
Collaborative Monitors for Embedded System Security

Tilman Wolf*, Shufu Mao*, Dhruv Kumar*, Basab Datta*, Wayne Burleson* and Guy Gogniat†
*Department of Electrical and Computer Engineering † Laboratory LESTER

University of Massachusetts, Amherst, USA University of South Britanny, Lorient, France
{wolf,mao,kumar,bdatta,burleson}@ecs.umass.edu guy.gongniat@univ-ubs.fr

ABSTRACT
This paper presents a hardware based approach to embedded sys-
tems security. Usage of on-chip monitors is proposed for identify-
ing attacks on embedded systems by tracking the operation of the
system. Two types of monitors: a processing monitor and thermal
monitor are presented with their detailed operation and results. The
effectiveness of this security system can be enhanced by correlat-
ing information from both monitors through collaborative decision
making.

1. INTRODUCTION
The expansion of the Internet to a wide range of networked em-

bedded devices introduces a myriad of security and reliability con-
cerns. Already, the proliferation of network connectivity to mobile
wireless ”thin clients” has expanded the scope of potentially vul-
nerable systems to include critical infrastructure for finance, health,
transportation, power, communications, and defense. Networked
computer systems are known to be susceptible to a range of hack-
ing and denial-of-service attacks and recent research efforts have
focused mainly on conventional client and server systems and the
Internet that interconnects them. The new generation of embedded
systems will be characterized by remote and unmanned nodes and
specialized computations, but also limited processing, communica-
tion, and power resources, which makes them inherently vulnerable
to a new class of attacks.

In our recent work, we have proposed a novel systems architec-
ture to support dynamic security on embedded systems by contin-
uous on-chip monitoring of the operation of the system [10], [11].
The key aspect of this system is that verification and protection are
provided in a dedicated hardware system. Thus security is provided
by a subsystem that is fundamentally separate from the system that
is under attack. Using a separate subsystem for attack detection
not only helps provide a level of security that is not available with
software solutions, but also reduces the impact on processing per-
formance and energy consumption of the protected system.

In this paper, we address the important question of how to design
monitors that can detect abnormal system behavior and protect the
system from known and unknown attacks. We also discuss how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
First Workshop on Embedded System Security in conjunction with EMSOFT
’06, October 26, 2006, Seoul, South Korea.
Copyright 2006 ACM ...$5.00.

to use the information from multiple monitors to make joint deci-
sions that lead to a more accurate detection of threads. Our specific
contributions are threefold:

• Design of a processing monitor. This monitor tracks the
processing steps the system’s embedded processor core and
compares them to the expected behavior of the application.

• Design of a thermal monitor. This monitor uses simple ring
oscillators to track the temperature of a particular region of
the chip to detect thermal attacks.

• Collaborative monitoring. We discuss an approach to inte-
grating the information from multiple monitors to detecting
attacks.

The remainder of the paper is organized as follows. Section 2
discusses related work in the area of embedded systems security.
Section 3 briefly introduces the general architecture of our embed-
ded systems monitoring system. Sections 4 and 5 introduce the
processing and thermal monitors. Section 6 discusses collabora-
tive attack detection and Section 7 summarizes and concludes this
paper.

2. RELATED WORK
A system level approach to security is essential since it defines

the security architecture that designers have to be aware of when
building a new system [2], [7]. This can be done through security
primitives and protocols that are used to guarantee privacy and in-
tegrity of users, these security methods are mainly defined through
standards and are part of the system [28]. In [18] the security archi-
tecture to build a mobile embedded system is discussed and a new
solution to deal with security issues is proposed. In their work they
focus on security primitives and security protocols but they do not
address the attack issue. Proximity-attacks are of major concern
in embedded systems as presented in [3], [12], [21], and [26] and
remote-attacks [9], [27] are even more dangerous since they can
be performed at a large-scale through the network. In [7], [9], and
[25] different types of remote-attacks are presented for embedded
systems that are based on software or protocol weaknesses. In our
work, we focus on protecting the system through monitoring its be-
havior, detecting abnormal activity, and to reacting when deviation
to expected behavior exceeds some threshold.

