
PacketBench: A Tool for Workload Characterization
of Network Processing

Ramaswamy Ramaswamy and Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003�

rramaswa,wolf � @ecs.umass.edu

Abstract— Network processing is becoming an increasingly im-
portant paradigm as the Internet moves towards an architecture
with more complex functionality inside the network. Modern
routers not only forward packets, but also process headers
and payloads to implement a variety of functions related to
security, performance, and customization. It is important to
get a detailed understanding of the workloads associated with
this processing in order to be able to develop efficient network
processing engines. We present a tool called PacketBench, which
provides a framework for implementing network processing
applications and obtaining an extensive set of workload charac-
teristics. PacketBench provides the support functions to handle
various packet traces and manage packet memory. For statistics
collection, PacketBench provides the ability to derive a number of
microarchitectural and networking related metrics. We present
the results of such measurements for four different networking
applications ranging from simple packet forwarding to complex
packet payload encryption. The results show that such workload
analysis has a range of uses from network processor design to
application optimization.

I. INTRODUCTION

The Internet has progressed from a simple store-and-
forward network to a more complex communication infras-
tructure. In order to meet demands on security, flexibility, and
performance, network traffic not only needs to be forwarded,
but also processed inside the network. Such processing is
performed on routers, where port processors can be pro-
grammed to implement a range of functions from simple
packet classification (e.g., for firewalls) to complex payload
modifications (e.g., encryption, content adaptation for wireless
clients, or ad insertion in web page request).

To handle the functional and performance requirement of the
networking domain, routers designs have moved away from
the hard-wired ASIC forwarding engines. Instead, software-
programmable “network processors” (NPs) have been devel-
oped in recent years. These NPs are typically single-chip
multiprocessors with high-performance I/O components. A
network processor is usually located on a physical port of a
router. Packet processing tasks are performed on the network
processor before the packets are passed on through the router
switching fabric and through the next network link. This is
illustrated in Figure 1. It is a current area of research to
explore the design space of such NP architectures as well as
developing novel protocols and applications that can further
benefit from network processing. A crucial step in this process

is to understand the workload characteristics of this domain
in more detail.

The processing workload on network nodes is unique and
particularly different from traditional workstation or server
workloads, which are dominated by a few large processing
tasks. Network processing is entirely limited to a large number
of very simple tasks that operate on small chunks of data
(i.e., packets). This implies that many results derived from
analyzing workstation or server benchmarks (e.g. SPEC [28]
or TPC [32]), are not necessarily applicable to the NP domain.
A good example is the memory hierarchy, where smaller on-
chip memories suffice due to the nature of packet processing.

In order to explore and understand network processing
workloads in more detail, we present a novel tool, called
“PacketBench” (a contraction of “packet workbench”). Pack-
etBench provides a programming and simulation environment,
where packet processing functions can be implemented easily
and quickly. These applications can then be simulated using a
variety of real packet traces. The simulation environment is set
up to only collect statistics for the packet processing applica-
tion and not for the supporting PacketBench framework. Thus,
numerous workload characteristics that reflect the processing
on the network processor can be derived. These include the
traditional micro-architectural statistics (as PacketBench uses
SimpleScalar [4] for simulating processor cores) as well as
statistics that are very specific to the networking environment
(e.g., number of memory accesses per packet).

PacketBench is novel in several ways. First, PacketBench
applications can be programmed easily with a just a bit of
background in networking. Real network processors (which
occasionally provide similar system simulators) require in-
depth knowledge of the system architecture and are extremely
difficult to use. Second, it allows applications to operate on
actual packets in the same fashion as it is done inside the
network processor. Third, the simulation environment is able to
hide the overhead for packet preprocessing in the PacketBench
framework (which in real systems is done by specialized
hardware components). This provides the basis for realistic
program behavior and accurate workload characterization.

The workload statistics that are derived from PacketBench
can be used in a number of ways. A few examples are:

� Application Optimization. A detailed analysis of the
runtime behavior of an application is useful for applica-



������� ���

�
	����� ��� 	����

����� ��
��� �

����� �
�
��� �

�
��� �
����� ����� ����� ������������

� �� �
 !"#
$� �!
% &
'� (*) +-, .-/ / +0)1 +0) . (2) +3, .-/ / +0)1 +-) .

(*) +-, .-/ / +0)1 +0) . (2) +3, .-/ / +0)1 +-) .

