used to enable or disable edge detection. Setting the E bit in this register
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to 1 causes the input video to passed through hardware circuits that detect edges in the images. The image stored
in the pixel buffer will then consist of dark areas that are puctuated by lighter lines along the edges that have been
detected. Setting E = 0 causes a normal image to be stored into the pixel buffer.

012

0xFF20306C 

Address

0xFF203070 

Control

Edge-detection

EN

0

E

Unused

Unused

Figure 41. The video-in port programming interface.

4.4 Audio/Video Configuration Module

The audio/video configuration module controls settings that affect the operation of both the audio port and the video-
out port. The audio/video configuration module automatically configures and initializes both of these ports whenever
the DE1-SoC Computer is reset. For typical use of the DE1-SoC Computer it is not necessary to modify any of these
default settings. In the case that changes to these settings are needed, the reader should refer to the audio/video
configuration module’s online documentation, which is available from Altera’s University Program web site.

4.5 PS/2 Port

The DE1-SoC Computer includes two PS/2 ports that can be connected to a standard PS/2 keyboard or mouse. The
port includes a 256-byte FIFO that stores data received from a PS/2 device. The programming interface for the PS/2
port consists of two registers, as illustrated in Figure 42. The PS2_Data register is both readable and writable. When
bit 15, RVALID, is 1, reading from this register provides the data at the head of the FIFO in the Data field, and
the number of entries in the FIFO (including this read) in the RAVAIL field. When RVALID is 1, reading from the
PS2_Data register decrements this field by 1. Writing to the PS2_Data register can be used to send a command in
the Data field to the PS/2 device.

The PS2_Control register can be used to enable interrupts from the PS/2 port by setting the RE field to the value 1.
When this field is set, then the PS/2 port generates an interrupt when RAVAIL > 0. While the interrupt is pending
the field RI will be set to 1, and it can be cleared by emptying the PS/2 port FIFO. The CE field in the PS2_Control
register is used to indicate that an error occurred when sending a command to a PS/2 device.

A fragment of C code that uses the PS/2 port is given in Figure 43. This code reads the content of the Data register,
and saves data when it is available. If the code is used continually in a loop, then it stores the last three bytes of data
received from the PS/2 port in the variables byte1, byte2, and byte3. This code is included as part of a larger sample
program called Media that is distributed with the Altera Monitor Program.
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Figure 42. PS/2 port registers.

volatile int * PS2_ptr = (int *) 0xFF200100; // PS/2 port address
int PS2_data, RVALID;
char byte1 = 0, byte2 = 0, byte3 = 0;
. . .
PS2_data = *(PS2_ptr); // read the Data register in the PS/2 port
RVALID = PS2_data & 0x8000; // extract the RVALID field
if (RVALID)
{

/* save the last three bytes of data */
byte1 = byte2;
byte2 = byte3;
byte3 = PS2_data & 0xFF;

}
. . .

Figure 43. An example of code that uses the PS/2 port.

4.5.1 PS/2 Port Dual

The DE0-SoC Computer includes a second PS/2 port that allows both a keyboard and mouse to be used at the same
time. To use the dual port a Y-splitter cable must be used and the keyboard and mouse must be connected to the
PS/2 connector on the DE0-SoC board through this cable. The PS/2 port dual has the same registers as the PS/2 port
shown in Figure 43, except that the base address of its PS2_Data register is 0xFF200108 and the base address of
its PS2_Control register is 0xFF20010C.

4.6 IrDA Infrared Serial Port

The IrDA port in the DE0-SoC Computer implements a UART that is connected to the infrared transmit/receive
device on the DE1-SoC board. This UART is configured for 8-bit data, one stop bit, and no parity, and operates
at a baud rate of 115,200. The serial port’s programming interface consists of two 32-bit registers, as illustrated
in Figure 44. The register at address 0xFF201020 is referred to as the Data register, and the register at address
0xFF201024 is called the Control register.

