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Abstract

This paper presents a benchmark, CommBench, for
use in evaluating and designing telecommunications
network processors. The benchmark applications fo-
cus on small, computationally intense program kernels
typical of the network processor environment. The
benchmark is composed of eight programs, four of
them oriented towards packet header processing and
four oriented towards data stream processing. The
benchmark is defined and characteristics such as in-
struction frequencies, computational complexity, and
cache performance are presented. These measured
characteristics are compared to the standard SPEC
benchmark. Three examples are presented indicating
how CommBench can aid in the design of a single chip
network multiprocessor.

I. Introduction

In recent years the telecommunications industry has
been expanding rapidly. Conservative estimates for
aggregate bandwidth on the internet backbone indi-
cate a doubling each year for the past ten years, and
further expansion at these levels is likely to continue
for some time [6]. One consequence of this growth is
the demand for greater performance, flexibility, reli-
ability and cost effectiveness in the primary compo-
nents (e.g., routers and switches) which control the
flow of data through the network.

At the system level, these networks have used
computer control techniques for some time. Perfor-
mance demands, however, now include not only band-
width requirements, but also quality of service, en-
coding/decoding of packets, dynamic bandwidth man-
agement and routing, and intelligent error recovery.
The trend is to develop highly flexible routers which
are programmable “on the fly.” Programmability can
range from utilizing predefined functions which can
be applied to packets traversing the router, to ‘active’
networks where packets contain, or invoke, programs
that are executed on the router [25].

These new requirements have pushed processing ac-
tivities down to the network layer of the system. Tra-
ditionally, bit level operations (e.g., timing synchro-
nization, error detection) as well as packet level op-
erations (e.g., routing, switching) have used dedicated
logic to keep up with the speed of the incoming traffic.

However, as processor performance has increased, the
domain of “real-time” activities which can be placed
under program control has grown.

The advantages of using processor cores instead of
hard-wired logic include being able to specialize pro-
cessing at the lowest levels in response to customer
needs, being able to modify processing in response
to discovery of errors and in response to changes in
telecommunications standards, and being able to have
a single resuable core processor within a chip instead
of multiple custom logic designs. This flexibility can
be significant when dealing with a product line involv-
ing many chips since it impacts design, documentation
and testing costs.

Until recently, most embedded processors for
telecommunications have been standard microproces-
sors (e.g., MIPS, Power PC, ARM) which have been
designed and optimized for workstation and personal
computer environments. A standard benchmark used
in their evaluation has been the SPEC suite [24]. How-
ever, the tasks associated workstations and PCs differ
from those associated with telecommunications and it
is important to have a benchmark that reflects this
different environment.

This paper presents a set of benchmark applica-
tions, called CommBench, tailored to the telecom-
munications environment. The rationale for selecting
these programs is discussed, the benchmark, and an
extensive set of measurements are presented and con-
trasted with those obtained using the SPEC integer
benchmark. Differences and network processor design
implications are discussed. Note that the issues as-
sociated with benchmark selection are often contro-
versial and, in the longer term, industry associations
and input are important. However, the field is evolv-
ing so rapidly that we feel it is important to move
ahead with a benchmark proposal. It is anticipated
that refinements will be necessary and will be part of
an ongoing process.

The following section presents background material
and related work. In Section 3 the benchmark ap-
plications and data sets are described. Section 4 con-
tains the bulk of the paper and considers a set of mea-
surements on both CommBench and SPEC. Section 5
gives examples on how the benchmark results can in-
fluence network processor design. Section 6 summa-
rizes the contributions of this work.



II. Background and Related Work

In response to the increasing cost and performance
demands associated with telecommunications applica-
tions, a number of alternative strategies to develop-
ing embedded processors are being considered. While
some companies have chosen to develop their own pro-
prietary processors, the general trend has been to use
commercially available core processors. These proces-
sors constitute a portion of an ASIC chip where the
remainder of the chip area contains dedicated logic
and memory associated with a given telecommunica-
tions product.