4 5 6

7 8 9 : ; < =

Fig. 1. Network Processing.

tion developers to optimize its performance. Particularly
in the NP domain there are many real-time constraints
that require a clear understanding of application run-time
statistics.� Allocation of Processing Tasks. On a network router,
there are several levels of processing resources (data-path
processors and co-processors, port control processors, and
system control processors as defined similarly in [24]).
Processing tasks often can be allocated to any of these
levels. Understanding the performance requirements of
each task allows system designers make correct choices.� Developing Novel NP Architectures. NP architectures
are based on exploiting the inherent packet-level par-
allelism in the networking domain. Understanding the
processing and memory access statistics is important
when developing novel designs.

While we are not exploring the actual use of workload
statistics in this paper, it does illustrate the usefulness of such
information.

The remainder of this paper is organized as follows. Section
II discusses related work. We present an overview of Packet-
Bench in Section III. We introduce several sample applications
for PacketBench in Section IV. Workload characteristics of
these applications are presented and discussed in Section V.
A summary and conclusions are presented in Section VI.

II. RELATED WORK

There are numerous examples of processing packets on net-
work nodes that extend the basic packet forwarding paradigm.
Routers can perform firewalling [19], network address trans-
lation (NAT) [10], web switching [1], IP traceback [27], and
many other functions. With increasingly heterogeneous end-
systems (e.g., mobile devices and “thin” clients), computation-
ally demanding services have been moved into the network.
Examples for these are content transcoding, advertisement
insertion, and cryptographic processing. It can be expected
that this trend towards more functionality on the router con-
tinues. A few programmable network platforms that have been
developed by the active networking community [30], [5], [23]

have reached the necessary level of maturity. Also, there are
standardization efforts in progress by the IETF OPES (Open
Pluggable Edge Services) working group [15] to define such
networking service platforms.

In practice, these processing functions can be implemented
in a variety of ways, ranging from software-based routers
(workstation acting as a specialized router) to specialized
hardware (ASIC implementation on router line card). In
recent years, programmable network processors have be-
come available for performing general-purpose processing
on high-bandwidth data links. These network processors are
system-on-a-chip multiprocessors that are optimized for high-
bandwidth I/O and highly parallel processing of packets. A few
of the numerous examples are the Intel IXP1200 [16], IBM
PowerNP [14], and EZchip NP-1 [11]. The design spaces of
such network processors has been explored in several ways.
Crowley et al. have evaluated different processor architectures
for their performance under networking workloads [8]. This
work mostly focuses on the tradeoffs between RISC, super-
scalar, and multithreaded architectures. In more recent work,
a modelling framework is proposed that considers the data
flow through the system [6]. Thiele et al. have proposed a
performance model for network processors [31] that considers
the effects of the queueing system. In our previous work,
we have developing a quantitative performance and power
consumption model for a range of design parameters [12]
[13]. All these models require detailed workload parameters
to obtain realistic results.

Several network processor benchmarks have captured vari-
ous characteristics of network processing. Crowley et al. has
defined simple programmable network interface workloads
in [7]. In our previous work, we have defined a network
processor benchmark called CommBench [33]. Memik et al.
have proposed a similar benchmark more recently [18]. All
these benchmarks are useful in that they define a realistic
set of applications, but are limited in how much detail of
workload characteristics can be derived. We try to address
this shortcoming with PacketBench. PacketBench is a novel
tool that allows a very detailed and network-processor-specific
analysis of such benchmark applications that goes beyond
simple microarchitectural metrics.

III. PACKETBENCH

PacketBench is a tool with which packet processing ap-
plications can easily be implemented. It provides the support
functions to read and write packets from and to packet traces,
manage packet memory, and implement a simple API. The
details of PacketBench are discussed in more detail in this
section.

A. PacketBench System

The goal of PacketBench is to emulate the functionality of a
network processor. The conceptual outline of the tool is shown
in Figure 2. The main components are:

� PacketBench Framework. The framework provides
functions that are necessary to read and write packets,



����������� 	���
����
����������
� � �����

��� ����������������� ����� ��� ���
� ������� ��� ������� ����� ��������� ���! 