When character data is received from the IrDA chip it is stored in a 256-character FIFO in the UART. As illustrated
in Figure 44, the number of characters RAVAIL currently stored in this FIFO is provided in bits 23−16 of the Data
register. If the receive FIFO overflows, then additional data is lost. When the data that is present in the receive FIFO
is available for reading, then the value of bit 15, RVALID, will be 1. Reading the character at the head of the FIFO,
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Figure 44. IrDA serial port UART registers.

which is provided in bits 7−0, decrements the value of RAVAIL by one and returns this decremented value as part
of the read operation. If no data is available to be read from the receive FIFO, then RVALID will be set to 0 and the
data in bits 7−0 is undefined.

The UART also includes a 256-character FIFO that stores data waiting to be sent to the IrDA device. Character data
is loaded into this register by performing a write to bits 7−0 of the Data register. Writing into this register has no
effect on received data. The amount of space WSPACE currently available in the transmit FIFO is provided in bits
23−16 of the Control register, as indicated in Figure 44. If the transmit FIFO is full, then any additional characters
written to the Data register will be lost.

The RE and WE bits in the Control register are used to enable A9 processor interrupts associated with the receive
and transmit FIFOs. When enabled, interrupts are generated when RAVAIL for the receive FIFO, or WSPACE for
the transmit FIFO, exceeds 31. Pending interrupts are indicated in the Control register’s RI and WI bits, and can be
cleared by writing or reading data to/from the UART.

4.7 Analog-to-Digital Conversion Port

The Analog-to-Digital Conversion (ADC) Port provides access to the eight-channel, 12-bit analog-to-digital con-
verter on the DE1-SoC board. As illustrated in Figure 45, the ADC port comprises eight 12-bit registers starting at
the base address 0xFF204000. The first two registers have dual purposes, acting as both data and control registers.
By default, the ADC port updates the A-to-D conversion results for all ports only when instructed to do so. Writing
to the control register at address 0xFF204000 causes this update to occur. Reading from the register at address
0xFF204000 provides the conversion data for channel 0. Reading from the other seven registers provides the con-
version data for the corresponding channels. It is also possible to have the ADC port continually request A-to-D
conversion data for all channels. This is done by writing the value 1 to the control register at address 0xFF204004.
The R bit of each channel register in Figure 45 is used in Auto-update mode. R is set to 1 when its corresponding
channel is refreshed and set to 0 when the channel is read.

Figure 46 shows the connector on the DE1-SoC board that is used with the ADC port. Analog signals in the range
of 0 V to the VCC 5 power-supply voltage can be connected to the pins for channels 0 to 7.
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Figure 45. ADC port registers.
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Figure 46. ADC connector.

5 Modifying the DE1-SoC Computer

It is possible to modify the DE1-SoC Computer by using Altera’s Quartus II software and Qsys tool. Tutorials that
introduce this software are provided in the University Program section of Altera’s web site. To modify the system it
is first necessary to make an editable copy of the DE1-SoC Computer. The files for this system are installed as part
of the Monitor Program installation. Locate these files, copy them to a working directory, and then use the Quartus II
and Qsys software to make any desired changes.

6 Making the System the Default Configuration

The DE1-SoC Computer can be loaded into the nonvolatile FPGA configuration memory on the DE1-SoC board,
so that it becomes the default system whenever the board is powered on. Instructions for configuring the DE1-SoC
board in this manner can be found in the tutorial Introduction to the Quartus II Software, which is available from
Altera’s University Program.
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7 Memory Layout

Table 2 summarizes the memory map used in the DE1-SoC Computer.