While the basic design of the core processor typi-
cally follows standard advanced RISC design princi-
ples, companies producing and marketing core pro-
cessors [11] [16] often provide for some specialization.
Specialization features include memory organization
(e.g., cache size, associativity, design), word size (e.g.,
16, 24, 32 bit register/instruction size), functional
components and coprocessors [12] (e.g., floating point,
timers, special logic blocks [28]), and new instructions
(e.g., ability to define new processor instructions [26]).
This set of alternatives represents the first generation
of choices associated with the development of reconfig-
urable processor designs. While the above approaches
are static in nature, dynamic reconfiguration is be-
coming more feasible and dynamically reconfigurable
instruction sets and pipelines are likely to appear soon
[2] [10] [21].

A key design issue is just how to select from the
numerous alternatives given the available chip area
and performance implications of each decision. There
is a long history of developing benchmark programs
of both the synthetic (Whetstone [8], Dhrystone [30])
and real (SPEC [24]) varieties. While the most popu-
lar benchmark associated with workstations have been
the SPEC suites, benchmarks aimed towards other ap-
plication classes have also been successfully developed
with two examples being TPC [27], for transaction
processing applications, and SPLASH [32], for scien-
tific applications executing on parallel processors.

In addition to differences in program execution char-
acteristics, traditional benchmarks do not reflect other
aspects of the telecommunications environment. One
significant shortcoming is the missing focus on clearly
defined I/O. For a network environment, a benchmark
should ideally consider a wide range of input sizes, per-
mitting analysis of both small (i.e., ATM cells) and
large (i.e., data streams) data sizes. Benchmarks such
as SPEC also do not focus on performance related to
real-time constraints. Additionally, traditional bench-
marks tend to assume an applications relatively static
environment as opposed to the network processor en-
vironment where one encounters many small dynami-
cally changing applications.

A recent benchmark, that addresses I/O issues in

the context of multimedia applications is the Media-
Bench benchmark [14] which consists of programs
implementing various compression and coding algo-
rithms for streaming voice, audio, and video data
(e.g., JPEG, MPEG, GSM, etc.). However, multime-
dia transcoding is only one part of the network pro-
cessor applications domain. Additionally, such pro-
cessors must perform a wide variety of logical control
operations not significantly present in MediaBench.
CommBench includes streaming data flow based ap-
plications similar to those found in MediaBench, and
additional packet-based processing tasks such as rout-
ing and data forwarding.

III. The Benchmark

A desirable property of any application in a bench-
mark is its representativeness of a wider application
class in the domain of interest. CommBench appli-
cations have been chosen with this in mind. For ex-
ample, the tree based lookup in RTR is representative
of many routing algorithms as well as packet classi-
fication schemes. The discrete cosine transform per-
formed in JPEG is the basis of all JPEG and MPEG
coding schemes. CommBench applications have also
been selected to represent typical workloads for both
traditional routers (focus on header processing) and
‘active’ routers (perform both header and stream pro-
cessing). Thus, the applications can be divided into
two groups: Header-Processing Applications (HPA)
and Payload-Processing Applications (PPA).

A. Header-Processing Applications

The header-processing programs represent opera-
tions that are done on a per-packet basis and are
mainly independent of the size and type of the packet
payload. These applications involve a good deal of
“random” logic, header field interrogation and pro-
cessing, table lookup, and control. One issue concerns
the selection of programs typical of this domain. At
this point, many of the more advanced application
programs are embedded into existing network compo-
nents and are proprietary in nature. We have selected
the public domain programs listed below which are
likely to be operationally similar to proprietary pro-
grams.
• RTR is a Radix-Tree Routing table lookup program.
Routing table lookups are important operations per-
formed on every packet in a datagram-based network,
and on every connection in a connection-based net-
work. RTR is the radix-tree routing algorithm from
the public domain NetBSD distribution [17]. There
are more efficient routing approaches [23], however
they are not freely available. Kernel : lookup oper-
ations on tree data structure.
• FRAG is a IP packet fragmentation application. IP
packets are split into multiple fragments for which
some header fields have to be adjusted and a header



