
University of Massachusetts Amherst 
Computer Systems Lab 1 (ECE 332) 

LAB 1 Reference Manual 

Lab 1: Using NIOS II processor for code execution on FPGA 
Objectives: 

1. Understand the typical design flow in an Embedded System design as illustrated by the 
Altera CAD tools: Quartus Prime Lite Edition, Qsys, NIOS II Eclipse IDE. 

2. Understand differences between traditional microcontrollers and soft-core processors. 
3. Learn how to use On-Chip Memory and SDRAM in your hardware designs. 
4. Gain more insight into hardware and software development flow using Quartus Prime tool, 

assigning pins of the FPGA etc. 
This lab consists of two parts. First, you will echo “Hello from NIOS II” on your PC screen in the NIOS II 
Eclipse IDE console window. Next, you will implement a counter program and display the value of count 
on LEDs or the 7-segment hexadecimal displays on DE1-SoC. 

 
This lab will primarily teach you the use of System Development tool (Qsys) which enables you to define 
and generate a complete system-on-a-programmable-chip (SOPC) in much less time than manual 
integration methods. 

 
Before starting this lab, it is mandatory that you read the Quartus II introduction document (available in 
the Lab 1 resources page) which describes a typical Quartus Prime CAD design flow. Use the document to 
refresh your understanding in: creating a new project, compiling it, assigning pins to FPGA and 
programming the FPGA. 

 
Part 1: Hello from NIOS II 

1. Create a new project in Quartus Prime, taking care to select the proper FPGA device 
(5CSEMA5F31C6). Do not add any files at this stage to project. Please create a new directory 
and save the project. Please note that the path names shouldn’t have any spaces in them. 

2. Go to Tools -> Qsys. Save the Qsys system with the same name as the top-level entity name 
that you provided while creating the project. 

3. On the left-hand side of screen, you will find several hardware components present under 
the “IP Catalog” tab for you to use. Double clicking on any individual component adds it your 
hardware. We will be adding various components to design our system (You can search for 
components by just typing their names in the search bar). Note that the Clock source for our 
system is automatically added initially. You can rename the modules if you wish (don’t include 
spaces). 

4. To add a soft-core processor, under embedded processors tab, double click on NIOS II 
processor. In the window which opens, you will see two versions, resource-optimized (NIOS 
II/e) and performance-optimized (NIOS II/f) processors. Select NIOS II/e for this project. 

5. The System Contents tab now contains NIOS II processor. Observe that the Qsys automatically 
assigned a base address to it. Also, you will see that IRQ's are also determined automatically 
by the Qsys. 

Note: As you add components and make connections in your Qsys system, error and 
warning messages will appear in the Qsys Messages tab, indicating steps that you must 
perform before the system is complete. Some error messages appear between steps and 
are 



not resolved immediately; as you progress through the tutorial, errors are resolved, and 
the error messages disappear. 

6. Next, we will add some On-Chip Memory to store our program (instruction memory). This 
memory will be instantiated on the FPGA. To do this, select On-Chip Memory (RAM or ROM) 
present under the Memory components. You will first have to expand the memory tab to 
see what other components are present under it. Use 4K x 32 bits of On-Chip memory. 
Leave the other settings unaltered and click on finish. 

7. Next, we will add JTAG UART for communication between the DE1-SoC and the PC. This is 
present under Interface Protocols -> Serial -> JTAG UART. Click on finish in the pop-up box 
and leave all the settings unaltered. 

8. Now you will need to connect the components. The Clock Output (clk) and Reset Output 
(clk_reset) of the system clock needs to be connected to Clock Input and Reset Input of 
other components. To connect the Clock Output to the Clock Input of the NIOS II, click to fill 
the connection dot between them under the connections tab. Similarly connect all the clock 
and reset interfaces. Now connect data_master of the NIOS II to the Avalon slave (s1) 
interface of the JTAG UART. Connect the data_master and instruction_master of NIOS II to 
the slave of On-Chip memory as it stores the program code. 

9. Select On-Chip memory for “Reset vector” and “Exception vector” in the vectors tab of the 
NIOS II processor. Select Assign base address under System tab of the Qsys to remove any 
errors due to base address. Assign the interrupt numbers to the components which support 
interrupts. To do this click on the dot under the IRQ tab of respective components. 

10. You are now ready to generate the system, click on the “generate” button on the bottom of 
the screen. This operation will take a few seconds to complete. 

11. After the system is generated, go back to Quartus Prime where your project is still open. Do 
not close the Qsys builder window. 

