
358 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Aggregated Hierarchical Multicast—A
Many-to-Many Communication Paradigm

Using Programmable Networks
Tilman Wolf, Member, IEEE,and Sumi Y. Choi, Student Member, IEEE

Abstract—Developments toward ubiquitous and pervasive com-
puting have lead to application scenarios where a large number of
sensors and computing devices are connected to the network. These
devices might constantly send status information via multicast to
a number of applications or users. One big challenge in this envi-
ronment is the amount of data traffic generated by such sensors,
which depends on the size of the data, the transmission frequency,
and the number of senders and receivers. However, for certain ap-
plications it is sufficient to receive less accurate, aggregated data
from a group of sources. This leads to the possibility of using pro-
grammable routers to perform such data aggregation inside the
network.

While the basic algorithm for data merging has been described
in literature, we address how a large number of sources can be or-
ganized in a hierarchical structure to allow multiple users to get a
view of all sensors at different levels of aggregation. With the con-
trol information that is provided by an aggregating node, the user
can traverse the aggregation tree by joining different multicast ses-
sions that transmit different levels of detail. This provides a novel
communication paradigm that reduces the network overhead from
continuously transmitting sources and organizes data in a way that
it is useful to receivers.

We provide two detailed example scenarios: A battlefield infor-
mation system, which aggregates geographic location data of units,
and a conferencing application, which aggregates audio data. We
describe the aggregation algorithm that is used and analyze its ef-
fect on delay and jitter of periodic transmissions by the sources.
We describe the hierarchical control structure that provides mul-
tiple levels of aggregation and how real-time transport protocol
(RTP) can be used to implement it. The performance of the pro-
posed scheme is evaluated with measurements that were done on
an implementation of the audio aggregation application.

Index Terms—Active network application, computer networks,
data aggregation, many-to-many communication, programmable
networks.

I. INTRODUCTION

T ECHNOLOGY and integration of semiconductor compo-
nents have reached a level where pervasive and ubiquitous

computing is becoming a reality. Typical examples are sensor
networks that report status information, appliances and enter-
tainment electronics in a household, and personal-area network

Manuscript received August 29, 2002; revised March 25, 2003 and June 6,
2003. This work was published in part theProceedings of IEEE MILCOM2001.
This paper was recommended by Guest Editors S. Karnouskos, A. Vasilakos,
and W. Pedrycz.

T. Wolf is with the Department of Electrical and Computer Engineering, Uni-
versity of Massachusetts, Amherst, MA, USA (e-mail: wolf@ecs.umass.edu).

S. Y. Choi is with the Department of Computer Science and Engineering
Washington University, St. Louis, MO, USA (e-mail: syc1@arl.wustl.edu).

Digital Object Identifier 10.1109/TSMCC.2003.817352

devices. Using low-power wireless links, these devices form
data networks of over which information is transmitted in an
ad-hoc fashion or over a network infrastructure. One character-
istic of devices in such networks is that they often continuously
report status information by periodically transmitting data. Such
data is then collected by a central node, processed, and presented
to users.

The challenges that these networks pose lie not only in how to
realize small, low-power devices that perform the desired func-
tions, but also in their operation. Key aspects of operation are
how to achieve connectivity on a link and on a network level
between all components, how to deal with failure, and how to
develop a scalable method of controlling information flow from
these devices. The last point-managing the flow of informa-
tion-is what we address in this work.

In a typical scenario, more than one user or “observer” wants
to receive data from possibly a large number of sources. This
can be seen as many-to-many or multisource communication.
In a traditional many-to-many communication, each sender is
connected to each receiver (be it over unicast or multicast). As a
result, a receiver has to deal with as many connections as senders
that he observes. As the amount of transmitted data and the
number of sources increases, the receiving end-system has to
process increasingly more data traffic. This does not scale well,
neither in terms of bandwidth requirements nor in terms of com-
putational demands, in particular for thin, mobile clients with
little computational resources and low bandwidth network con-
nections. Thus, the goals of an advanced communication para-
digm for many-to-many communication are the following:

1) avoid overloading the network and data processing nodes
with constantly transmitting sensors;

2) allow the aggregation of a possibly large number of
sources to present data in a manageable fashion;

3) be adaptable to changes in user’s interest.
We present aggregated hierarchical multicast (AHM), which

provides a solution to each of these goals. The key observation is
that for certain applications in many-to-many communications
the data from all senders is not of equal importance to the re-
ceiver. Thus, it is sufficient to aggregate the information sent
by most of the sources, while keeping the original data stream
from a few selected sources. For this purpose AHM merges data
streams inside the network using an active or programmable net-
work infrastructure. To achieve a reduction in data traffic, the
aggregation is typically associated with a loss of fidelity. Dif-
ferent levels of detail should be available to observers and there-
fore aggregates are arranged in a hierarchical fashion and dis-

1094-6977/03$17.00 © 2003 IEEE

WOLF AND CHOI: AGGREGATED HIERARCHICAL MULTICAST-A MANY-TO-MANY 359

tributed via multicast. Observers can navigate through the hier-
archy to obtain the desired level of granularity. This approach al-
lows a significant reduction of data traffic as shown in our evalu-
ation, especially when receivers are only interested in high-level
information of large groups of senders.