checksum computed. The checksum computation that
dominates this application is performed as part of all
IP packet application programs other than just for-
warding. Kernel : packet header modifications and
checksum computation.
• DRR is a Deficit Round Robin fair scheduling al-
gorithm [22] that is commonly used for bandwidth
scheduling on network links. The algorithm is im-
plemented in one form or another in various switches
currently available (e.g., Cisco 12000 series [3]). Ker-
nel : queue maintenance and packet scheduling for fair
resource utilization.
• TCP is a TCP traffic monitoring application that is
representative of the class of monitoring and manage-
ment applications. We use tcpdump, a widely used
tool, that is standard in BSD distributions and is
based on the BSD packet filter [15]. Kernel : pattern-
matching on header data fields.

B. Payload Processing Applications

Payload-processing applications access and possibly
modify the contents of a packet during network node
processing. The applications are typically executed
n on a stream of packets. Note that each of these
applications has an encoding and a decoding section.
While each of these sections is executed separately,
they are considered together as a single program un-
less they have significantly different performance char-
acteristics.
• CAST is a program based on the CAST-128 block
cipher algorithm that uses a 128 bit key to encrypt
data for secure transmission [1]. CAST-128 operates
similar to other block cipher algorithms used in cur-
rent networks, such as IDEA [13] and RC5 [19], how-
ever, CAST is in the public domain. Kernel : encryp-
tion arithmetic.
• ZIP is a data compression program based on the
commonly used Lempel-Ziv (LZ77) algorithm [33].
The implementation can achieve different levels of
data compression by varying the algorithm’s compu-
tational complexity and exemplifies applications that
permit tradeoffs between computational power and
bandwidth. Kernel : data compression.
• REED is an implementation of the Reed-Solomon
Forward Error Correction scheme that adds redun-
dancy to data to allow recovery from transmission er-
rors [18]. This is commonly used on unreliable data
links which can be found in wireless networks. Kernel :
redundancy coding.
• JPEG is a lossy compression algorithm [29] for im-
age data. It represents the class of media transcod-
ing applications. Kernel : discrete cosine transform
(DCT) and Huffmann coding.

C. Data and Tools

In collecting data, all the benchmark programs were
run on SUN UltraSparc II processors operating under

the SunOS 5.7. The C compiler used was gcc 2.8.1
(optimization level O2). The O2 level was selected be-
cause the compiler only performs optimizations that
are independent of the target processor and does not
exploit particular architectural features (e.g., loop un-
rolling for superscalar machines). To determine the
influence that the compiler, for selected statistics, the
gcc to the cc 4.2 compiler were compared. Differences
in the generated instruction mix were limited to 1-2%
for each instruction class and cache performance of the
generated code was also very similar.

For run time instruction mix analysis, Shade [5] and
SpixTools [4] were used. These tools simulate and an-
alyze programs on a Sparc processor. For the cache
simulations, Dinero [9], a uniprocessor cache simula-
tor, was used.

The benchmark programs were executed with a va-
riety of input data to see the effect on program op-
eration characteristics. While the Header-Processing
Applications require data inputs in a particular for-
mat for each program (i.e., TCP requires raw packet
header, while RTR lookups requires IP addresses), the
Payload-Processing Applications, except for JPEG,
can process any data stream. For these applications
we measured instruction mix and cache behavior for
HTML data (plain text), binary program code, and
JPEG coded image data. While CAST and REED
perform identically on any data, ZIP shows differences
on data that has already been entropy encoded (i.e.,
JPEG data). To account for this variation, the input
for the benchmark measurements was developed with
an equal mix of the three data types.

IV. Benchmark Characteristics

There is a wide range of characteristics associated
with any benchmark, and just which of these impacts
performance depends on the underlying processor ar-
chitecture and associated compiler. We have selected
the following general areas of characterization: code
and kernel sizes, computational complexity, instruc-
tion frequency, and cache performance.

