Overview

• Insertion sort
• Divide and conquer: merge sort
• Asymptotic notation
Objective

• Get familiar with sorting algorithms
• Understand that efficiency is important
• Learn how to determine algorithm efficiency

Performance is Important

• Algorithm might run on very large data set
• Be efficient in terms of CPU and memory usage

1. Look at sorting algorithms of different efficiency
2. Learn how efficiency of algorithm can be determined
Example

• Imagine you would have to sort an arbitrary set of number, e.g., student ID
• How would you go about this?
• Are there more or less efficient approaches?

Asymptotic Analysis of Algorithms

• Algorithm complexity
• Asymptotic analysis
• Practical use
• Code examples
Algorithm Complexity

• Need general method for describing complexity

Asymptotic Analysis

• “Big O” notation extracts essence of algorithm performance
 • Defines an upper boundary on complexity growth

 • Definition: \(f(x) = O(g(x)) \) for \(x \to \infty \) if and only if there is a positive real number \(m \) and a real number \(x_0 \) such that \(f(x) \leq m \cdot g(x) \) for all \(x > x_0 \)
 • For all \(x \) beyond \(x_0 \), \(f(x) \) is bounded by \(m \cdot g(x) \)
Asymptotic analysis example

• What are \(g(x) \), \(m \) and \(x_0 \) for our linear search?

\[
\text{lookup time in nanoseconds}
\]

\[
\text{size of array (n)}
\]

Asymptotic analysis example

• \(m = 0.35 \), \(n_0 = 5000 \) (one of many solution)
Asymptotic analysis example

• What are $g(x)$, m and x_0 for our binary search?

Asymptotic analysis example

• $m=26$, $n_0=1000$ (one of many solution)
Practical use of asymptotic analysis

- Constants and lower degrees are ignored
 - Example: n/2 is O(n); 3n^2+15n is O(n^2)

- Typical classes of complexity
 - O(1): constant
 - O(log n): logarithmic growth
 - O(n): linear growth
 - O(n log n): linearithmetic (or loglinear) growth
 - O(n^2): quadratic growth
 - O(2^n): exponential growth

Comparison of complexity classes

- Significant differences in trends
 - Calculate different example values for n=10
Examples

• What are complexity bounds for these functions?
 • Find tightest upper bound

• Examples
 • $0.000001n^2 + 15000n$ = $O(n^2)$
 • $n^2n + 10n^2 \log n$ = $O(n^3)$
 • $12345 + \log 54321$ = $O(1)$
 • $(n + \log n)^2$ = $O(n^2)$
 • $n(5 + \log n)$ = $O(n \log n)$
 • $1 + 2 + 3 + \ldots + n$ = $O(n)$
Code examples

• What is the running time complexity of the following code example?

```python
for i in range(n):
    #do something
```

Code examples

• What is the running time complexity of the following code example?

```python
for i in range(n):
    for j in range(n):
        #do something
```
Code examples

• What is the running time complexity of the following code example?

```
for i in range(n):
    for j in range(i, n):
        //do something
```

Code examples

• What is the running time complexity of the following code example?

```
for i in range(n/10):
    for j in range(i):
        //do something
```
Code examples

- What is the running time complexity of the following code example?

```python
for i in range(0, n, i=i*2):
    for j in range(i):
        //do something
```

Insertion Sort

- Sorting is required in many applications
- Examples?
- Idea of insertion sort:
 - Insert next element into partially sorted array
 - Iterate
 - Insertion requires shifting of elements
Insertion Sort

