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int circ_buffer[N], circ_buffer_head = 0;
int c[N]; /* coefficients */
…
int ibuf, ic;
for (f=0, ibuff=circ_buff_head, ic=0;

ic<N; ibuff=(ibuff==N-1?0:ibuff++), 
ic++)

f = f + c[ic]*circ_buffer[ibuf];



Acknowledgement

▪ These slides are a result of cumulative contributions from Prof. Burleson, Koren, 
Kundu and Moritz.

▪ Materials have also been adopted from the textbook: Wolf, Computers as 
Components, Morgan Kaufman, 2005

2



Outline for Today’s Lecture

▪ Feedback on Lab1
▪ Embedded CPUs
▪ Interrupts
▪ IO
▪ Embedded System Software Design
▪ Basics on Image Manipulation



Readings 

▪ Chapters 2, 3 
• CPUs,  Interrupts

▪ Chapter 4, emphasizing 4.1 through 4.7
• I/O, USB, debugging

▪ Chapter 5, emphasizing 5.1-5.4, 5.9
• Programming, patterns, test …



Objectives of Lab 2

▪ Sense the external world through a camera
▪ Transfer the camera data to the DE1-SoC board
▪ Process the image in software on the ARM CPU
▪ View the images on the monitor

▪ Concepts:
• I/O (camera, monitor, interrupts)
• Basic image processing
• Embedded software design and test running on an embedded processor



Outline for Today’s Lecture

▪ Administrative, Lab2, Feedback on Lab1
▪ Embedded CPUs
▪ Interrupts
▪ IO
▪ Embedded System Software Design
▪ Basics on Image Manipulation



RISC vs Superscalar

▪ RISC pipeline executes one instruction per clock cycle (usually).
• For example, ARM, MIPS, PowerPC, etc

▪ Superscalar machines execute multiple instructions per clock cycle.
• Faster execution.
• More variability in execution times.
• More expensive CPU.
• Requires a lot of hardware.

• n2 instruction unit hardware for n-instruction parallelism.
• For example, Intel X86.



Order of execution

▪ In-order:
• Machine stops issuing instructions when the next instruction can’t be dispatched.

▪ Out-of-order:
• Machine will change order of instructions to keep dispatching.
• Substantially faster but also more complex.
• Can be still in-order completion to avoid issues with precise exceptions, etc



VLIW architectures

▪ Very long instruction word (VLIW) processing provides significant 
parallelism.

▪ Rely on compilers to identify parallelism.
▪ VLIW requires considerably more sophisticated compiler technology than 

traditional architectures---must be able to extract parallelism to keep the 
instruction pipelines full.

▪ VLIW is popular for various embedded designs
• EPIC = Explicitly parallel instruction computing.

• Used in Intel/HP Merced (IA-64) machine.



Difference between microcontrollers, microprocessors and FPGA systems

▪ FPGA systems often contain CPUs 
in softcore (synthesized) or 
hardcore (part of die) format but can 
also contain logic blocks for other 
hardware, e.g., state machines, etc

▪ Microcontrollers are more limited in 
functionality and often do not 
include support for virtual memory 
and caches

• Up to 50MHz
▪ Microprocessors are more 

performance capable and have 
typically virtual memory support

• From 50MHz to GHz
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Another perspective: PLDs, FPGAs, ASICs, Structured ASICs

▪ Programmable logic devices (PLDs) provide low/medium density logic.
▪ Field-programmable gate arrays (FPGAs) provide more logic and multi-

level logic.
▪ Application-specific integrated circuits (ASICs) are manufactured for a 

single purpose.
▪ Structured ASICs (see of gates wired together) are in between FPGAs and 

ASIC – manufactured for single purpose but manufacturing cheaper than 
ASIC since customization is often through metal layers (less mask costs)



Memory system

▪ CPU fetches data, instructions from a memory hierarchy:

▪ Some systems also include TLB/MMU to provide a cache during address 
translation and access control checks

Main
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L2
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L1
cache CPU

DRAM/Flash
SRAM SRAM



Memory hierarchy complications

▪ Program behavior is much more state-dependent.
• E.g., depends on how earlier execution left the cache.

▪ Execution time is less predictable.
• Memory access times can vary by 100X. 

• L1 1-4c, L2 8-12c, DRAM ~100c
• Virtual memory, TLB, etc all affect performance

• TLB hit vs miss, page hit vs miss



Types of memory

▪ ROM:
• Mask-programmable.

• High density – downside?
• Flash programmable.

• Challenges? Advantages? # of erase cycles
▪ RAM:

• DRAM. Access time?
• SRAM. Access time?