A. Code and Computational Kernel Sizes

One can view the size of an application along a num-
ber of different dimensions ranging from source code
size to the number of bytes most often referenced dur-
ing execution. For CommBench and SPEC static (i.e.,
lines of C Code, bytes of compiled code) and dynamic
code size information (i.e., Instructions executed at
least once, accounting for 90% of execution, account-
ing for 99% of execution) was collected.

The size of the source code and compiled code
of each program in both CommBench and SPEC is
shown in Table I. The object size data does not in-
clude the large but little used dynamically linked li-
braries (up to 300 kbytes on the SUN Solaris system).
CommBench programs, based on object code size, are



CommBench Type Code Size Code Size SPEC Code Size Code Size
Program C lines Object bytes Program C lines Object bytes

TCP HPA 19,100 352,000 126.gcc 206,000 1,950,000
JPEG PPA 18,300 260,000 147.vortex 67,200 1,150,000
ZIP PPA 6,500 117,000 132.ijpeg 31,200 594,000
RTR HPA 1,130 16,000 099.go 29,200 558,000
REED PPA 410 6,900 134.perl 26,900 544,000
CAST PPA 350 19,500 124.m88ksim 19,900 404,000
DRR HPA 100 2,500 130.li 7,600 139,000
FRAG HPA 100 2,400 129.compress 1,930 81,700
Average 5,750 97,000 Average 48,700 678,000

TABLE I

CommBench and SPEC Code Size

about an order of magnitude smaller than SPEC pro-
grams. The variation in CommBench code size stems
from the different environments in which the applica-
tions have been developed. DRR and FRAG are non-
commercial proof-of-concept implementations, while
ZIP and JPEG are industrial strength implementa-
tions with a multitude of options. This has an impact
on static code analysis, but dynamic run-time analysis
indicates that all applications execute within a fairly
small kernel.

The dynamic kernel characteristics of CommBench
programs are shown in Table II. The first column in-
dicates the number of instructions which have been
executed at least once. Note that the average is 3,430
instructions (13,720 bytes), which is significantly less
than the average unlinked object code size (97,000
bytes). Even when one removes from the object code
size the roughly 15% which corresponds to data fields,
this indicates the presence of a significant amount of
code that is never executed. This ‘dead’ code typi-
cally corresponds to code for error handling conditions
or rarely used data formats. A similar situation can
be seen from the corresponding SPEC data. Defin-
ing the ratio, Ic, of instruction code (e.g., instruc-
tions that have been executed at least once) to the
instruction portion of the object code size (e.g., 85%
of the object code size), we obtain Ic,Comm = 0.16 and
Ic,SPEC = 0.24 . Thus, not only is the static size for
CommBench significantly smaller than for SPEC, but
the dynamic kernel of CommBench is relatively even
smaller.

This idea is reinforced by examining the ratio of the
number of instructions which constitute 99% of the
instructions executed to the number of instructions
which are executed at least once, Ik. For CommBench
Ik,Comm = 0.15 while for SPEC Ik,SPEC = 0.27. Ad-
ditionally, while the ratio of object code sizes for SPEC
versus CommBench is on average about 7, the ratio
of number of instructions which constitute 99% of the
executed code is on average almost 20. These results
reflect the notion that workstation processors typically
execute a few large tasks while network processors can
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Fig. 1. Kernel characteristics of CommBench applications

be expected to execute smaller, somewhat simpler but
computationally intense tasks. This has significant
implications for memory and cache requirements, and
will be important when determining the memory re-
quirements for single chip parallel network processors.