Base Address End Address I/O Peripheral

0x00000000 0x3FFFFFFF DDR3 Memory
0xFFFF0000 0xFFFFFFFF A9 On-chip Memory
0xC0000000 0xC3FFFFFF SDRAM
0xC8000000 0xC803FFFF FPGA On-chip Memory
0xC9000000 0xC9001FFF FPGA On-chip Memory Character Buffer
0xFF200000 0xFF20000F Red LEDs
0xFF200020 0xFF20002F 7-segment HEX3−HEX0 Displays
0xFF200030 0xFF20003F 7-segment HEX5−HEX4 Displays
0xFF200040 0xFF20004F Slider Switches
0xFF200050 0xFF20005F Pushbutton KEYs
0xFF200060 0xFF20006F JP1 Expansion
0xFF200070 0xFF20007F JP2 Expansion
0xFF200100 0xFF200107 PS/2
0xFF200108 0xFF20010F PS/2 Dual
0xFF201000 0xFF201007 JTAG UART
0xFF201008 0xFF20100F Second JTAG UART
0xFF201020 0xFF201027 Infrared (IrDA)
0xFF202000 0xFF20201F Interval Timer
0xFF202020 0xFF20202F Second Interval Timer
0xFF203000 0xFF20301F Audio/video Configuration
0xFF203020 0xFF20302F Pixel Buffer Control
0xFF203030 0xFF203037 Character Buffer Control
0xFF203040 0xFF20304F Audio
0xFF203060 0xFF203070 Video-in
0xFF204000 0xFF20401F ADC
0xFF709000 0xFF709063 HPS GPIO1
0xFFC04000 0xFFC040FC HPS I2C0
0xFFC08000 0xFFC08013 HPS Timer0
0xFFC09000 0xFFC09013 HPS Timer1
0xFFD00000 0xFFD00013 HPS Timer2
0xFFD01000 0xFFD01013 HPS Timer3
0xFFD0501C 0xFFD0501F FPGA Bridge
0xFFFEC100 0xFFFEC1FC GIC CPU Interface
0xFFFED000 0xFFFEDFFC GIC Distributor Interface
0xFFFEC600 0xFFFEC60F ARM A9 Private Timer

Table 2. Memory layout used in the DE1-SoC Computer.
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8 Altera Monitor Program Integration

As we mentioned earlier, the DE1-SoC Computer system, and the sample programs described in this document, are
made available as part of the Altera Monitor Program. Figures 47 to 50 show a series of windows that are used
in the Monitor Program to create a new project. In the first screen, shown in Figure 47, the user specifies a file
system folder where the project will be stored, gives the project a name, and specifies the type of processor that is
being used. Pressing Next opens the window in Figure 48. Here, the user can select the DE1-SoC Computer as a
pre-designed system. The Monitor Program then fills in the relevant information in the System details box, which
includes the files called Computer_System.sopcinfo and DE1_SoC_Computer.sof. The first of these files specifies
to the Monitor Program information about the components that are available in the DE1-SoC Computer, such as
the type of processor and memory components, and the address map. The second file is an FPGA programming
bitstream for the DE1-SoC Computer, which can downloaded by the Monitor Program into the DE1-SoC board.

Figure 47. Specifying the project folder and project name.
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Pressing Next again opens the window in Figure 49. Here the user selects the type of program that will be used,
such as Assembly language, or C. Then, the check box shown in the figure can be used to display the list of sample
programs for the DE1-SoC Computer that are described in this document. When a sample program is selected in
this list, its source files, and other settings, can be copied into the project folder in subsequent screens of the Monitor
Program.

Figure 50 gives the final screen that is used to create a new project in the Monitor Program. This screen shows
the default addresses of compiler and linker sections that will be used for the assembly language or C program
associated with the Monitor Program project. In the figure, the drop-down next to Linker Section Presets has been
set to Exceptions. With this setting the Monitor Program uses a compiler and linker section for the A9 processor
exception table, called .vectors, and another section for the main program, called .text. It also shows the initial value
used to set the main stack pointer for C programs, which is the starting address of the .stack section.

Figure 48. Specifying the DE1-SoC Computer system.
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Figure 49. Selecting sample programs.

Figure 50. Setting offsets for .text and .data.
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