Assume 54 is a sorted list of 1 item

Inserted 26

Inserted 93

Inserted 17

Inserted 77

Inserted 31

Inserted 44

Inserted 55

Inserted 20

Need to insert 31 back into the sorted list

54 is 31 so shift it to the right

77 is 31 so shift it to the right

54 is 31 so shift it to the right

26 is 31 so insert 31 in this position
Insertion Sort

• Write your own code

```python
def insertionSort(alist):
    for index in range(1, len(alist)):
        //do actual sorting

alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]
insertionSort(alist)
print(alist)
```

```python
def insertionSort(alist):
    for index in range(1, len(alist)):
        currentvalue = alist[index]
        position = index
        while position>0 and alist[position-1]>currentvalue:
            alist[position] = alist[position-1]
            position = position-1
        alist[position] = currentvalue

alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]
insertionSort(alist)
print(alist)
```
Insertion Sort – Analysis

- \(n-1\) passes to sort \(n\) item => \(O(n^2)\)
- In the best case (already sorted list), only one comparison needed
- In general, shift operation requires 3\(^{rd}\) of the exchange operation

Growth of processing time

- Algorithms with \(O(n^2)\) complexity
 - 2x problem size, 4x running time

<table>
<thead>
<tr>
<th></th>
<th>n=5000</th>
<th>n=10000</th>
<th>factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>bubble sort</td>
<td>22.08</td>
<td>104.39</td>
<td>4.73</td>
</tr>
<tr>
<td>selection sort</td>
<td>32.35</td>
<td>128.70</td>
<td>3.98</td>
</tr>
<tr>
<td>insertion sort</td>
<td>3.76</td>
<td>14.28</td>
<td>3.80</td>
</tr>
</tbody>
</table>
Merge Sort

- Divide and conquer to improve performance
- Recursive algorithm
 - Continually splits list in half
 a) List is empty or has one item => sorted by definition
 b) List has more than one item => split and recursively involve merge sort
- **Merge**: taking two smaller lists and combining them together
Merge Sort: Split

Merge Sort: Merge
Merge Sort

```python
def mergeSort(alist):
    print("Splitting ",alist)
    if len(alist)>1:
        mid = len(alist)//2
        lefthalf = alist[:mid]
        righthalf = alist[mid:]
        mergeSort(lefthalf)
        mergeSort(righthalf)
        i=0
        j=0
        k=0
        while i < len(lefthalf) and j < len(righthalf):
            if lefthalf[i] < righthalf[j]:
                alist[k]=lefthalf[i]
                i=i+1
            else:
                alist[k]=righthalf[j]
                j=j+1
            k=k+1
        while i < len(lefthalf):
            alist[k]=lefthalf[i]
            i=i+1
            k=k+1
        while j < len(righthalf):
            alist[k]=righthalf[j]
            j=j+1
            k=k+1
        print("Merging ",alist)
alist = [54,26,93,17,77,31,44,55,20]
mergeSort(alist)
print(alist)
```

Merge Sort: Split

```python
def mergeSort(alist):
    print("Splitting ",alist)
    if len(alist)>1:
        mid = len(alist)//2
        lefthalf = alist[:mid]
        righthalf = alist[mid:]
        mergeSort(lefthalf)
        mergeSort(righthalf)
```
Merge Sort: Merge

```python
i=0
j=0
k=0
while i < len(lefthalf) and j < len(righthalf):
    if lefthalf[i] < righthalf[j]:
        alist[k]=lefthalf[i]
        i=i+1
    else:
        alist[k]=righthalf[j]
        j=j+1
        k=k+1
while i < len(lefthalf):
    alist[k]=lefthalf[i]
    i=i+1
    k=k+1
while j < len(righthalf):
    alist[k]=righthalf[j]
    j=j+1
    k=k+1
print("Merging ",alist)
```

Merge Sort – Analysis

- Split: divide a list in half \(\log n \) times (\(n = \) length of list)
- Merge: Each item processed and placed on sorted list \(\Rightarrow n \) operations.
- \(O(n \log n) \)
- NOTE:
 - function requires extra space to hold the two halves
 - additional space a critical factor if list is large (e.g., working on large data sets)
Next Steps

• First discussion this afternoon
• Next lecture Tuesday
• Homework 1 will be posted. Due on September 13th at 11PM