A common notion used in processor design is the
90/10 “rule”; that is 90% of executed instructions are
derived from 10% of the instructions in the program.
Figure 1 is a visual representation of this rule showing
kernel size in relation to the total number of instruc-
tions. A steeply rising curve indicates that only a few
instructions are responsible for most of the runtime
computation. Only instructions that are executed at
least once are considered. In CommBench, RTR, ZIP,
and JPEG have kernels that follow the 90/10 rule
very closely with others having smaller kernels (e.g.,
FRAG, DRR, REED follow 95/5), and in a couple of
cases larger kernels (e.g., TCP follows 85/15). CAST
has a basically linear behavior due to a fairly large
inner loop that repeats many instructions the same
number of times.

B. Computational Complexity

Given clearly defined I/O components for each
CommBench application, it is possible to define the
computationally complexity of each application with
respect to the number and size of the processed pack-
ets. This complexity measure helps in determining
certain aspects of performance as a function of ex-
pected workload. Note, that computational complex-



CommBench Instructions Instr. Instr. SPEC Instructions Instr. Instr.
Program at least once for 99% for 90% Program at least once for 99% for 90%

TCP 7,257 317 232 126.gcc 124,246 43,983 15,899
JPEG 6,155 804 504 147.vortex 60,630 10,136 1,715
RTR 3,805 1,371 387 099.go 53,629 17,511 6,530
ZIP 3,538 555 296 132.ijpeg 12,627 1,735 949
CAST 2,529 716 642 124.m88ksim 12,313 2,154 875
REED 1,510 48 23 134.perl 12,284 683 542
DRR 1,353 70 36 130.li 7,341 990 408
FRAG 1,258 97 80 129.compress 2,842 352 227
Average 3,430 500 275 Average 35,700 9,700 3,390

TABLE II

CommBench and SPEC Dynamic Kernel Characteristics

HPA a Na,64 Na,576 Na,1536

TCP 10.3 1.2 .4
FRAG 7.7 .9 .3
DRR 4.1 .5 .2
RTR 2.1 .2 .1
PPA a Na,∞ (enc) Na,∞ (dec)
REED 603 1052
ZIP 226 35

CAST 104 104
JPEG 81 60

TABLE III

Computational Complexity of CommBench Applications

in instructions per byte.

ity here does not reflect memory system performance
since it is based on the number of instructions rather
than the number of cycles executed.

We define the computational complexity Na,l to be
the number of instructions per byte required for appli-
cation a operating on a packet of length l. For header
processing, l is taken to be 64, 576 and 1, 536 bytes
(i.e., minimum IP-packet size, minimum MTU (max-
imum transfer unit) over IP, and maximum Ethernet
packet size). The minimum l = 64 is also in the
range of ATM cell size (53 bytes). For payload pro-
cessing applications l is effectively equal to infinity.
That is, we consider data streams of sufficient length
(≥ 1Mbyte) so that the startup processing overhead is
negligible. Table III shows the complexity of Comm-
Bench applications. Given an average incoming data
rate, these results give a preliminary indication of how
fast a processor is needed for real-time packet header
and payload processing (see Section V-A).

C. Instruction Set Characteristics

The instruction mix gives an indication on the type
of instructions executed in the benchmark. Figure 2
shows the instruction frequencies for selected Comm-
Bench programs. Averages for SPEC, CommBench,
and its two components HPA and PPA are given in

Figure 3. Table IV presents this same data sorted
by frequency for each benchmark. Both, the general
trend and the variability across programs is similar
to that found in SPEC. The following points out the
similarities between the two benchmarks:
• The average difference in frequencies for the top nine
instructions (≈ 97% of executed instructions) between
CommBench and SPEC is under 5%.
• The eight most frequent instruction types (≈ 95% of
executed instructions) are the same for both Comm-
Bench and SPEC.
There are also important differences:
• The average variance of the instruction frequencies
over all instructions for CommBench is 1.4 times that
of SPEC. This is due to the fact that the HPA and
PPA act as two sub-benchmarks within CommBench
and have differing execution characteristics.
• CommBench executes about 6% more add/sub in-
structions and 5% fewer load immediate instructions
than SPEC.