Memory device organization (e.g., SRAM block)
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Cache Organization
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Virtual Memory Organization Example
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In Embedded Designs MMU  Can Look Much Simpler



But Also Fairly Complicated
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Programming model in Processors

▪ Assembly language
• One-to-one with machine instructions (more or less).
• Labels provide names for addresses (usually in first column).
• Pseudo-ops: constants, define storage, define address

▪ Programming model: registers visible to the programmer.
• For example ARM has 32 registers
• Some registers are not visibible: system registers



ARM assembly language example

label1  ADR r4,c
LDR r0,[r4] ; a comment
ADR r4,d
LDR r1,[r4]
SUB r0,r0,r1 ; comment



Visualizing 

▪ Control Flow Graphs
▪ Procedures
▪ Loops
▪ Basic Blocks
▪ Instructions

Copyright BlueRISC 2007
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Interrupt interface
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Prioritized interrupts

CPU

device 1 device 2 device n

L1 L2 .. Ln

interrupt
acknowledge

▪ Masking: interrupt with priority lower than 
current priority is not recognized until 
pending interrupt is complete.

▪ Non-maskable interrupt (NMI): highest-
priority, never masked.

• Often used for power-down.



Example: Prioritized I/O

:interrupts :foreground :A :B :C

B

A,
B

C

A



Generic interrupt mechanism
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Interrupt vectors

▪ Allow different devices to be handled by different code.
▪ Interrupt vector table:

handler 0
handler 1
handler 2
handler 3

Interrupt
vector

table head



Sources of interrupt overhead

▪ Handler execution time.
▪ Interrupt mechanism overhead.
▪ Register save/restore.
▪ Pipeline-related penalties.
▪ Cache-related penalties.



ARM interrupts

▪ ARM7 supports two types of interrupts:
• Fast interrupt requests (FIQs).
• Interrupt requests (IRQs).

▪ Interrupt table starts at location 0.



Exception and Trap

▪ Exception: internally detected error.
• Exceptions are synchronous with instructions but unpredictable.
• Build exception mechanism on top of interrupt mechanism.

▪ Trap (software interrupt): an exception generated by an instruction.
• Call supervisor mode.
• ARM uses SWI instruction for traps.



Outline for Today’s Lecture

▪ Administrative, Lab2, Feedback on Lab1
▪ Embedded CPUs
▪ Interrupts
▪ IO
▪ Embedded System Software Design
▪ Basics on Image Manipulation



I/O devices

▪ I/O devices:
• serial links (UART, USB, SPI, RS-232, RS-485, I2C, S2C, high-speed such as PCIe…)
• timers and counters
• keyboards
• displays
• analog I/O



Application: 8251 UART

▪ Universal asynchronous receiver transmitter (UART) : provides serial 
communication.

▪ 8251 functions are integrated into standard PC interface chip.
• 8255 used to be a parallel interface

▪ Allows many communication parameters to be programmed.



Serial communication

▪ Characters are transmitted separately:

time

bit 
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bit 
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bit 
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no
char

start stop...



Serial communication parameters

▪ Baud (bit) rate.
▪ Number of bits per character.
▪ Parity/no parity.
▪ Length of stop bit (1, 1.5, 2 bits).



Programming I/O

▪ Two types of instructions can support I/O:
• special-purpose I/O instructions;
• memory-mapped load/store instructions.

▪ Intel x86 provides in, out instructions. Most other CPUs in the embedded 
space use memory-mapped I/O.

▪ I/O instructions do not preclude memory-mapped I/O.



PCIe Architecture
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Software components

▪ Need to break the design up into pieces to be able to write the code.
▪ Some component designs come up often.

• A design pattern is a generic description of a component that can be customized and 
used in different circumstances.

▪ Firmware – basic system software for a chip
▪ Device driver – control of hardware modules in a system tightly coupled 

with operating systems 



Building Code Image

H
L
L

compile
assem

bly assemble
H
L
L

H
L
L
so
ur
ce

assem
bly

assem
bly

linkexecu
tableload



Assemblers

▪ Major tasks:
• Generate machine code for symbolic instructions;
• translate labels into addresses;
• handle pseudo-ops.



Linking

▪ Combines several object modules into a single executable module.



Dynamic linking

▪ Some operating systems link modules dynamically at run time:
• shares one copy of library among all executing programs;
• allows programs to be updated with new versions of libraries.



What’s Next ?

▪ Lab 2 details by TA.



How to build/debug? Host -target design, debugging

▪ Use a host system to prepare software for target 
• Cross compiler: compiles code on host for target system.

▪ Cross debugger: displays target state, allows target to be controlled.

target
system

host system
serial line



In-circuit emulators

▪ A microprocessor in-circuit emulator is a specially-instrumented 
microprocessor.
• Allows you to stop execution, examine CPU state, modify registers.

▪ Many microprocessors also support software debugging through special 
ports and (typically) Jtag interface
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Images

▪ A picture is a rectangular array of pixels (=picture element)
▪ A digital picture is a picture stored in binary (bits).

• The picture resides in a digital storage system as a file.