In [20] and [16] a formalization of attacks on software is pro-
vided. Their approach is based on a graph definition that describes
the potential paths to get access to sensitive information or codes
for an existing application. This formalization gives designers a
guide to build their system as no path must be found within their
applications in order to provide a safe system. Our work builds
on these approaches and shows a framework for efficient and high

performance detection and mitigation of many classes of attacks.
In our approach the formalization is based on profiling to define
expected behavior of the system and considering any significant
deviation from normal operation an attack.

In the context of monitoring processing on embedded systems,
using a secure co-processor to monitor operating system kernel data
structures and invariants has been proposed by Zhang [29]. This ap-
proach requires a hardware co-processor that is implemented as a
separate PCI card and is targeted at workstation computers rather
than embedded systems. Arora et al. have proposed a system [4]
that is conceptually similar to our work. The main difference is that
their finest granularity of monitoring is the basic-block level due to
the use of per-block hash values. In our work, deviations from the
binary can be determined within a single (or a few) instructions.
Suh et al. use the concept of “information flow” to track if data is
considered authentic or spurious (i.e., potentially malicious) [22].
This system requires a much more complex design that needs to be
integrated with the processor. Our solution operates in parallel to
the embedded processor and has a very simple interface. Abadi et
al. have proposed a control-flow integrity solution where binaries
are modified to monitor processing [1]. In our approach to mon-
itoring processing, we do not need change binaries. In stead of
monitoring system security on the embedded processor itself, we
use separate system resources (i.e., dedicated hardware monitors)
to reduce the vulnerability of the system.

Another type of monitor that fits into our general architecture
is bus protection as proposed in [30]. This bus protection aims to
remove all data leakage as data is transferred between processor
and memory. Their approach is based on control flow graph anal-
ysis which provides a unique signature of the application, which is
conceptually similar to our approach of monitoring processing.

Davar et al. [8] described possible thermal attacks and thermal
monitors are proposed in [6]. In [19] a dynamic critical path pre-
dictor enables reduced processor power consumption. These mon-
itors and predictors track system behavior in the same spirit as our
security-driven thermal monitor. In [23] temperature monitors are
used at various on-chip locations to sense thermal fluctuations. In-
dividual monitors are coordinated by a central controller. In both
systems, communication with the main controller is not secure and
hence is vulnerable to attacks. Our work uses monitors that can
adapt threshold values dynamically depending on the current ap-
plication running. This information is obtained through integration
with the processing monitor.

3. SECURE EMBEDDED SYSTEMS
Attacks on embedded systems can be motivated by a number of

different goals. The following list illustrates this point (but is not
meant as a complete enumeration of all possible scenarios):

• Extraction of secret information (e.g., reading of cryptographic
key material from a smart card).

• Modification of stored or sensed data (e.g., tampering with
utility meter readings).

• Denial of service attack (e.g., reducing the functionality of a
sensor network).

• Hijacking of hardware platform (e.g., reprogramming of TV
set-top box).

• Damaging or destruction of device (e.g., overheating of chip
in thermal attack).

embedded
processor

processing
monitor

memory

comparison
logic

Embedded System

monitoring
stream

off-line

run-time

off-line program
analysis

call
stackinterrupt /

recovery action

application
binary monitoring

graph

thermal
monitor

processing
monitor

interrupt /
recovery action

thermal monitor

threshold
logic

ring
oscillator

collaborative
monitoring

logic

Figure 1: Monitoring Architecture on Embedded System.