A comparison of the HPA and PPA benchmark com-
ponents points to other differences of note.
• The two components of CommBench, HPA and
PPA, have different instruction execution frequencies.
For example, there are two instruction groups, the
first, including load and add/sub, where the differ-
ences in instruction frequencies are about 10%, and
the second, including cond branch, compare and logic,
where the differences are around 5%.
• For certain instructions the differences between
SPEC and HPA are significant. For example there are
four instructions in the top eight, load, compare, logic
and load immediate, where the differences are between
5% and 9%. On the one hand it appears that the SPEC
applications are better able to use the load immediate
instruction. On the other hand, header processing in-
volves a good deal of load byte from the header into
a register and comparing them against some values.
This is reflected in CommBench’s larger percentages
for load and compare.
• For selected instructions, there are significant dif-
ferences between SPEC and PPA. The frequency dif-



CommBench SPEC CommBench CommBench
Average % Average % HPA % PPA %

load 22 load 18 load 27 add/sub 22
add/sub 17 cond. branch 15 cond. branch 18 load 18
cond. branch 16 compare 13 compare 18 cond. branch 13
compare 15 logic 12 add/sub 13 shift 13
logic 9 add/sub 11 store 6 compare 12
shift 8 store 7 logic 6 logic 11
store 7 shift 7 shift 4 store 7
load imm. 2 load imm. 7 load imm. 2 load imm. 1
jmpl 1 save/restore 2 jmpl 1 save/restore 1

TABLE IV

Instruction Frequencies for CommBench, SPEC, HPA and PPA.
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Fig. 2. CommBench Instruction Frequencies (LD = load, AD
= add/sub, BR = conditional branch, CP = compare, LG
= logic, SH = shift, ST = store, LI = load immediate, JP =
jump and link, SR = save/restore, CL = call, MU = mult,
NO = nop, OT = other)

ference associated with add/sub is about 11%. In this
case the PPA programs have a higher frequency due to
the requirements of payload/streaming applications.
For other instructions, shift and load immediate, the
differences are about 5%.
These differences indicate that a network processor
must deal with both streaming and header process-
ing applications. These results also support a design
approach which consists of developing network proces-
sors in terms of communicating groups of processing
cores where the individual cores have selected charac-
teristics tailored to either HPA and PPA applications.
The number of cores of each type would generally not
be equal since the complexity analysis indicates that
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Fig. 3. Instruction Frequencies: CommBench, SPEC, Comm-
Bench Header and Payload Processing Application. Error
bars indicate the minimum and maximum of instruction fre-
quencies encountered for any single application. (see Figure
2 for x-axis legend)

the processing requirements of HPA and PPA are dif-
ferent.

D. Memory Hierarchy Characteristics

An important part of any processor design is its
memory hierarchy. We measured the cache perfor-
mance for each CommBench application. Separate
instruction and data caches from 1 kbyte to 32 kbyte
were simulated. Figure 4 shows the results for a 2-way
associative instruction and data cache. Other caches
with different associativity were also investigated. For
the direct mapped cache the rule of thumb holds which
states that the miss rate is about 1.5 to 2 times that of
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Fig. 4. Instruction Cache and Data Cache Miss Rates for
CommBench Applications

a 2-way cache. The differences between 2-way, 4-way
and 8-way associative caches are minor, hence the gain
for going to higher associativity given the additional
chip area costs are limited.

The CommBench, HPA and PPA component cache
performance is compared to SPEC in Figure 5. The
following points are relevant:
• If a 8 kbyte instruction cache is available, instruction
miss rates under 0.5% can be achieved for all but the
CAST program. For 16 kbyte instruction caches, all
applications achieve miss rates are below 0.2%.
• Due to the relatively small CommBench program
kernels, CommBench instruction miss rates are con-
siderably smaller then SPEC miss rates (3.8% vs. 8.3%
for 1 kbyte, 0.6% vs. 2.2% for 8 kbyte, 0.1% vs. 0.5%
for 32 kbyte).
• For Payload Processing Applications, encoding and
decoding programs have almost identical instruction
and data cache performance. Only ZIP has a much
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Fig. 5. Average Instruction Cache and Data Cache Miss Rates
for CommBench, HPA, PPA, and SPEC.