���!������������
� � �����

"#��� $���� �%��� ���������� 
�&
������� � ����� � ��

� ��' &�' (�) ��*�+

����� $���� ��� 
�&�(������������
��� ������� �,� ����� � ��
�(����
��
����!-���� � ��
� 

�����������
���!����� ����������� 
�&

�����������
.�������� -

.���
���&�������
��

/0����� � ����� � ��

��� ���������� 
�&
��� ��� � ��� � ���

����� ���� � *1�
����������
�� � 
�&

2 34
5 678
694
:;
2<

Fig. 2. PacketBench Architecture.

and manage memory. This involves reading and writing
trace files and placing packets into the memory data
structures used internally by PacketBench. On a network
processor, many of these functions are implemented by
specialized hardware components and therefore should
not be considered part of the application.� PacketBench API. PacketBench provides an interface
for applications to receive, send, or drop packets as
well as doing other high-level operations. Using this
clearly defined interface makes it possible to distinguish
between PacketBench and application operations during
simulation.� Network Processing Application. The application im-
plements the actual processing of the packets. This
can range from simple forwarding to complex payload
processing. Several such applications are discussed in
Section IV. The workload characteristics of these applica-
tions are most relevant and need to be collected separately
from workload generated by the PacketBench framework.� Processor Simulator. To get instruction-level workload
statistics, we use a full processor simulator. In our current
prototype we use SimpleScalar [4], but in principle any
processor simulator could be used. Since we want to
limit the workload statistics to the application and not
the framework, we modified the simulator to distinguish
operations accordingly. The Selective Accounting compo-
nent does that and thereby generates workload statistics
as if the application had run by itself on the processor.
This corresponds to the actual operation of a network pro-
cessor, where the application runs by itself on one of the
processor cores. Additionally, it is possible to distinguish
between access to various types of memory (instruction,
packet data, and application state, see Section V).

The key point about this system design is that the ap-
plication and the framework can be clearly distinguished –
even though both components need to be compiled into a
single executable in order to be simulated. This is done
by analyzing the instruction addresses and sequence of API
calls. This separation allows us to adjust the simulator to
generate statistics for the application processing and ignore
the framework functions. Another key benefit of PacketBench
is the ease of implementing new applications. The architecture
is modular and the interface between the application and the
framework is well defined. New applications can be developed
in C, plugged into the framework, and run on the simulator to
obtain processing characteristics.

B. PacketBench API

The PacketBench API defines how applications can receive,
send, or drop packets. PacketBench makes no restrictions on
the application other than that it needs to adhere to the API.
The three main functions that are defined in the API are:

� void *init() – This function is implemented by the appli-
cation and called by the framework before any packets are
processed. It allows the application to initialize any data
structures that are required for packet processing (e.g.,
routing table). The processing that occurs as part of init()
is not counted towards packet processing.� void (*process packet function)(packet *) – This func-
tion is the packet handler that is implemented by the ap-
plication. The variable process packet function contains
the pointer to the actual packet handler. It is called once
for each packet that is processed by the framework. A
pointer to the packet is passed as an argument. The
packet memory is managed by the framework. The packet
processing function has access to the contents of the
packet from the layer 3 header onwards. This function
call uses a function pointer to allow the application to
specify the packet processing function dynamically.� void write packet to file(packet *, int) – This function
is implemented by the framework and called by the appli-
cation when processing is complete. It writes the packet
to the trace file (specified by the second parameter).

Similar to write packet to file() there is a function to drop
the packet. We are planning on extending the API further to
implement an interface to packet scheduling and other control-
level operations.

C. PacketBench Prototype

PacketBench is simulated on a typical processor simulator to
obtain processing statistics such as the number of instructions
executed and the number of memory accesses made. For this
purpose, we use the ARM [2] target of the SimpleScalar [4]
simulator (obtained from [26]), to analyze our applications.
We chose this simulator because the ARM architecture is
very similar to the architecture of the core processor and the
microengines found in the Intel IXP 1200 network processor
[16]. Also, SimpleScalar is freely available with source code
and can easily be modified. The tools were setup to work on an



Intel x86 workstation running RedHat Linux 7.3. PacketBench
supports packet traces in the tcpdump [29] format and the Time
Sequenced Header (TSH) format from NLANR [20].

The PacketBench application and framework are compiled
with a cross compilation toolchain for the GNU C com-
piler and an ARM backend. The executable is run on Sim-
pleScalar (sim-profile) and the simulator output is analyzed.
SimpleScalar was augmented to evaluate the address of each
simulated instruction and check if it is in the address range
of the application or the framework. We can obtain these
address ranges easily from the compiled object code with nm
and objdump. These addresses are then passed to sim-profile
as input parameters. The simulator was further modified to
provide more detailed statistics about program execution, such
as cumulative instruction counts for the packet processing
function, and the number of memory accesses made to a
particular variable in the packet handler. The output of the
simulator is post-processed using perl scripts to obtain the
required results.