In each of these cases, the attack relies on the ability to get access
to the embedded system and change its behavior (i.e., change in
instruction memory) or its data (i.e., change in data memory). It
is important to note that in most attack scenarios a modification of
behavior is necessary even when modification of or access to data
is the ultimate goal of the attack. It is also important to observe that
many of the attacks are exploiting vulnerabilities that are common
to many different embedded system architectures.

The general concept of our hardware security approach is to
augment conventional system-on-a-chip hardware with additional
component for monitoring and defense mechanisms. The monitor-
ing and verification capability of the system needs to be provided
in hardware for several reasons. First, hardware can monitor the
operations of the system at a much finer granularity than software
(e.g., bus transactions). Second, hardware can easily correlate mul-
tiple events that occur in parallel on the system (e.g., I/O operation
at the same time a private key is read from memory). Third, certain
system functions can only be monitored by specialized hardware
components (e.g., power drain, temperature, tampering, and soft
errors from fault-induced attacks.). Software monitoring and veri-
fication is limited to the domain in which it operates, i.e. the CPU
of the system, but hardware monitoring can expand the perimeter
of security monitoring to the entire embedded system.

In our prior work, we have described the design of the monitor-
ing subsystem infrastructure [10], [11]. We have proposed to use
an on-chip network that connects all monitoring components. The
details of this design go beyond the scope of this paper. Instead, we
focus on two specific types of monitors: a processing monitor and
a thermal monitor. Their operation and interaction with the em-
bedded system is illustrated in Figure 1. The system architecture
consists of four major components operating in parallel:

• Conventional Embedded Processing Subsystem. This part
of the architecture consists of a general-purpose processor,
memory, I/O, and any other components that are necessary
to execute the embedded system application. The only addi-
tion to this part of the system is an extension to the proces-
sor core that continuously sends a stream of information to
the processing monitor subsystem. There is also a feedback
component from the each monitor system (and also from the
collaborative monitoring logic – not shown) to the proces-
sor. In the case an attack is detected, the monitor can halt the
processor and possibly initiate a recovery attempt.

• Processing Monitor Subsystem. This monitor compares the
stream of information sent from the processor with the ex-

pected behavior derived from the off-line analysis of the bi-
nary. A “monitoring graph” represents the sequence of possi-
ble control flows between basic blocks. More detailed infor-
mation about the processing steps within each basic blocks
is also maintained. In order to be able to keep track of all
permissible control flows, a call stack is necessary. If the
comparison logic determines that there is a discrepancy be-
tween the stream of information from the processor and the
monitoring graph, it determines that an attack occurred and
initiates an interrupt to the processor. As indicated in the
figure, the monitoring graph is generated in an off-line pro-
cess, where the binary of the application is simulated and an-
alyzed. The simulation is necessary to resolve some branch
targets that cannot be determined statically. It is important to
note that this process indeed only requires the binary and not
the source code of the application.

• Thermal Monitor Subsystem. This monitor collects tem-
perature information at one or many points of the chip and
uses it to determine if unusual or dangerous patterns warrant
slowing the system clock or halting the processor. We pro-
pose to use a ring oscillator circuit that can measure tempera-
ture changes while being entirely implemented in CMOS. A
simple threshold-based decision logic is used to detect crit-
ical conditions. The information from the thermal sensor is
used in the collaborative monitoring logic.

• Collaborative Monitoring Logic. Each monitor is special-
ized to detect particular conditions and events. In order to
more effectively avoid false-positives and false-negatives in
the attack detection, the information of multiple monitors can
be used to make a collaborative decision. In the case of pro-
cessing and thermal monitors, for example, the thermal pro-
file is much easier to track when information on the control
flow within the program is available. This makes it feasible
to correlate higher processor temperatures with processing-
intensive tasks in the program without raising a false alarm.

The following sections describe each of the monitoring compo-
nents in more detail and present results on their operation.