Cache Type 16 vs. 32 byte 32 vs. 64 byte
Instruction 1.67 1.18

Data 1.36 1.26

TABLE V

Average Ratio of Miss Rate at Smaller Line Size to

Miss Rate at the Larger Line Size.

higher data cache miss rate for the encoding applica-
tion.
• Data cache miss rates are below 1% for a 16 kbyte
cache, except for the ZIP and FRAG applications.
• Payload Processing Applications and SPEC have a
similar data cache performance. The miss rates for
Header Processing Applications however is roughly
half the miss rate of SPEC. This is due to the fact
that the payloads are streamed through the system,
touched a few times for processing, and then sent out.
Thus there is little data locality. Headers, on the other
hand are typically held in memory for a longer time
(e.g., the length of the packet time) and require more
complex processing (e.g., routing and forwarding).
The instruction miss rates for CommBench varies as
a function of the cache line size. Table V shows that
average miss rates decrease with increasing line size.
The step from 16 to 32 bytes decreases the miss rates
by 1.67 for instruction cache and 1.36 for data cache.
Going to 64 bytes decreases the miss rate further, but
only by 1.18 for instruction cache and 1.26 for data
cache. There are two applications (CAST and RTR)
that have higher miss rates with a 64 byte line size
than with a 32 byte line size. The overall performance
effect of using increased line size depends not only on
the miss rate, but also on the miss penalty. This is
processor implementation dependent, though, and is
therefore not considered here.

V. Design Implications - Examples

To illustrate how CommBench can be used in net-
work processor design three examples are considered.
First, the computational complexity measure is used
to estimate processing requirements. Second, instruc-
tion set information is considered to see if creation



instr. pairs avg. occurrence max. occurrence
ADD-SUBCC 3.55% 11.6%
LD-SUBCC 3.03% 13.0%
LD-LD 2.36% 20.2%
ADD-LDUB 2.07% 4.84%
SLL-LD 2.05% 6.82%
STB-ADD 2.05% 4.65%
LD-ADD 1.85% 5.35%
ADD-ADD 1.84% 5.85%

TABLE VI

Most Frequent Instruction Pairs for CommBench.

of special purpose instructions might improve perfor-
mance. Finally, cache miss rate data is used to de-
termine memory bandwidth requirements of a multi-
processor ASIC.

A. Computational Complexity

One fundamental system design issue concerns esti-
mating the computational power required for a certain
data traffic mix. As an example, consider the require-
ments associated with processing a mix requiring RTR
and DRR (for IP header processing), and CAST (for
payload encryption).

Using the results from section IV-B consider the
processing requirements of RTR and DRR with a link
bit rate of Rlnk = 1.2 Gbit/sec. Assuming packet
sizes, l, of 576 bytes, the number of instructions per
second, M , that have to be executed is:
M = (NRTR,576 + NDRR,576) · Rlnk

= (0.2 + 0.5) instr
byte · 150 · 106 bytes

sec = 105 MIPS.

For on-the-fly CAST encryption (also at link bit
rate of Rlnk = 1.2 Gbit/sec), the header processing
overhead for the data stream can be ignored since
payload processing dominates the computational com-
plexity. This is generally true for stream data where
typically large packets are used. The computational
requirements M for this example are:

M = NCAST,∞ · Rlnk

= 104 instr
byte · 150 · 106 bytes

sec = 15, 600 MIPS.

This first cut analysis indicates that standard RISC
processor by itself is sufficient for header processing
at link speed, but will not provide adequate compu-
tational power for tasks that perform payload pro-
cessing. The use of vector processing techniques for
streaming applications (i.e., embedded vector proces-
sors) [20] or multiple parallel superscalar or VLIW
processors on a chip [31] are promising approaches to
achieve link-speed payload processing.