12. We shall now work in Quartus Prime for some time. The Qsys creates a QIP file for the 
generated system which contains the Verilog files for all the system components. In the 
project Navigator, go to Files, right click to find Add/remove files in project. Then browse for 
the QIP file in the project directory, add it. 

13. Click on “Start Analysis and Synthesis” button present on the task bar where you also have 
the buttons for “Start Compilation”, “Settings”, “Assignment Editor” etc. 

14. Next, use the assignment editor for performing pin assignments to your design. You must 
read the pin assignment section of the document from Altera which explains it in detail 
(Quartus II introduction PDF document). Assign any toggle switch to the Reset Input pin and 
assign the 50 MHz clock to Clock Source pin by referring to the DE1-SoC QSF document 
(provided in the Lab 1 resources page). 

15. Now do a full compilation by clicking the “Start Compilation” button on the task bar. 

16. Program the FPGA with the SOF file contained in our project directory. Select Tools -> 
Programmer. Now, select Auto detect, a new dialogue box opens, choose “5CSEMA5”, you 
can find two entries, right click on the 5CSEMA5 entry, change the file to the target SOF file. 
Be sure that DE1-SoC is connected to the computer via the provided USB cable. Check the 
Program/configure option for the target SOF. 

17. After programming the FPGA, go to start menu and find NIOS II Software Build Tools for 
Eclipse and start. 



18. You will see that NIOS II IDE is launched and you are asked to specify a workspace. You can 
use this as your default workspace or specify another folder depending on your 
convenience. Go to file->new-> NIOS II Application and BSP from template to create a new 
program which we will run on our NIOS II. 

19. The “New Project” window presents you with several options. Specify the Qsys system which 
is a SOPCINFO file the NIOS II toolchain uses to determine the hardware. We will be using 
the Hello World small template. This program in C has already been written and we will be 
running it on our board. 

20. Go to run-> run as->NIOS II hardware. Make sure that your reset switch is logic HIGH (Reset 
Input is active when it is low) otherwise your processor will be reset all the time. You should 
see “Hello from NIOS II” on your screen after some time if everything is properly done. 

 
To make your life simpler, you must note the following: 

1. Give the same name for project in Quartus Prime and the system in Qsys. 

2. You can add the components in Qsys in any order, it does not matter. 

3. The pins must be assigned properly. Note what is logic High and Low for switches. Refer to 
DE1-SoC manual. 

4. Specify the correct Qsys system and project template in NIOS II IDE. 
 

After completing this part of the first lab, you are ready to design a more complex system. 
 
Part 2: Implementing a counter and directing its output to LEDs and 7-Segment Display 
In this part, you must implement a counter using a C program called count binary which is available in the 
NIOS II IDE as a template (like Hello world in previous part). The primary task is to create a Qsys system 
which can support this program, which includes SDRAM. This program generates a counter capable of 
counting from 0x00 to 0xFF on NIOS II. The user can see the count value either on the 7-segment displays 
or the 8 red LEDs or on both simultaneously. The selection of display is made by sliding switches on DE1- 
SoC board per the following rule: 

1. Switch 0 flipped: LEDs display the count value in binary 

2. Switch 1 flipped: Seven-segment displays show the count value in decimal 

3. Switch 2 flipped: All the above show count value 

 
To complete this lab, you are given some general guidelines and I assume that you have completed part 
1 successfully. Before starting this part of the lab, try to understand some sections of the count binary 
program which is given as a template in NIOS II. Pay attention to the way the input is accepted by the 
switches. 

1. Create a new Quartus project named as count_binary. In your hardware using QSYS system, 
include the following components: NIOS II/e, JTAG UART as in part 1. Add an interval timer 
with period of 125ms and counter size of 32 bits. You can optionally include System ID (SysID) 
for debugging. Remove the clock which is already there by default. 

2. Include a PLL to provide the clock for your design. You can find it under University Program 
-> Clock -> System and SDRAM Clocks for DE series Boards. Export the Clock input and reset 
inputs by double clicking the respective fields under the Export tab. SDRAM requires a 
different clock frequency to operate than what is required by the NIOS II. Hence it is 
necessary to include the PLL which provides the required clock frequencies for the SDRAM 
and the NIOS II processor. 



3. You’ll be using external off chip SDRAM for both instruction and data memory for this part 
instead of the on-chip memory. SDRAM requires a controller which generates the control 
signals for its operation. 

• Add SDRAM to System Control by going to the System Contents Tab > Memories and 
Memory Controllers > External Memory Interfaces > SDRAM Interfaces > SDRAM 
Controller. 