4. PROCESSING MONITOR
To achieve secure processing, our monitoring system verifies that

the processor indeed performs the operations that it was intended
to. In order for an attacker to abuse an embedded system, it is
necessary to modify its operation in some way: either by adding
a new piece of instruction code that performs malicious operations
or by modifying the existing application to execute malicious code.
Thus, in an off-line process, the binary code of an embedded sys-
tem application is analyzed and an augmented control flow graph is
obtained. Due to the simplicity of embedded systems workloads, it
is possible to extract this information efficiently. During run-time,
the embedded processor reports on the progress of application pro-
cessing by sending a stream of information to the monitoring sys-
tem. The monitoring system compares the stream to the expected
behavior of the program as derived from the executable code. If the
processor deviates from the set of possible execution paths, then
it is assumed that an attacker has altered the instruction store or
program counter to alter the behavior of the system.

There are several different approaches to what information the
processor should provide to the monitor. We evaluate streams of
instruction addresses, opcodes, and control flow operations. Figure
2 illustrates the information that is used in each case for each of the
monitoring graphs:

...

020004d0 str r0, [sp]

020004d4 str r0, [sp, #4]

020004d8 ldr r1, [pc, #1c4]

020004dc sub r4, r11, #2080

020004e0 ldr r3, [pc, #1c0]

020004e4 sub r4, r4, #8 ; 0x8

020004e8 ldr r2, [r11, -#2136]

020004ec mov r0, r4

020004f0 bl 02091aa0

020004f4 mov r0, r4

020004f8 mov r1, #0 ; 0x0

020004fc bl 020905dc

...

sample object code

...

020004d0

020004d4

020004d8

020004dc

020004e0

020004e4

020004e8

020004ec

020004f0

020004f4

020004f8

020004fc

...

address

...

str

str

ldr

sub

ldr

sub

ldr

mov

bl

mov

mov

bl

...

opcode

...

*

*

*

*

*

*

*

*

bl 02091aa0

*

*

bl 020905dc

...

control flow

monitoring graph

Figure 2: Examples of Monitoring Graphs for Different Infor-
mation Streams.

• The idea behind using the instruction address as an indicator
for monitoring processing is that each instruction address is
unique. Assuming instruction memory cannot be corrupted,
a program must follow exactly the same sequence of instruc-
tions as it had been programmed to do. Using addresses,
however, is vulnerable for the same reason. If an attacker
can replace parts of the application code with a sequence of
instructions that has the same basic block structure as the
original, this change goes undetected. This vulnerability is
due to the pattern using no information on what instructions
are actually executed on the processor.

• In contrast to the address pattern, the opcode pattern focuses
solely on the operations that are performed on the proces-
sor. The intuition behind using this information for mon-
itoring processing is that the sequence of operations paral-
lels the underlying functionality of the program. An attacker
would need replace instructions with malicious instructions
that use the same opcodes (but possibly different operands)
in the same sequence. This type of attack is likely to be more
challenging than in the case of the address pattern.

• Another intuitive pattern is the control flow pattern. In this
pattern, all control flow operations are stored (e.g., branches,
calls, returns) including their branch targets if applicable.
This allows the monitor to track any change in the program
counter, but exhibits a similar vulnerability as the address
patterns since there is no information exchange on the actual
operation of the processor. In related work, similar informa-
tion is used to monitor processing [4]. In some cases the con-
trol flow information is limited to system calls. We consider
control flow at the level of basic blocks.

Given the monitoring graph that matches one of the patterns from
above, the comparison logic can verify that the processing on the
embedded system follows a possible path of execution:

• Monitoring within a Basic Block: Within a basic block,
the comparison logic simply follows the sequence of pat-
terns that is stored in the monitoring graph. For example,
in the case of the opcode pattern, the monitor compares the
opcodes reported by the processor to those in the current ba-
sic block of the monitoring graph. If wildcards are used (e.g.,
for the control flow pattern), any instructions reported by the
processor can match the wildcard, except those that are part

of the pattern (loads and stores in this case). The necessary
logic is straightforward to implement since it comes down
to a simple comparison between what the processor reports
and what is stored in the monitoring graph. Note that each
wildcard replaces exactly one single instruction and not an
arbitrary number of instructions. Thus, there is no ambiguity
in this comparison process.