IV. EXAMPLE WORKLOAD

We illustrate the capabilities of PacketBench by using it
with an example set of application and network traces. The
results of the workload evaluation are presented in Section V.

A. Applications

We have chosen four applications for gathering workload
statistics using PacketBench. Two of these applications are IP
forwarding according to current Internet standards using two
different implementations for the routing table lookup. The
third application implements packet classification, which is
commonly used in firewalls and monitoring systems. And the
final application implements encryption, which is a function
that actually modifies the entire packet payload. The specific
applications are:

� IPv4-radix. IPv4-radix is an application that performs
RFC1812-compliant packet forwarding [3] and uses a
radix tree structure to store entries of the routing table.
The routing table is accessed to find the interface to which
the packet must be sent, depending on its destination
IP address. The radix tree data structure is based on an
implementation in the BSD operating system [21].� IPv4-trie. IPv4-trie is similar to IPv4-radix and also
performs RFC1812-based packet forwarding. This imple-
mentation is derived from an implementation for the Intel
IXP1200 network processor [16]. This application uses
a multibit trie data structure to store the routing table,
which is more efficient in terms of storage space and
lookup complexity.� Flow Classification. Flow classification is a common
part of various applications such as firewalling, NAT,
and network monitoring. The packets passing through
the network processor are classified into flows which
are defined by a 5-tuple consisting of the IP source
and destination addresses, source and destination port
numbers, and transport protocol identifier. The 5-tuple is

Trace Name Type Packets

MRA OC-12c (PoS) 4,643,333
COS OC-3c (ATM) 2,183,310
ODU OC-3c (ATM) 784,278
LAN 100Mbps (Ethernet) 100,000

TABLE I

PACKET TRACES USED TO EVALUATE APPLICATIONS.

used to compute a hash index into a hash data structure
that uses link lists to resolve collisions.� IPSec Encryption. IPSec is an implementation of the
IP Security Protocol [17], where the packet payload
is encrypted using the Rijndael Advanced Encryption
Standard (AES) algorithm [9]. This is the only application
where the packet payload is read and modified.

This selection of applications cover a broad space of typical
network processing. First of all, IPv4-radix and IPv4-trie are
realistic, full-fledged packet forwarding applications, which
perform all required IP forwarding steps (header checksum
verification, decrementing TTL, etc.). IPv4-radix represents a
straight-forward unoptimized implementation, while IPv4-trie
is more efficient. Second, the applications can be distinguished
between header processing applications (HPA) and payload
processing applications (as defined in [33]). HPA process
a limited amount of data in the packet headers and their
processing requirements are independent of packet size. PPA
perform computations over the payload portion of the packet
and are therefore more demanding in terms of computational
power as well as memory bandwidth. IPSec is a payload
processing applications and the others are header processing
applications. Third, the applications vary significantly in the
amount of data memory that is required. Encryption only needs
to store a key and small amounts of state, but the routing tables
of the IP forwarding applications are very large.

Altogether, the four applications chosen in this work give
are good representatives of different types of network process-
ing. They display a variety of workload characteristics as the
results in Section V show.

B. Network Traces and Routing Tables

To characterize workloads accurately, it is important to have
realistic packet traces that are representative of the traffic that
would occur in a real network. Table I shows the packet traces
that we used to evaluate the applications. Traces MRA, COS,
and ODU are obtained from the NLANR repository [20] and
were collected on different access and backbone links. The
LAN trace was collected on our local intranet.

Due to the nature of the NLANR TSH trace format, the
packet payload is not available. Since the IPSec application
requires packet payload to be present, a dummy payload was
inserted in the packet preprocessing step. Since the AES
algorithm is not data-dependent, the workload statistics will
be the same as for “real” packet payloads.

Another limitation of the NLANR traces is the way IP
addresses are anonymized. To provide privacy, IP addresses



are numbered incrementally starting at 10.0.0.1 in the order
of their occurrence. This leads to a non-uniform coverage of
destination addresses in the address space. As a result, lookups
into typical routing tables (e.g., MAE-WEST [22] as we use
for IPv4-radix) lead almost always to the same prefix. To
avoid this bias, we scrambled the IP address in the packet
preprocessing stage to achieve more uniform coverage.

V. RESULTS

There are a number of workload characteristics that can be
derived from PacketBench. In general, there are basically two
classes of results that can be derived:

� Microarchitectural Results. Most processor simulators
provide a range of statistics that are related to the
simulated processor core. Examples are instruction mix,
branch misprediction rates, and instruction-level paral-
lelism.� Network Processing Results. In the context of network
processing there are a number of statistics that can be
gathered, which combine microarchitectural metrics (e.g.,
instruction count and memory bandwidth) with packet
metrics (e.g., packet size). This leads to novel metrics
that are specific to the network processing environment
(e.g., packet processing complexity and packet memory
access pattern).