Pixels, Grey Values and Quantization

▪ Conceptually, a monochrome (black and white) image is a function f(x, y), 
sampled over a two-dimensional grid. 
• Each sample value is called a pixel (picture element).

▪ Conceptually, the function is real-valued and has a continuous range. This 
is called the grey value of the pixel.
• On a computer, it is represented with a finite number of bits. This is called 

quantization.



Example

Raw picture format, 256x256, 1 byte per pixel

1 2 3 ... 256

257 258 259 ... 512

513 514 515 ... 768

... ... ... ... ...

65,280 65,281 ... ... 65,536

Pixel sequence in file



Calculations

▪ In the so-called raw format, the file contains only the gray values of the 
pixels.

▪ Bits/picture = Rows x Columns x bits/pixel
▪ Bytes/picture = Rows x Columns x bytes/pixel
▪ Example: 

• For the previous slide, 256 rows, 256 columns, 1 byte  per pixel.
• Bytes = 256x256x1 = 65536



Pixels, Quantization, and Quality

▪ A given picture can be represented with different numbers of pixels and 
various numbers of bits per pixel.
• Fewer pixels produces lower quality
• Fewer bits per pixel produces lower quality

▪ There is a tradeoff between quality and picture storage requirements.



Examples of quantization vs. resolution

64x64, 8 bit, 4 kB
Lower resolution

256x256, 1 bit, 8 kB256x256, 4 bit, 32 kB256x256, 8 bit, 64 kB 256x256, 2 bit, 16 kB



Some Image Processing functions

▪ Add timestamp onto image
▪ Counter to keep track of number of pictures taken
▪ Rotate, mirror, invert image
▪ Simple edge detection (hard)
▪ Detect motion in images (harder)
▪ Detect illegal behavior in images (computer vision)



Uses of Digital Pictures

▪ Consumer and Commercial Photography
▪ Web-cam
▪ Medical Imaging

• X-ray
• Tomography
• Ultrasound

▪ Video
• DVD
• Broadcast
• Surveillance

What quality levels are required for each?
Storage requirements?



Why Standard Formats?

▪ Interoperability
• Image made by Nikon, viewed on computer made by Apple.

▪ Advantages of standards
• Competition among vendors (lower prices)
• Creation of markets
• Multiple vendors - product cycle safety



Image Coding (Compression)

▪ Why compress?
• Store more pictures in same memory
• Spend less time sending picture over web

▪ Lossless compression (LZ, Huffman, RLE):
• Decompress file and get the same picture, bit - for - bit

▪ Lossy compression (JPEG,…):
• Decompress and get something similar.
• Any amount of compression is possible.
• Tradeoff between image quality and compression.



Example of JPEG compression

Very high quality: 
compression = 
2.33
Photoshop Image

Very low quality: 
compression = 115
Produced by 
MATLAB



USB 

▪ Goals:
• Easy to use. USB-C latest.
• Low cost for consumer devices.
• Up to 4.8Gb/s in USB 3.0; 10x better than 2.0; USB-C up to 10Gb/s (v 3.1 protocol, 2x speed 

vs 3.0) & up to 100W power, and reversible, plus support for Displayport, Thunderbolt 3 
(40Gb/s)

• History
• A Low Speed (1.1, 2.0) rate of 1.5 Mbit/s(187 KB/s ) that is mostly used for Human 

Interface Devices (HID) such as keyboards, mice, and joysticks. 
• A Full Speed (1.1, 2.0) rate of 12 Mbit/s (1.5 MB/s ). Full Speed devices divide the USB 

bandwidth between them in a first-come first-served basis and it is not uncommon to run 
out of bandwidth with several isochronous devices. All USB Hubs support Full Speed. 

• A Hi-Speed (2.0) rate of 480 Mbit/s (60 MB/s). 
• A Super-Speed (3.0) rate of 4.8 Gbit/s (600 MB/s). 
• USB 3.1 10Gb/s, USB 3.2 20Gb/s

http://en.wikipedia.org/wiki/Isochronous


USB bus protocol

▪ Polled bus, all transfers initiated by host.
• USB On-the-go (UTG) allows USB devices to act as a host

▪ Basic transaction:
• Host sends token packet:

• Type and direction.
• USB device number.
• Endpoint number (subdevice).

• Data transfer packet.
• Acknowledge packet.



Embedded system design often includes software state machines

▪ State machine keeps internal state as a variable, changes state based on 
inputs.

A B

C D

in1=1/x=a

in1=0/x=b

r=0/out2=1
r=1/out1=0

s=1/out1=1

s=0/out1=0



C state table

switch (state) {
case A: if (in1==1) { x = a; state = B; }
else { x = b; state = D; }
break;

case B: if (r==0) { out2 = 1; state = B; }
else { out1 = 0; state = C; }
break;

case C: if (s==0) { out1 = 0; state = C; }
else { out1 = 1; state = D; }
break;
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