Lecture 9
Dynamic Programming, Memoization

ECE 241 – Advanced Programming I
Fall 2021
Mike Zink
Overview

- Graphics module “turtle”
- Visualizing recursion
- Dynamic programming
Objective

• Learn how to use “turtle” for visualization
• Learn how to use recursion to implement a game
• Be able to apply dynamic programming to solve optimization problems
Visualization of Recursion

- Use *turtle* tool for visualization
- Turtle metaphor:
 - Move forward, back, turn left/right etc.
 - Tail up/down; if down => draws a line
 - Change width and color of tail
Visualization of Recursion

```python
import turtle

myTurtle = turtle.Turtle()
myWin = turtle.Screen()

def drawSpiral(myTurtle, lineLen):
    if lineLen > 0:
        myTurtle.forward(lineLen)
        myTurtle.right(90)
        drawSpiral(myTurtle, lineLen-5)

drawSpiral(myTurtle, 100)
myWin.exitonclick()
```
Visualization of Recursion

• Draw a fractal tree
• Fractals: same basic shape no matter how much it is magnified (self-similarity)
 • Snowflakes, fern, nautilus
• Used in computer graphics to generate realistic scenes
Visualization of Recursion

• Generate a fractal tree
• Small twig has same shape as tree
 • Tree is trunk with smaller trees going off to the left and the right
 • Apply recursion to both smaller left and right trees
import turtle

def tree(branchLen,t):
 if branchLen > 5:
 t.forward(branchLen)
 t.right(20)
 tree(branchLen-15,t)
 t.left(40)
 tree(branchLen-15,t)
 t.right(20)
 t.backward(branchLen)

def main():
 t = turtle.Turtle()
 myWin = turtle.Screen()
 t.left(90)
 t.up()
 t.backward(100)
 t.down()
 t.color("green")
 tree(75,t)
 myWin.exitonclick()

main()
Exploring a Maze

• Important application for robotics
• Problem to solve: find way out of maze
• Assume maze is divided up in squares
 • Open or occupied
 • Turtle can only pass through open squares
• If it bumps in wall => needs to find different direction
Exploring a Maze

Procedure:

• From starting position, first try going North one square and then recursively try procedure from there.

• If not successful by trying Northern path as first step then take a step to the South and recursively repeat procedure.

• If South does not work then try a step to the West as first step and recursively apply procedure.

• If North, South, and West have not been successful then apply the procedure recursively from a position one step to the East.

• If none of these directions works then there is no way to get out of the maze and we fail.
Exploring a Maze

- Must remember where turtle has been to avoid infinite loops
- Brothers Grimm to the rescue: Bread crumbs!
 - If step back is taken and bread crumb is already there, back up further
 - Try next direction
 - Backing up as easy as returning from recursive call
Exploring a Maze

Base cases:
1. The turtle has run into a wall. Since the square is occupied by a wall no further exploration can take place.
2. The turtle has found a square that has already been explored. We do not want to continue exploring from this position or we will get into a loop.
3. We have found an outside edge, not occupied by a wall. In other words we have found an exit from the maze.
4. We have explored a square unsuccessfully in all four directions.
Exploring a Maze - Representation

Represent maze:

- **__init__** Reads in data file representing a maze, initializes the internal representation of the maze, and finds the starting position for the turtle.
- **drawMaze** Draws the maze in a window on the screen.
- **updatePosition** Updates the internal representation of the maze and changes the position of the turtle in the window.
- **isExit** Checks to see if the current position is an exit from the maze.
Exploring a Maze

def searchFrom(maze, startRow, startColumn):
 # try each of four directions from this point until we find a way out.
 # base Case return values:
 # 1. We have run into an obstacle, return false
 maze.updatePosition(startRow, startColumn)
 if maze[startRow][startColumn] == OBSTACLE :
 return False
 # 2. We have found a square that has already been explored
 if maze[startRow][startColumn] == TRIED or maze[startRow][startColumn] == DEAD_END:
 return False
 # 3. We have found an outside edge not occupied by an obstacle
 if maze.isExit(startRow, startColumn):
 maze.updatePosition(startRow, startColumn, PART_OF_PATH)
 return True
 maze.updatePosition(startRow, startColumn, TRIED)
 # Otherwise, use logical short circuiting to try each direction
 # in turn (if needed)
 found = searchFrom(maze, startRow-1, startColumn) or \
 searchFrom(maze, startRow+1, startColumn) or \
 searchFrom(maze, startRow, startColumn-1) or \
 searchFrom(maze, startRow, startColumn+1)
 if found:
 maze.updatePosition(startRow, startColumn, PART_OF_PATH)
 else:
 maze.updatePosition(startRow, startColumn, DEAD_END)
 return found
Dynamic Programming

