Due: Thursday, October 26, 2021 at 11:00 PM on Gradescope

Answer the following Question and upload your .py files to gradescope with the naming scheme provided.
Example: (question1.py, question2.py, question3.py)

Questions

1. Longest Palindrome Problem: Dynamic Programming (30 points)

You are given a string of length greater than 0 and less than 1000 . Find the Longest palindrome. https://en.wikipedia.org/wiki/Palindrome What is the run-time complexity of the solution?

The code template has been provided. All Answers should be provided in the code.
2. Farmer's Fence (40 points) (Greedy) A farmer wants to build a fence around his rectangular ($\mathrm{a} \times \mathrm{b}$) field (see figure below). The planks that can be used to build the fence are of length plankList $=[1,5,10,21,25]$. The corresponding colors of the planks are plankColor = \{1:'black',5:'red',10:'black',21:'green',25:'violet' $\}$. Using dynamic programing choose the least number of planks to make ' a ' and ' b ' dimension of the rectangle.
Code template has been provided.

[25,21,21]

3. Tree Traversal ($\mathbf{1 0}$ Points)

Tree/Graph traversal can be done in multiple ways. The basic methods of graph traversal are Breadth first Search and Depth first Search.
https://en.wikipedia.org/wiki/Tree traversal
https://en.wikipedia.org/wiki/Graph_traversal
In the Template provided, show which tree traversal method is best suited for each solution.

4. Dijkstra's Algorithm (20 points):

Consider the following network. With the indicated link costs, use Djikstra's shortestpath algorithm to compute the table of shortest paths from A to all other network nodes. Show how the algorithm works by filling out the table below. Use column " N "" for "all visited nodes in current step", and each row for "distance and predecessor of each destination node once a new node is visited".

Your solution should be in a table format as shown below. You can submit images or pdf files to gradescope.

N^{\prime}	$\mathrm{D}(\mathrm{B})$, $\mathrm{P}(\mathrm{B})$	$\mathrm{D}(\mathrm{C})$, $\mathrm{P}(\mathrm{C})$	$\mathrm{D}(\mathrm{D})$, $\mathrm{P}(\mathrm{D})$	$\mathrm{D}(\mathrm{E})$, $\mathrm{P}(\mathrm{E})$	$\mathrm{D}(\mathrm{F})$, $\mathrm{P}(\mathrm{F})$	$\mathrm{D}(\mathrm{G})$, $\mathrm{P}(\mathrm{G})$	$\mathrm{D}(\mathrm{H})$, $\mathrm{P}(\mathrm{H})$
A,							

