Overview

• Introduction of data structures and algorithms
• Information about course
What is an algorithm?

- Well-defined computational procedure
- Takes set of values as input and produces set of values as output
- Tool to solve well-defined computational problem

Algorithm example: Sorting numbers

- **Input:** A sequence of n numbers: $<a_1, a_2, ..., a_n>$
- **Output:** A permutation (reordering) $<a'_1, a'_2, ..., a'_n>$ of input sequence such that $a'_1 <= a'_2 <= ... <= a'_n$
- **Input:** $<31, 41, 59, 26, 41, 58>$
 Output: $<26, 31, 41, 41, 58, 59>$
- Since sorting is essential, a large number of sorting algorithms exist
A Data-centric View of the World

• Data are important in many disciplines
 • DNA sequences, images, network traffic, sensor readings, maps, customer profiles, etc.

• Past ECE focus: processing
 • Computation at core: processors, computers, etc.

• New ECE focus: data
 • Data at core: data centers, data security, etc.

• Need structured approach to handling data

What kind of problems are solved by algorithms?

• Human Genome Project
• Internet: Routing, searches, security
• Electronic commerce
• Commercial enterprises
• ...
Human Genome Project

• Complete mapping and understanding of all the genes of human beings
• ~20,500 human genes
• ~3 billion chemical base pairs that make up human DNA
• Requires algorithms to store and analyze

Internet

• Routing algorithms that find shortest path and adapt to changes
• Search engines that find pages with particular information
• Encrypted communication
• Queue management
Electronic Commerce

- Ad placements
- Recommendations: Netflix, Amazon, etc.
- Hashing for authentication
- Electronic trading

Manufacturing and Commercial Enterprises

- Allocation of scarce resources:
 - Assigning crews to flights
 - Routes for package deliveries
 - Storage and distribution of goods
Why Data Structures?

• Way to store and organize data
• Facilitate access and modification of data
• Different data structures have strengths and weaknesses
• Better suited for a specific algorithm than others

Data Structures and Algorithms

• Data structures
 • Representation and organization of data
• Algorithms
 • Methods for implementing operations on data structures
• Data structures and algorithms are closely related
 • Data structures are often tuned for certain algorithms
Big Data

- Extremely large volumes of data
- Can be computationally analyzed
 - Internet of Things
 - Social media content
- Requires algorithms and data structures to analyze

Artificial Intelligence

- Often "trained" on big data sets
 - Image recognition
 - Voice recognition
- Relies on a large set of algorithm, varying in complexity
 - Linear regression
 - Statistics, probability
Complexity Problems

- Data sets can be very large
- Operations may take a lot of time or memory
 - Efficient implementations can make a big difference
- Examples of large data sets and sizes?

Example: Million Song Dataset

 - Data set of songs: title, artist, recording years, etc.
- How would you figure out
 - Which artist has recorded most songs?
 - Which song has been covered the most times?
 - What are the most common words in a title?
- What are potential problems?
What will you learn in the course?

- How to think about data and operations on data
- How to design data structures for efficient use
- How to determine the efficiency of algorithms
- A set of common data structures and algorithms for typical operations on data (e.g., searching, sorting, etc.)
- Advanced programming techniques (e.g., recursion, etc.)
- How to implement a larger software project with a professional IDE

Python

- We will use Python as programming language
 - Data structures and algorithms are independent of programming language
- This is not a programming course
 - We focus on higher level issues
 - You should already have experience with a programming language (Python, Java, C/C++)
- IDE used in this course: PyCharm
 - Professional environment
PyCharm

- IDE for Python
- https://www.jetbrains.com/pycharm/
- Very important to become familiar with tool!!
- See intro slides for PyCharm (more during this week’s discussion)

Course Organization

- Course website: http://www.ecs.umass.edu/ece241/
Course Events

- Events to attend
 - Lectures
 - Discussions
- Assignments
 - Homework
 - Projects
- Exams
 - 2 exams during semester
 - 1 final exam

Course Policy

- Read the syllabus in its entirety!
 - Understand expectations for this course
- Deadlines are posted on web site
 - No extensions for homework or projects
- Assignments and grades managed through Moodle
- No sharing of code
 - Automated checking of submissions
Office Hours

• TA’s:
 • Wednesdays 4PM - 5:30PM
 • Fridays 3PM - 4PM

• Prof. Zink:
 • Fridays 10 - 11PM

Properties of Data Structures and Algorithms
Quality Measures for Data Structures

• What do you expect from a good data structure?

Quality Metrics for Algorithms

• What do you expect from a “good” algorithm?
Correctness

• In some cases absolute
 • E.g., what is the sum of all values in array?

• Some algorithms have multiple solutions
 • Examples?

• Some algorithms may have solutions where correctness is hard to define
 • Examples?

Multiple solutions

• Data set for number of wins by pitcher (2011):
 • {(Halladay, 21),
 (Jiminez, 19),
 (Lester,19),
 (Price,19),
 (Sabathia,21),
 (Wainwright,20)}

• Which pitcher has most wins?
Unclear “correctness”

• Make image square:

Running time performance

• “The algorithm finishes in 12 seconds.”
 • How to express performance more accurately?
Memory use performance

• “The data structure requires 727 bytes.”
 • How to express memory requirements in a more meaningful way?

It all depends...

• Quality of data structure depends on operation
 • Example: unsorted “pile” of papers
 • Very fast for adding item
 • Not very fast for finding item
 • Example: papers sorted by last name
 • Slower for adding item
 • Faster for finding item (if search is by last name)
 • However: also slow if search is by first name
Data types

- What are typical data types to store information?

Data types

- Common types
 - Numeric types: integer, floating point
 - Boolean
 - Text types: character, string
 - Composite types
 - References ("pointer")
Algorithms and data types

- Many algorithms can be used with different data types
 - Sorting of integers
 - Sorting of strings
 - Sorting of composite types
- May require small adaptation in code
 - Different comparison functions
 - Different code for “moving data around”
- Why is this point important?
 - I do not want you to leave this course saying: “Useless. We only learned how to sort numbers!”

Objects

- For algorithm discussion, we can think of “objects” in a very general way
- Operations on objects
 - Creation (and destruction)
 - Comparison
- Operations on objects in data structures
 - Insertion
 - Deletion
 - Algorithm-specific operations: search, sort, etc.
Next Steps

- Next lecture “Asymptotic Notation and Merge Sort” on Thursday
- First discussion also on Thursday
- Will post first HW on Thursday