• Monitoring between Basic Blocks: When the end of a basic
block is reached, control flow branches to one of up to two
targets. The monitoring logic does not replicate the data path
of the processor and thus cannot determine which branch is
taken. Also, information from the processor should not be
used to make this decision to avoid being influenced by an
attacker. Instead, the comparison logic allows for multiple
parallel execution paths. That is, the monitor allows the cur-
rent state of execution to be in multiple locations in the mon-
itoring graph at the same time. As monitoring progresses,
some of these states turn out to be invalid and thus are pruned
from the set of concurrent states. If all states lead to invalid
comparisons, then an attack is detected.

To illustrate the monitoring process between basic blocks, con-
sider an opcode monitor at the end of a basic block where the cur-
rent instruction is a conditional branch. In the next instruction, the
processor either jumps to the branch target (e.g., an add instruction)
or continues with the following instruction (e.g., a sub instruction).
After validating the branch, the opcode monitors allows both fol-
lowing instructions to be valid states. If either an add or a sub is
reported by the processor, the monitor accepts it as correct. At the
same time, the path that does not match gets pruned. Depending on
the code of the application, the duration for which the monitor is in
an ambiguous state varies. As a result, detection of possible attacks
can be drawn out until all ambiguity is removed and the monitor is
certain that a reported processing sequence is invalid.

To quantify the performance, we have simulated the processing
monitor on an ARM instruction set processor. We use the MiBench
benchmark suite [13] to generate realistic workloads for an embed-
ded system scenario. The SimpleScalar simulator is used to extract
the relevant monitoring information that is passed on to the moni-
tor. We have tested the monitoring for the majority of applications
in the MiBench suite, but only present results from the patricia ap-
plication due to space constraints.

There are two metrics that are important to consider: size of the
monitoring graph and speed of detection. The size of the monitor-
ing graph determines the overhead of the monitor compares. The
comparison logic in the processing monitor is simple and can be
implemented with few system resources, the memory to store the
monitoring graph can be present a considerable overhead. In the
patricia application, the size of the monitoring graph is 150kB for
the address pattern and 120kB for the opcode pattern and for the
control flow pattern. In comparison, the complete binary for the
application is 1.1MB. This means that the secure monitor has an
overhead of approximately 11–13% in terms of memory require-
ments. For other applications, similar overheads of around 10%
were observed.

In terms of how well a deviation from normal program behavior
can be detected, there are two metrics that can be considered. The
number of ambiguous states that are present in the monitor due to
branches is shown for a sample of 1000 instructions in Figure 3.
This shows that there are phases of no ambiguity interleaved with
phases of heavy ambiguity. A different metric is the measure of
how long an ambiguous state lasts. This reflects how long the mon-
itor cannot be entirely sure that the program execution is correct.

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

address

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

opcode

 1

 10

133500132500

pa
ra

lle
l s

ta
te

s

instruction

control flow

Figure 3: Snapshot of Monitoring of 1000 Instructions in patri-
cia Application.

The address pattern show only one step of ambiguity at the point
of a conditional branch. For the opcode pattern, 93% of ambiguous
phases are shorter than 10 instruction and 96% are shorter than 100
instruction. For the control flow pattern, only 62% of ambiguous
phases are shorter than 10 instructions and 99% are shorter than
100 instructions.