Microarchitectural results for network processing have been
covered in our own previous work [33] as well as by other
related work [7] [18]. Gathering similar workload characteris-
tics is a straightforward exercise and we are not considering it
further in this work. Instead we are exploring novel network
processing statistics. These statistics include:

� Processing Complexity� Memory Access Rates and Patterns� Memory Coverage� Instruction Grouping

Processing complexity puts the number of instructions
executed per packet in context with different applications
and packet sizes. The memory access and coverage statistics
distinguish not only between instruction and data memory,
but further separate packet data and program data. This is an
important distinction as packet data is handled differently in
network processors. Such a distinction has not been made in
previous work. Finally, instruction grouping is a useful tool
to identify instruction blocks that form semantic entities. For
network processor design, it is important to identify processing
intensive instruction groups as they can be implemented on
co-processors or on programmable hardware.

The results of each network processing metric are presented
and discussed in the following subsections.

A. Processing Complexity

The average number of instructions executed per packet can
be expressed as the application complexity as we have defined
in our previous work [33]. We show the processing complexity
for the various applications discussed in the previous section

Trace Name IPv4-radix IPv4-trie Flow Classification IPSec

MRA 4,438 320 139 43,470
COS 4,388 321 138 38,938
ODU 4,324 320 140 32,839
LAN 4,820 437 135 34,417

Average 4,493 350 138 37,416

TABLE II

AVERAGE NUMBER OF INSTRUCTIONS PER PACKET EXECUTED FOR

VARIOUS APPLICATIONS.

in Table II. The number of instructions executed per packet
for encryption (IPSec in column 5) is several orders of
magnitude higher than the number of instructions required
for the other applications because encryption is a payload
processing application and processes the entire packet. The
variation in instruction counts between different traces can be
attributed to the fact that payload lengths across different traces
are not uniform. Additionally, the following observations can
be made:

� For IPv4 forwarding (IPv4-radix), the number of instruc-
tions can vary depending on the destination address of the
packet (which may be at different locations in the routing
table). This behavior is not exhibited by IPv4-trie due to
the fact that we use a very small routing table.� IPv4-radix forwarding requires more instructions to ex-
ecute than IPv4-trie forwarding. Most of the instruction
difference can be attributed to the overhead of maintain-
ing and traversing the radix tree. Moreover the imple-
mentation of IPv4-radix is a not particularly optimized
as compared to IPv4-trie.� Flow classification is a strictly linear (i.e., not data-
dependent) application which takes approximately the
same amount of instructions irrespective of the trace.� In column 3 of Table II packets of the Internet traces
(MRA, COS and ODU) have destination IP addresses
that match a different entry in the routing table than the
destination IP addresses of the LAN trace packets. This
accounts for the difference in instruction counts between
the traces.

To illustrate the impact of packet size, the number of
instructions executed per packet against packet size is plotted
in Figure 3 for two traces (MRA and COS) and for the four
applications discussed previously. For IPSec encryption, the
number of instructions executed increases linearly with packet
size. For the three header processing applications, the number
of instructions executed remains more or less constant over
all packet sizes. Any change in the number of instructions is
due to data-dependent operations such as accessing the routing
table for IPv4 forwarding, or updating the flow table for
flow classification. For example, the packets in the IPv4-radix
graph that require 4,800 instructions represent those whose
destination IP prefixes are longer than those packets which
require 4,000 instructions. As a result the routing table has to
be searched deeper, which causes the extra operations.



0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400

In
st

ru
ct

io
ns

Packet Size(bytes)

IPv4-radix-MRA
IPv4-radix-COS

(a) IPv4-radix

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400

In
st

ru
ct

io
ns

Packet Size(bytes)

IPv4-trie-MRA
IPv4-trie-COS

(b) IPv4-trie

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

In
st

ru
ct

io
ns

Packet Size(bytes)

Flow-ID-MRA
Flow-ID-COS

(c) Flow Classification

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200 400 600 800 1000 1200 1400

In
st

ru
ct

io
ns

Packet Size(bytes)

IPSec-MRA
IPSec-COS

(d) Encryption

Fig. 3. Processing Complexity over a Range of Packet Sizes.