• Strategy to solve optimization problems
• Example: making change using fewest coins
 • Customer puts 1 dollar for 37 cents item in vending machine
 • Smallest number of coins for change = six: 2 quarters, 1 dime, 3 pennies
• How was result derived?
Dynamic Programming

- Greedy method:
 - Start with largest coin and use as many of those
 - Then next smaller one, and so on
- What if a 21 cents coin exists in addition to 1, 5, 10, and 25?
 - Greedy solution => 6 coins
 - Correct answer => 3 (21 cents) coins
Dynamic Programming

Recursive approach:

- Minimum of a penny/nickel/quarter plus

\[numCoins = \min \begin{cases}
1 + \text{numCoins}(\text{originalamount} - 1) \\
1 + \text{numCoins}(\text{originalamount} - 5) \\
1 + \text{numCoins}(\text{originalamount} - 10) \\
1 + \text{numCoins}(\text{originalamount} - 25)
\end{cases} \]
Dynamic Programming

```python
def recMC(coinValueList, change):
    minCoins = change
    if change in coinValueList:
        return 1
    else:
        for i in [c for c in coinValueList if c <= change]:
            numCoins = 1 + recMC(coinValueList, change-i)
            if numCoins < minCoins:
                minCoins = numCoins
    return minCoins

print(recMC([1,5,10,25], 63))
```
Dynamic Programming

- Algorithm is extremely inefficient
- Takes 67,716,925 recursive calls to find solution
- Each node in the following graph corresponds to \texttt{recMC()}
- Label in node indicates amount of change for calculation
- Arrows indicate coin just used
- Lot of redundancy
 - E.g., make change for 15 cents done 3 times
Dynamic Programming
Dynamic Programming

• Key component to cutting down computational overhead:
 • Remember past results
 • Avoid re-computing already known results
• Store results for minimum number of coins in a table when found
• To compute minimum, first check in table:
 • If found, use result from table
 • Else compute
def recDC(coinValueList, change, knownResults):
 minCoins = change
 if change in coinValueList:
 knownResults[change] = 1
 return 1
 elif knownResults[change] > 0:
 return knownResults[change]
 else:
 for i in [c for c in coinValueList if c <= change]:
 numCoins = 1 + recDC(coinValueList, change-i, knownResults)
 if numCoins < minCoins:
 minCoins = numCoins
 knownResults[change] = minCoins
 return minCoins

print(recDC([1,5,10,25],63,[0]*64))
Dynamic Programming

• Line 6: added test to check if table contains minimum number of coins
 • If NOT, recursively compute minimum and store result in table
• Reduces number of recursive calls to 221!
• There are still holes in the table
• What we have done so far is called “memoization” or “caching”!
Dynamic Programming

• More systematic approach for true Dynamic Programming algorithm
 • Start with making change for 1 cent
 • Work our way up to amount of change we require
• Guarantees:
 • At each step of algorithm minimum number of coins to need to make change for any smaller amount already known
Dynamic Programming
Dynamic Programming
Dynamic Programming

def dpMakeChange(coinValueList, change, minCoins):
 for cents in range(change+1):
 coinCount = cents
 for j in [c for c in coinValueList if c <= cents]:
 if minCoins[cents-j] + 1 < coinCount:
 coinCount = minCoins[cents-j]+1
 minCoins[cents] = coinCount
 return minCoins[change]

• Not a recursive function

• For loop in line 4:
 • Consider using all possible coins to make change for the amount specified by cents
 • Store minimum value in minCoins
Dynamic Programming

• Algorithm does not help to make change since it does not keep track of used coins

• Extend \texttt{dpMakeChange()} to keep track of used coins:

 • Remember last coin added for each entry in \texttt{minCoins}

 • If we know last coin added, simply subtract the value of the coin to find a previous entry in the table

 • Tells us last coin added to make that amount.

 • Keep tracing back through table until we get to the beginning.
Dynamic Programming

```python
def dpMakeChange(coinValueList, change, minCoins, coinsUsed):
    for cents in range(change+1):
        coinCount = cents
        newCoin = 1
        for j in [c for c in coinValueList if c <= cents]:
            if minCoins[cents-j] + 1 < coinCount:
                coinCount = minCoins[cents-j]+1
                newCoin = j
        minCoins[cents] = coinCount
        coinsUsed[cents] = newCoin
    return minCoins[change]
```
Next Steps

• Next lecture on Tuesday: Greedy Algorithms
• HW3 due on Sunday