5. THERMAL MONITOR
The notion of monitoring certain characteristics of embedded

systems for secure processing can also include temperature sens-
ing. This information can be used to gather more information to
detect anomalies and attacks. With the increasing sophistication of
embedded systems and the higher power density values in chips,
temperature-related effects and attacks are becoming increasingly
important. For example, disk drives in embedded systems (e.g.,
iPod) are severely susceptible to erroneous operation at high tem-
peratures – if ambient temperature increases by 5 degrees Celsius
over the designed value, disk drives are 15% more likely to crash-
ing [24]. Thermal attacks in processors were elucidated by Dad-
var and Skadron [8]. Since there is often no place for forced air
cooling systems in embedded systems due to shrinking form fac-
tors and portability requirements, thermal problems continue to be
present despite low-power component designs. Malfunctioning of
devices due to thermal conditions can facilitate intrusion and hence
it is necessary to incorporate schemes to detect and prevent such
attacks. Sensors that can detect abnormal thermal conditions can
help prevent attacks as well as non-malicious misuse of the proces-
sor (e.g., process variations, design flaws etc.).

Modern Dynamic Thermal Management (DTM) systems use ther-
mal transducers to obtain accurate temperatures of the chip and
then dynamically scale the frequency and voltage. Some of the sen-
sors commonly used are thermal diodes and ring oscillators. Ring
oscillator based sensors provide a digital output and can be used
to design sensors for embedded microprocessors. The ring oscil-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 40 60 80 100 120

fr
eq

ue
nc

y
in

 M
H

z

temperature in C

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 40 60 80 100 120

fr
eq

ue
nc

y
in

 M
H

z

temperature in C

Figure 4: Dependence of Frequency on Temperature for a Ring
Oscillator. The oscillator uses 11 stages and assumes 65nm
CMOS technology.

lator is basically a circuit consisting of a series of odd number of
inverters with the output of the last inverter serving as the input to
the first. This system is inherently unstable and oscillates at a fre-
quency dependent on the delay across each inverter, which again is
dependent on the temperature. Figure 4 shows how the frequency
changes with the junction temperature, thus qualifying the oscil-
lator as an effective thermal transducer. The power supply noise
sensitivity of the sensor can be mitigated by increasing the number
of inverters in the oscillator. The resolution of ring oscillators—
close to 2 degrees Celsius—is excellent due to the high linearity
over the temperatures of interest.

An alternative approach to monitoring temperature is to use hard-
ware access counters [15] as a proxy for temperature. Architectural
level power simulators like Wattch [5] use access count as a way to
compute the total power. Both approaches to monitoring tempera-
ture are useful in the context of merging temperature information
with processing information to achieve collaborative monitoring.

The overhead for implementing thermal monitors is low. When
using access counters, access rates need to be maintained for dif-
ferent resources. But the time constants involved in hotspot gen-
eration are large, and tracking can be done through sampling (e.g.,
every 1000 cycles [14]). To improve the space efficiency of the
access monitors, a running average of access rate values could be
maintained instead of storing all of the values. The hardware in-
frastructure required to monitor access rate behavior comprises of
one counter, a few registers (depending on the level of monitoring
granularity), and some peripheral arithmetic logic.

A VLSI implementation of a ring-oscillator-based thermal sen-
sor requires very little area and power overhead (e.g., 0.5% of die
area and 0.5% of the power consumption of a processor [17]). Such
implementations provide temperature information over a range of
20–80 degrees Celsius with an accuracy of 3 degrees. It is possible
to calibrate such circuits against different power supply voltages,
circuit die temperature, and manufacturing variations to further im-
prove accuracy.

6. COLLABORATIVE DETECTION
The goal of attack detection through collaborative monitoring

is to reduce the false-positive and false-negative rates that would
be achieved by using independent monitors. In our scenario of
processing and thermal monitors, temperature information can be

 0

 500

 1000

 1500

 2000

 2500

 0 20000 40000 60000 80000

cu
m

m
ul

at
iv

e
A

LU
 a

cc
es

se
s

time in processor clock ticks

ALU accesses
alarms

Figure 5: Points where ALU Access are Dangerously High and
Cause an Alarm.

correlated with the monitoring graphs in the processing monitor.
Specifically, the monitoring graphs can identify program regions
that use more power (and thus dissipate more heat) in certain com-
ponents than others. If thermal information was used without the
processing context, the static alarm threshold would either be too
conservative (i.e., causing false alarms in regions of intense pro-
cessing) or too optimistic (i.e., opening avenues for potential at-
tacks that cannot be detected).