B. Memory Characteristics

As discussed above, PacketBench can distinguish between
different memory regions which are in the same address space
but are semantically different. For the memory statistics, we
distinguish between instructions, packet data, and program
data (i.e., program state).

1) Memory Accesses: We have analyzed the four test
applications in terms of accesses to packet memory (which
contains the packet header and the payload), and accesses to
non-packet memory. The analysis was performed for the first
10,000 packets of each trace. The results are summarized in
Table III. The following observations can be made:

� Header processing applications require fewer accesses to
packet and non-packet memory than payload processing
applications. Moreover, for a given application, header
processing requires about the same number of accesses
to both packet and non-packet memory for all the traces.� Payload processing requires a lot of memory accesses
(both packet and non-packet) since the entire payload is
encrypted (and hence has to be read from memory). The
high number of non-packet memory accesses is due to

a large amount of state being manipulated. Variations in
the number of memory accesses is due to variations in
packet payload size.

For IPSec, the number of memory accesses exhibits the
same linear relationship with increasing packet size as for
instruction complexity (not shown).

2) Memory Coverage: We have estimated the size of the
active memory regions for both instructions and data by
post-processing the instruction and data traces returned by
SimpleScalar. The analysis was performed on the first 1,000
packets of the MRA trace. The results are shown in Table
IV. A comparison of Table II and Table IV indicates that
smaller instruction memory sizes implies a small program
core which is executed several times. For example, in IPSec
encryption, the average number of instructions per packet is
43,470, but the instruction memory size is only 2,800 bytes
(approximately 700 instructions, assuming 32 bit instructions).
Similar observations can be made for IPv4-radix and IPv4-
trie forwarding. This reemphasizes one key characteristic
of network processing, which is the simplicity of the code
executed on network nodes. As a result, network processors
can operate efficiently with instruction stores of only a few



Trace Name IPv4-radix IPv4-trie Flow classification IPSec

Packet Non-packet Packet Non-packet Packet Non-packet Packet Non-packet
MRA 32 842 12 71 23 58 841 23,844
COS 32 836 12 71 24 60 828 23,447
ODU 32 833 12 71 23 54 725 20,427
LAN 32 831 17 98 23 51 571 15,926

Average 32 836 13 78 23 56 741 20,911

TABLE III

AVERAGE NUMBER OF ACCESSES TO PACKET MEMORY AND NON-PACKET MEMORY FOR VARIOUS APPLICATIONS (10,000 PACKETS).

Application Instr. memory size Data memory size

IPv4-radix 4,420 18,004
IPv4-trie 848 264
Flow classification 1,584 43,344
IPSec encryption 2,800 9,428

TABLE IV

INSTRUCTION AND DATA MEMORY SIZES(IN BYTES) FOR VARIOUS

APPLICATIONS.

kilobytes.
In terms of data memory (counting both packet and program

data), flow classification has the largest data memory size
since a lot of state is maintained and manipulated on a per
packet basis. Similar conclusions can be drawn for IPv4-radix
forwarding. The results in column 3 of Table IV supports the
general trend that header processing applications are domi-
nated by the data stored in the various routing and lookup
data structures.

C. Detailed Packet Processing

In addition to the cumulative analysis performed in the
previous sections, we have analyzed program behavior while
focusing on a single packet. This gives us a more detailed
insight on the different processing steps that occur for one
packet. We chose a packet from the MRA trace such that the
number of instructions required to process the packet are as
close as possible to the average values shown in Table II.

1) Memory Requests: Figure 4 shows the memory access
patterns for the program while processing a packet. Reads
and writes to packet memory are plotted on the positive y-
axis while accesses to non-packet memory are plotted on the
negative y-axis.

Both IPv4-trie and IPv4-radix forwarding have similar
memory access patterns where the packet header contents are
accessed initially to extract the destination IP address, decre-
ment the time-to-live (TTL) and update the header checksum.
The remainder of the memory accesses are to the routing table
(which is non-packet memory, hence the points on the negative
y-axis) to lookup the interface for the destination IP addresses.
Flow classification consists of a set of initial memory accesses
to the packet header to determine which flow the packet
belongs to. The next set of memory accesses are to non-packet
memory during which the flow record for that particular flow is
obtained. The final set of memory accesses are to both packet

and non-packet memory which involves updating the flow
record (non-packet memory) with the values from the packet
header (packet memory). For IPSec encryption, distinct blocks
of non-packet memory accesses can be seen. These correspond
to encryption processing. The packet accesses before and after
represent reading and writing the payload from and to the
packet memory.