• There are different settings to control SDRAM depending on the chip model 
available. We want to create a generic 64 MB chip in the SDRAM controller wizard, 
change bits to 16. Change the address width row to 13, column to 10. 

• Leave timing to default settings and click Finish. 
• Make the necessary connections to the controller. 
• Modify the CPU reset and exception vectors to use SDRAM memory. Auto assign 

memory addresses, System > Assign Base Addresses 

4. LEDs, Hexadecimal 7-Segment Displays, and slider switches are examples of parallel input 
output hardware, which can be found under “other” components. You will have to include 
parallel I/O thrice, one for LED, one for the switches and another for the 7-segment display. 
While adding each parallel I/O, you can specify their width and whether they are input, 
output or both. There are other options for input type I/Os which let you control their 
triggering nature (edge vs level) and let you decide their interrupt generation. Think of how 
many LEDs you need to display the binary count value. You will have to instantiate the same 
number of LEDs, one for each bit. Hence the width of parallel I/O should be equal to the 
number of LEDs needed, one output for each bit. These parallel I/O will be connected to the 
actual LEDs by pin assignments later. In a similar manner, include another set of 4 parallel 
I/Os for switches which the user will press. Lastly, include support for 7-segment display by 
using a third set of parallel I/Os. You must figure out the width in this case by reading the 
DE1-SoC manual which describes the 7-segment displays. Note that you will need two 7-
segment displays to show the count value. While using these I/Os, you may want to read the 
README file for the count binary software provided on the website. Note: The software also 
includes code to display on an LCD panel but the DE1-SoC doesn’t come with an LCD panel. 
Hence, please ignore that part. 

5. Read the requirements given in the count binary program for the hardware. It expects the 
inputs and outputs to be named in a certain way. Rename the components in your hardware 
by right clicking them (after you have included them) and selecting rename. Generate the 
QSYS system. After that add the QIP file to the project. 

6. After generating the hardware, you must follow an approach which is different from what 
you did in previous part. Also, pin assignment using Assignment editor is a tedious and error 
prone process for a large design. Quartus allows users to import the pin assignment file 
(QSP). The QSP file contains the pin names and their corresponding pins on the FPGA board. 
We need to write a top-level Verilog module which assigns the QSYS module pins to the pin 
names as that followed in the QSP file. The file will be provided to you, but it is advisable 
that the students go through it. 

7. Set the pin assignment HDL module as the top-level module. Go to assignments->import 
assignments. Browse to the DE1_SoC folder on your PC and change the type of file to QSP 
format. You will find a file called DE1_SoC.qsf. Select it and press OK. 

8. After completing “Analysis and synthesis”, you can go to the assignment editor and verify 
that all the pins have been connected properly. Finally do a full compilation and program the 
FPGA by the SOF file. 



9. Go to NIOS II IDE and use the QSYS system from this project directory. Select the count 
binary template and run the program on NIOS II Hardware. You do not need to limit the size 
of executable this time as you have lot of SDRAM with you (How much?). See how the count 
value display unit changes when you press the appropriate keys. Note: When you run the 
count binary program, the seven-segment display shows some gibberish. The reason being 
that the program has been written for a different board other than the DE1-SoC. Hence, the 
seven- segment decode table in the count binary template needs to be replaced with that of 
DE1-SoC. Replace the seven-segment decode table with this [{0x3F, 0x06, 0x5B, 0x4F, 0x66, 
0x6D, 0x7C, 0x07, 0x7F, 0x67, /* 0-9 */ 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71}; /* a-f */] 

10. Now you need to modify the count binary program to do the following: Add the digits of 
your individual student IDs. Then add the sums you obtained, let’s say you got X as the result 
after adding the sums. The next step is to do X mod 100, let’s say Y is the final result. You 
have to make the DE1-SoC count to Y in one minute. And you need to count on the Seven 
Segments in decimal and on LEDs in binary. For example, say the student IDs of two members 
in a group are 21435101 and 23013416. Now 2+1+4+3+5+1+0+1=17 and 
2+3+0+1+3+4+1+6=20, adding both the sums we get 17+20=37. Then 37 mod 100 results in 
37. Hence this group would display count from 00 to 37 in decimal on the Seven Segment 
Display and on LEDs (in binary of course), all in approximately one minute. Note: We are not 
going to use the reset button for part II, so set it permanently to VCC. 


	Lab 1: Using NIOS II processor for code execution on FPGA
	Part 1: Hello from NIOS II
	Part 2: Implementing a counter and directing its output to LEDs and 7-Segment Display