B. Instruction Set Design

Opportunities are now becoming available for incor-
porating special nonstandard instructions into proces-
sor designs. Such instructions can be incorporated ei-
ther prior to fabrication or (with some restrictions)

dynamically during execution. They can be identified
by the programmer who is familiar with the applica-
tions or by a dynamic instruction profiling analysis.

CommBench applications were profiled and the
most common instruction sequences were identified.
Table VI shows the ten most common pairs of instruc-
tions. The most frequent instruction pair is an ADD
followed by a SUBCC (compare) and this pair consti-
tutes 3.55% of all instruction pairs that occur. Other
pairs are less frequent, but the top eight pairs still oc-
cur each more than 1.8% of the time. Longer instruc-
tion sequences all had substantially lower frequencies
of occurrence.

Profiling also shows that in most cases the destina-
tion register of the ADD instruction is also a source
register of the SUBCC instruction. This dependence
makes is possible to combine ADD and SUBCC in a
single “load and compare” instruction that performs
both an addition and a compare. If such an instruc-
tion can be implemented without increasing the cycle
time, then each occurrence of ADD-SUBCC can be ex-
ecuted in one cycle instead of two cycles. As a result,
the average CommBench program would execute 3.5%
faster and the REED program (having maximum oc-
currence of that pair) would execute about 12% faster,
a significant amount when dealing with a real time ap-
plication.

C. I/O Requirements for Multi-Processor ASIC

The computational complexity of the CommBench
applications indicate that a single network processor
is insufficient to handle the stream processing require-
ments of a high-speed data link (see Section V-A).
One approach to increasing computational power is
through parallel use of multiple processors. With cur-
rent advances in ASIC technology it is possible to im-
plement these processors along with a small amount
of cache onto a single chip [7].

For this example assume a system where data pack-
ets are received from the link, reassembled, and sent to
one of the multiple network processors for processing.
The goal is to estimate the average memory band-
width that is required between the main memory and
the multi-processor ASIC.

To a first approximation, the memory bandwidth
requirements of a processor depends on its cache size
(and design) and the program executing on it. As-
sume 2-way 8 kbyte instruction cache and 2-way 8
kbyte write-through data cache with a line size of 32
bytes. Assume also that the ASIC network processor
is comprised of eight individual processors clocked at
400 MHz. For simplicity say that each of the proces-
sors performs one of the eight benchmark applications.

The memory bandwidth mbw for an application a
and cache size c is:
mbwa,c = (I miss ratea,c + (D miss ratea,c

∗% loada) + % storea) ∗ clock ∗ line size.



For a = CAST and c = 8k the memory bandwidth
is

mbwCAST,8k = (.0385 + (.0076 ∗ .1985) + .0722)
∗400 ∗ 106 ∗ 32 bit

sec = 1.4Gbit/sec.

Using the same expression, the total memory band-
width can be obtained.

mbwtotal = mbwCAST,8k + . . . + mbwZIP,8k

= 8.12Gbit/sec.

Assuming a 64-bit wide memory interface, a bus
clock rate of at least 130 MHz is required. Naturally,
this estimate considers only the average required mem-
ory access. A more detailed analysis would have to
account for activity bursts and peak bandwidth re-
quirements.

VI. Summary and Conclusion

This paper has presented a benchmark, Comm-
Bench, for use in evaluating and designing telecom-
munications network processors. Of the eight pro-
grams in the benchmark, four are oriented towards
packet header processing and four towards payload
processing. The benchmark is defined and various
characteristics of the benchmark have been presented.
Where possible, characteristics of CommBench have
been contrasted with those of SPEC.

Unlike traditional processor benchmarks, Comm-
Bench provides clearly defined I/O and computational
complexity measures that are directed at the network
processor environment. Three examples show how
CommBench can be used in the initial design process.
More detailed processor simulation models may also
use CommBench instruction trace data during design
and evaluation.
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