Overview

• Hash table
• Hash functions
• Collision resolution
• Map data type
• Analysis of hashing
Objective

• Learn about different type of data structures and how they can be implemented in Python
• Learn about the interplay between data structure and algorithms
• Be able to implement data structures to enable the efficient performing of algorithms

Hashing

• Data structure that can be searched in O(1) time
• Need to know more about where items are when searched for in collection
• Single comparison if item is where it should be
Hash Table

- Collection of items stored in a way which makes them easy to find later
- Position in hash table often called **slot**
 - Holds an item
 - Named by integer value
 - Initially, every slot is empty

Hash Table

- Implement hash table using list
- Each element initialized to special Python value None
- Hash table of size $m = 11$
 - m slots
 - Named 0 through 10
Hash Function

• Mapping between item and slot where it belongs in is called hash function
• Function take any item in collection and return integer in range of slot names (0, ..., m – 1)

Hash Function: Example

• Set of integer items 54, 26, 93, 17, 77, and 31
• ”remainder method” takes item and dives it by table size => $h(item) = item \% 11$

<table>
<thead>
<tr>
<th>Item</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>93</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>9</td>
</tr>
</tbody>
</table>
Hash Function: Example

• After hash values computed, insert each item into hash table
• 6 of 11 slots are now occupied => load factor
 $\lambda = \frac{\text{number of items}}{\text{table size}}$ (here $\lambda = 6/11$)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>25</td>
<td>93</td>
<td>17</td>
<td>None</td>
<td>None</td>
<td>31</td>
<td>54</td>
</tr>
</tbody>
</table>

Hash Function: Example

• Use hash function to compute slot name and check if item is present
• $O(1)$ since constant amount of time is required
 • to compute hash value
 • index hash table at that location
• => Constant time search algorithm
Hash Function: Issue

- Only works if each item maps to unique location in hash table
- If item 44 is next in collection
 - Hash value $44 \% 11 = 0$
 - Same index as for value 77
 - **Collision**

Perfect Hash Function

- Function that maps each item into a unique slot
- Perfect hash function can be constructed if items never change
- No systematic way to construct perfect hash function given arbitrary collection
- Good news: hash function does not need to be perfect
Perfect Hash Function: Approach I

- Increase size of hash table
 - Each value in the item range can be accommodated
 - Unique slot for each item
- Practical for small number of items, not feasible when number is large
- Items: 9-digit SSN => ~one billion slots

Perfect Hash Function: Goal

- Goal:
 - Minimize collisions
 - Easy to compute
 - Evenly distributes items in hash table
Perfect Hash Function: Folding Method

- Divide item into equal size pieces (might not work for last one)
- Add pieces together to calculate hash value
- Example:
 - Phone number: 413-545-0444 (41, 35, 45, 4, 44)
 - $41 + 35 + 45 + 4 + 44 = 169$
 - $169 \% 11 = 4$
 - 4th slot for 413-545-0444

Perfect Hash Function: Mid-Square Method

- First square item, then extract some portion of resulting digits
- Example:
 - Item 44 => $44^2 = 1,936$
 - Extracting middle two digits => 93
 - $93 \% 11 = 5$
Perfect Hash Function: Comparison

<table>
<thead>
<tr>
<th>Item</th>
<th>Remainder</th>
<th>Mid-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>93</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>77</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

Collision Resolution

• How to placing two items in hash table if they hash to same slot?
• Since avoiding collisions is impossible, collision resolution is essential
Collision Resolution: Open Addressing

• Try to find another open slot to hold item causing collision

• Start at original hash position and sequentially move through slots (loop around to start to cover entire table)

• Systematically probing each slot one at a time => linear probing

Collision Resolution: Open Addressing

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>77</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>26</td>
<td>93</td>
<td>17</td>
<td>None</td>
<td>None</td>
<td>31</td>
<td>54</td>
</tr>
</tbody>
</table>

• Insert 89

 • Slot 0 is already occupied
 • Linear probing => slot 1 also occupied
 • Linear probing => slot 3

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>77</td>
<td>44</td>
<td>55</td>
<td>20</td>
<td>26</td>
<td>93</td>
<td>17</td>
<td>None</td>
<td>None</td>
<td>31</td>
<td>54</td>
</tr>
</tbody>
</table>
Applications Using Stacks

- Check if delimiters are matched
- Matching of opening and closing symbols:
 {}, [], (),
- Check: {{a}[b]{{c}(d(e)f)}{(g)}} and {{a}b(c)}

Collision Resolution: Search

- Look up 93
 - Hash value => 5
 - Slot value => 93
- Look up 20
 - Hash value => 9
 - Slot value => 31
- Sequential search starting at index 10
 - Find 20 or empty slot
Collision Resolution: Clustering