Figure 5 shows a scenario with the anagram application, where
ALU accesses are monitored. Using access counters (or ring oscil-
lators in a actual implementation), the temperature of the ALU can
be estimated. If a static threshold for monitoring was used, then
processing regions with frequent accesses trigger an alarm. These
regions are marked in Figure 5. Clearly it is undesirable to get this
large number of false alarms. By raising the threshold, the number
of alarms can be reduced. The drawback is that in most programs
that are short periods of intense ALU access. If the threshold was
raised so high as to not cause false alarms in these regions, the sen-
sitivity of the thermal monitor would no longer be useful.

In a collaborative monitoring approach, the run-time information
on valid program operation obtained from the processing monitor
can be used for determining the a suitable threshold. For exam-
ple, the opcode information stream (see Figure 2) can be used to
identify ALU operations. By maintaining a suitable counter of re-
cent history of ALU accesses, the temperature can be estimated and
compared to the actual value obtained from the thermal monitor.
This approach allows a change in temperature in different program
regions and thus does not display the problems that are encountered
when using a static threshold.

7. SUMMARY
In this paper, we have presented two types of hardware-based

on-chip monitors for embedded systems that can track processing
operations and thermal signatures. We have shown how each sys-
tem operates and is able to identify a certain set of attacks. By
using collaborative monitoring, where information from both types
of monitors is correlated, we can improve the effectiveness of the
monitors and increase the security of the embedded system.

8. REFERENCES
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.

Control-flow integrity principles, implementations, and

applications. In ACM Conference on Computer and
Communications Security, pages 340–353, Alexandria, VA,
Nov. 2005.

[2] R. J. Anderson. Security Engineering, A Guide to Building
Dependable Distributed Systems. Wiley, Jan. 2001.

[3] R. J. Anderson and M. G. Kuhn. Low cost attacks on tamper
resistant devices. In Proceedings of the 5th International
Workshop on Security Protocols, volume 1361 of Lecture
Notes In Computer Science, pages 125–136. Springer-Verlag,
1998.

[4] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Secure
embedded processing through hardware-assisted run-time
monitoring. In Proc. of the Design, Automation and Test in
Europe Conference and Exhibition (DATE’05), pages
178–183, Munich, Germany, Mar. 2005.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proc. of ACM ISCA-27, pages 83–94,
Vancouver, BC, June 2000.

[6] E. Chi, A. M. Salem, R. I. Bahar, and R. Weiss. Combining
software and hardware monitoring for improved power and
performance tuning. In Proceedings of the Seventh Workshop
on Interaction between Compilers and Computer
Architectures (INTERACT ’03), page 57, Anaheim, CA, Feb.
2003.

[7] B. Cole. Balancing cost vs. security for embedded design.
Technical report, EE Times, Sept. 2005.
http://www.eetimes.com/showArticle.
jhtml?articleID=170102341.

[8] P. Dadvar and K. Skadron. Potential thermal security risks.
In Proc. of Twenty First Annual IEEE Semiconductor
Thermal Measurement and Management Symposium, pages
229–234, Mar. 2005.

[9] T. Dagon, T. Martin, and T. Starner. Mobile phones as
computing devices: the viruses are coming! IEEE Pervasive
Computing, 3(4):11–15, Oct. 2004.

[10] G. Gogniat, T. Wolf, and W. Burleson. Reconfigurable
security primitive for embedded systems. In Proc. of
International Symposium on System-on-Chip (SOC),
Tampere, Finland, Nov. 2005.