2) Instruction Grouping: Finally, we show the instruction
access patterns for the program while processing a packet.
In order to view the instruction patterns more clearly, the
instruction addresses were assigned a unique index depending
on the order in which they were executed. Results are shown
in Figure 5. Overlaps of the graph on the y-axis represent
sequences of instructions which are repeatedly executed (such
as loops). Flow classification exhibits very linear program
behavior with very little repetition of instructions. The other 3
applications show very regular patterns in which the instruc-
tions are accessed. For example, in IPSec encryption, a block
of instructions approximately 70 instructions long is executed
8 times between instructions 500 and 1,000 and instructions
1,500 and 2,000.

D. Impact of Results

The results shown above give some interesting insights into
packet processing workloads. While the set of applications
used does not consider all possible types of packet processing,
a good coverage of basic applications is achieved.

The workload characteristics can be used in many ways.
We are discussing here a few usages that pertain to our current
research. Using the processing complexity and memory access
characteristics, it is possible to derive an analytic model to
estimate the processing delay of a packet given an application.
This is useful in the context of network simulations, where pro-
cessing delay is currently not or only superficially considered.
Preliminary results can be found in [25].

The detailed instruction grouping is useful to identify se-
mantic groups of instructions. In network processors, it is
desirable to speed up operations with co-processors. It is
however difficult to generally identify operations that are used
frequently enough to justify the hardware expense of a co-
processor. Sets of instructions that are repeatedly executed can
easily be identified with the instruction grouping plots shown
in Figure 5. For example, IPSec clearly shows such a sequence
of repeated operations.



Packet

Non-Packet

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Instructions

(a) IPv4-radix

Packet

Non-Packet

0 50 100 150 200 250 300 350

Instructions

(b) IPv4-trie

Packet

Non-Packet

0 20 40 60 80 100 120 140 160

Instructions

(c) Flow Classification

Packet

Non-Packet

0 500 1000 1500 2000 2500

Instructions

(d) Encryption

Fig. 4. Detailed Memory Access Patterns for a Single Packet from the MRA Trace.

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500

U
ni

qu
e 

in
st

ru
ct

io
n 

ad
dr

es
s

Instruction

(a) IPv4-radix

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350

U
ni

qu
e 

in
st

ru
ct

io
n 

ad
dr

es
s

Instruction

(b) IPv4-trie

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160

U
ni

qu
e 

in
st

ru
ct

io
n 

ad
dr

es
s

Instruction

(c) Flow Classification

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500

U
ni

qu
e 

in
st

ru
ct

io
n 

ad
dr

es
s

Instruction

(d) Encryption

Fig. 5. Detailed Instruction Access Patterns for a Single Packet from the MRA Trace.



Finally, the results are useful for the workload character-
istics themselves. We have developed several analytic perfor-
mance models for network processors [12] [13], which all rely
on accurate workload parameters. PacketBench can provide
such statistics and also allows to generate them easily for new
applications.

VI. CONCLUSION

In this paper, we have presented PacketBench, a tool for
analyzing network processing workloads. PacketBench pro-
vides a simple platform for developing network processing
applications and simulating them in a realistic way using real
packet traces. We present results for four different networking
applications – ranging from simple IP forwarding to complex
encryption processing.

The workload characteristics derived with PacketBench
focus mostly on novel, packet-processing related character-
istics. In particular, we are able to combine microarchitectural
statistics (e.g., instruction count) with networking metrics
(e.g., packet size) to gain a better understanding of network
processing workloads.

REFERENCES

[1] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D. Saha.
Design, implementation and performance of a content-based switch. In
Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.

[2] ARM Ltd. ARM7 Datasheet, 2003.
[3] F. Baker. Requirements for IP version 4 routers. RFC 1812, Network

Working Group, June 1995.
[4] D. Burger and T. Austin. The SimpleScalar tool set version 2.0.

Computer Architecture News, 25(3):13–25, June 1997.
[5] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B.

Vincente, and D. Villela. A survey of programmable networks. Computer
Communication Review, 29(2):7–23, Apr. 1999.

[6] P. Crowley and J.-L. Baer. A modelling framework for network processor
systems. In Network Processor Workshop in conjunction with Eighth
International Symposium on High Performance Computer Architecture
(HPCA-8), pages 86–96, Cambridge, MA, Feb. 2002.

[7] P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad. Workloads
for programmable network interfaces. In IEEE Second Annual Workshop
on Workload Characterization, Austin, TX, Oct. 1999.