- If many collisions occur for same hash value, number of surrounding slots will be filled
- Negative impact when inserting other items
- Example of inserting 20 (hashing to 0)

```
0 1 2 3 4 5 6 7 8 9 10
77 44 55 20 26 93 17 None None 31 54
```

Collision Resolution: Slot Skipping

- Skip slots
 - More evenly distribute items that have caused collision
 - Reduce clustering
- Example: plus 3 probing

```
0 1 2 3 4 5 6 7 8 9 10
77 55 None 44 26 93 17 20 None 31 54
```
Collision Resolution: Rehashing

- Linear probing: \(\text{rehash}(pos) = (pos + 1) \mod \text{sizeoftable} \)
- Rehash “plus 3”: \(\text{rehash}(pos) = (pos + 3) \mod \text{sizeoftable} \)
- General: \(\text{rehash}(pos) = (pos + \text{skip}) \mod \text{sizeoftable} \)
- Note: \(\text{skip} \) such that all slots in table will be used
- Often prime number is used (11 in case of example)

Collision Resolution: Quadratic Probing

- Rehash function that increments have value by 1, 3, 5, 7, 9
- \(H, h + 1, h + 4, h + 9, h + 16 \)
- Quadratic probing uses skip of successive squares
Chaining

- Many items at same location
- Search: use hash function then search to decide whether item is present

```
Chaining
```

```
• Many items at same location
• Search: use hash function then search to decide whether item is present
```

```
ECE 241 – Data Structures Fall 2018 © 2018 Mike Zink
```

Implementing Hash Table

- Reminder: Dictionary => data type to store key:value pairs
- Key is used to look up associated data value
- Often referred to as **map**

```
Implementing Hash Table
```

```
• Reminder: Dictionary => data type to store key:value pairs
• Key is used to look up associated data value
• Often referred to as **map**
```

```
ECE 241 – Data Structures Fall 2018 © 2018 Mike Zink
```
Map: Abstract Data Type

- `Map()` creates a new, empty map; returns an empty map collection.
- `put(key, val)` adds new key-value pair; if key already in map, replace old with new value.
- `get(key)` returns value stored in map or `none` otherwise.
- `del` delete key-value pair using statement `del map[key]`.
- `len()` returns number of key-value pairs stored in map.
- `in` returns `True` for statement `key in map`, `False` otherwise.

Map

- Benefit: given key look up associated data quickly.
- Implementation that supports efficient search.
- Hash table potentially $O(1)$ performance.
Hash Table Implementation

- Class `HashTable` uses two lists
 - `slots` holds keys
 - `data` holds value
 - Initial size 11 in example

```python
class HashTable:
    def __init__(self):
        self.size = 11
        self.slots = [None] * self.size
        self.data = [None] * self.size
```

```python
def put(self, key, data):
    hashvalue = self.hashfunction(key, len(self.slots))

    if self.slots[hashvalue] == None:
        self.slots[hashvalue] = key
        self.data[hashvalue] = data
    else:
        if self.slots[hashvalue] == key:
            self.data[hashvalue] = data  # replace
        else:
            nextslot = self.rehash(hashvalue, len(self.slots))
            while self.slots[nextslot] != None and \
                 self.slots[nextslot] != key:
                nextslot = self.rehash(nextslot, len(self.slots))

            if self.slots[nextslot] == None:
                self.slots[nextslot] = key
                self.data[nextslot] = data
            else:
                self.data[nextslot] = data  # replace
```
def hashfunction(self, key, size):
 return key % size

def rehash(self, oldhash, size):
 return (oldhash + 1) % size

def get(self, key):
 startslot = self.hashfunction(key, len(self.slots))

 data = None
 stop = False
 found = False
 position = startslot
 while self.slots[position] != None and not found and not stop:
 if self.slots[position] == key:
 found = True
 data = self.data[position]
 else:
 position = self.rehash(position, len(self.slots))
 if position == startslot:
 stop = True

 return data
Hash Table Implementation

```python
def __getitem__(self, key):
    return self.get(key)
def __setitem__(self, key, data):
    self.put(key, data)
```

- Overload `__getitem__` and `__setitem__` to allow using “[]”
- This will make index operator available

Hash Table Analysis

- Best case: $O(1)$
- Analyze load factor λ
 - Small λ -> lower chance of collisions
 - Large λ -> table is filling up, more collisions
Hash Table Analysis

• Open addressing with linear probing
 • Successful search $\frac{1}{2} \left(1 + \frac{1}{1 - \lambda}\right)$
 • Unsuccessful search $\frac{1}{2} \left(1 + \left(\frac{1}{1 - \lambda}\right)^2\right)$
• Chaining:
 • Successful search $1 + \frac{1}{\lambda}$
 • Unsuccessful search λ

Next Steps

• Next lecture on Tuesday
• Home due on 9/27