[11] G. Gogniat, T. Wolf, and W. Burleson. Reconfigurable
security support for embedded systems. In Proc. of 39th
Hawaii International Conference on System Science
(HICSS-39), Poipu, HI, Jan. 2006.

[12] S. Guilley and R. Pacalet. SoC security: a war against
side-channels. Annals of Telecommunications, 59(7–8), July
2004.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In Proc. of IEEE
4th Annual Workshop on Workload Characterization, Austin,
TX, Dec. 2001.

[14] J. Hasan, A. Jalote, T. N. Vijaykumar, and C. E. Brodley.
Heat stroke: Power-density-based denial of service in SMT.
In Proc. of the 11th International Symposium on
High-Performance Computer Architecture (HPCA), pages
166–177, San Francisco, CA, 2005.

[15] K.-J. Lee and K. Skadron. Using performance counters for
runtime temperature sensing in high-performance processors.
In Proc. of International Symposium on Parallel and
Distributed Systems (IPDPS), 2005.

[16] P. Manadhata and J. M. Wing. An attack surface metric.
Technical Report CMU-CS-05-155, Department of
Computer Science, Carnegie Mellon University, July 2005.

[17] R. McGowen, R. A. Poirier, C. Bostak, J. Ignowski,
M. Millican, W. H. Parks, and S. Naffziger. Power and
temperature control on a 90-nm Itanium family processor.
IEEE Journal of Solid-State Circuits, 41(1):229–237, Jan.
2006.

[18] P. Schaumont and I. Verbauwhede. Domain-specific
codesign for embedded security. IEEE Computer,
36(4):68–74, Apr. 2003.

[19] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power
with dynamic critical path information. In MICRO 34:
Proceedings of the 34th annual ACM/IEEE international
symposium on Microarchitecture, pages 114–123, Austin,
Texas, Dec. 2001.

[20] O. Sheyner and J. M. Wing. Tools for generating and
analyzing attack graphs. In Proc. of Second International
Symposium on Formal Methods for Components and
Objects, volume 3188 of Lecture Notes in Computer Science,
pages 344–372, Leiden, The Netherlands, Nov. 2003.

[21] F.-X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde,
and J.-J. Quisquater. Power analysis of FPGAs: how
practical is the attack? In Proc. of 13th Conference on Field
Programmable Logic and Application, volume 2778 of
Lecture Notes In Computer Science, pages 701–711.
Springer-Verlag, Sept. 2003.

[22] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking. In
ASPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming
languages and operating systems, pages 85–96, Boston, MA,
Oct. 2004.

[23] S. Velusamy, W. Huang, J. Lach, M. R. Stan, and K. Skadron.
Monitoring temperature in FPGA based SoCs. In Proc. of
23rd International Conference on Computer Design (ICCD
2005), pages 634–640, San Jose, CA, Oct. 2005.

[24] W. Webb. Take the heat: Cool that hot embedded design.
Technical report, EDN, May 2004.
http://www.edn.com/article/CA415105.html.

[25] J. M. Wing. A call to action: look beyond the horizon. IEEE
Security and Privacy Magazine, 1(6):62–67, Nov. 2003.

[26] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs:
state-of-the-art implementations and attacks. Transactions on
Embedded Computing Systems, 3(3):534–574, Aug. 2004.

[27] A. Wood and J. A. Stankovic. Denial of service in sensor
networks. IEEE Computer, 35(10):54–62, Oct. 2002.

[28] C. Xenakis and L. F. Merakos. Security in third generation
mobile networks. Computer Communications,
27(7):638–650, May 2004.

[29] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer.
Secure coprocessor-based intrusion detection. In Proc. of
Tenth ACM SIGOPS European Workshop, Saint-Emilion,
France, Sept. 2002.

[30] X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure
for efficiently protecting information leakage on the address
bus. In Proc. of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS XI), pages 72–84, Boston, MA,
Oct. 2004.