[8] P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad. Char-
acterizing processor architectures for programmable network interfaces.
In Proc. of 2000 International Conference on Supercomputing, pages
54–65, Santa Fe, NM, May 2000.

[9] J. Daemen and V. Rijmen. The block cipher Rijndael. In Lecture Notes
in Computer Science, volume 1820, pages 288–296. Springer-Verlag,
2000.

[10] K. B. Egevang and P. Francis. The IP network address translator (NAT).
RFC 1631, Network Working Group, May 1994.

[11] EZchip Technologies Ltd., Yokneam, Israel. NP-1 10-Gigabit 7-Layer
Network Processor, 2002. http://www.ezchip.com/html/pr np-1.html.

[12] M. A. Franklin and T. Wolf. A network processor performance and
design model with benchmark parameterization. In P. Crowley, M. A.
Franklin, H. Hadimioglu, and P. Z. Onufryk, editors, Network Processor
Design: Issues and Practices I, chapter 6, pages 117–138. Morgan
Kaufmann Publishers, Oct. 2002.

[13] M. A. Franklin and T. Wolf. Power considerations in network processor
design. In Network Processor Workshop in conjunction with Ninth
International Symposium on High Performance Computer Architecture
(HPCA-9), pages 10–22, Anaheim, CA, Feb. 2003.

[14] IBM Corp. IBM Power Network Processors, 2000.
http://www.chips.ibm.com/products/wired/communications/net-
work processors.html.

[15] IETF. Open Pluggable Edge Services, 2003. http://www.ietf-opes.org/.
[16] Intel Corp. Intel IXP1200 Network Processor, 2000. http://www.in-

tel.com/design/network/products/npfamily/ixp1200.htm.
[17] S. Kent and R. Atkinson. Security architecture for the internet protocol.

RFC 2401, Network Working Group, Nov. 1998.
[18] G. Memik, W. H. Mangione-Smith, and W. Hu. NetBench: A bench-

marking suite for network processors. In Proc. of International Confer-
ence on Computer-Aided Design, San Jose, CA, Nov. 2001.

[19] J. C. Mogul. Simple and flexible datagram access controls for UNIX-
based gateways. In USENIX Conference Proceedings, pages 203–221,
Baltimore, MD, June 1989.

[20] National Laboratory for Applied Network Research - Passive Mea-
surement and Analysis. Passive Measurement and Analysis, 2003.
http://pma.nlanr.net/PMA/.

[21] NetBSD Project. NetBSD release 1.3.1. http://www.netbsd.org/.
[22] Network Processor Forum. Benchmarking Implementation Agreements,

2003. http://www.npforum.org/benchmarking/bia.shtml.
[23] K. Psounis. Active networks: Applications, security, safety, and archi-

tectures. IEEE Communications Surveys, 2(1), Q1 1999.
[24] X. Qie, A. Bavier, L. Peterson, and S. Karlin. Scheduling computations

on a software-based router. In Proc. IEEE Joint International Conference
on Measurement & Modeling of Computer Systems (SIGMETRICS),
pages 13–24, Cambridge, MA, June 2001.

[25] R. Ramaswamy, N. Weng, and T. Wolf. Considering processing cost
in network simulations. In Proc. of Workshop on Models, Methods and
Tools for Reproducible Network Research (MoMeTools) in conjunction
with ACM SIGCOMM, Karlsruhe, Germany, Aug. 2003.

[26] SimpleScalar LLC. http://www.simplescalar.com, 2003.
[27] A. S. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,

S. T. Kent, and W. T. Strayer. Hash-based ip traceback. In Proc. of ACM
SIGCOMM 2001, pages 3–14, San Diego, CA, Aug. 2001.

[28] Standard Performance Evaluation Corporation. SPEC CPU2000 -
Version 1.2, Dec. 2001.

[29] TCPDUMP Repository. http://www.tcpdump.org, 2003.
[30] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,

and G. J. Minden. A survey of active network research. IEEE
Communications Magazine, 35(1):80–86, Jan. 1997.

[31] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design space
exploration of network processor architectures. In Network Processor
Workshop in conjunction with Eighth International Symposium on High
Performance Computer Architecture (HPCA-8), pages 30–41, Cam-
bridge, MA, Feb. 2002.

[32] Transaction Processing Performance Council. TPC Benchmark C,
Revision 5.1, Dec. 2002.

[33] T. Wolf and M. A. Franklin. CommBench - a telecommunications
benchmark for network processors. In Proc. of IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 154–162, Austin, TX, Apr. 2000.