Section II briefly discusses relevant related work. Section III
then describes the functionality of AHM in detail on the basis
of two example scenarios: a battlefield information system and
an audio conferencing application. Also, different information
aggregation methods are discussed. Section IV describes the
hierarchical structure of multicast sessions that provides var-
ious levels of aggregation detail to the user. The general-pur-
pose aggregation algorithm for an AHM node is presented in
Section V. Section VI then focuses on the analytic evaluation
of the proposed aggregation process. Theoretical bounds for
jitter and delay in periodic transmissions are derived. Measure-
ment results from our testbed implementation of AHM are also
presented. A summary of the contributions in Section VII con-
cludes this paper.

II. RELATED WORK

Sensor networks with large number of devices have been pro-
posed and prototyped. Projects at UC Berkeley and Intel Re-
search have recently demonstrated large-scale prototypes where
sensors monitor the environment (light intensity) and commu-
nicate via an ad-hoc network to deliver this information. An ex-
tension that monitors wildlife habitats has been proposed [1].
Similar research has been supported by DARPA for its impor-
tance to military applications. The technical issues of building
small, low power devices that can transmit via short-range ra-
dios have been addressed [2], [3]. Also, numerous routing proto-
cols for such ad-hoc environment [4], as well as failure recovery
have been presented. Our work is based on these results and ad-
dresses the operational issues of how to manage the data of such
a system efficiently. We assume that an underlying network in-
frastructure is given.

The aggregation operation of data packets inside the network
requires the support of the network infrastructure in terms of
processing resources. With the development of active and pro-
grammable networks [5]–[7], it is possible to perform arbitrary
computation in the data path of network nodes. An active node
in such a network is capable of performing the aggregation pro-
cessing of packets as they are being forwarded. Typical imple-
mentations of programmable network nodes range from work-
stations that act as active routers to high-performance switches
that are augmented with per-port network processors. The def-
inition of a unifying node operating system (NodeOS [8]) aims
at making these systems interoperable. Aggregated Hierarchical
Multicast is an application for active networks that illustrates
the benefits of having a programmable network infrastructure.
However, we do not go into the details of active networking ar-
chitectures in this paper.

In the context of multicast, data transcoding has been
proposed by Kouvelas [9] for receivers with bad reception.
This “self organized transcoding” (SOT) adapts dynamically
to changing network conditions. There is also abundant work
on “active multicast” [10]–[12], which use active networks

to improve the transmission quality of multicast sessions.
This work is related to ours only insofar as we could use it to
distribute the aggregated data streams.

In terms of performance, it is important to have sufficient pro-
cessing resources on nodes to perform data aggregation. For this
purpose, it is possible to use network processors. Commercial
instances of such multiprocessors that are specialized for packet
processing are the Intel IXP2800 [13] and the IBM PowerNP
[14]. While the programming of such a system requires more
effort than a general active network node, it provides better per-
formance and scalability. It can be expected that as more so-
phisticated software tools become available for network proces-
sors, many active network architectures will be ported to such
platforms.

The aggregation of data streams that we present is similar to
“reverse multicast,”which has been introduced as “concast” in
the context of active networking. Calvertet al. [15] introduce
“simple concast” as an aggregation mechanism to suppress du-
plicate packets (for example to avoid NAK implosion in multi-
cast). This work also provides a generic framework for defining
the aggregation function to be used. In our work, we expand this
concept and introduce a novel hierarchical organization of ag-
gregating nodes that provides a structure for efficient manage-
ment. We also show a detailed delay and jitter analysis of the our
extended algorithm that considers periodic transmissions. With
the presented result, we show that aggregated hierarchical mul-
ticast is scalable approach to many-to-many communication in
programmable networks.

III. I NFORMATION AGGREGATION AND ITSAPPLICATIONS

As discussed above, the limited scalability of many-to-many
communication lies in the demands on the network to deliver
numerous data streams to the end system and the demands on
the end system to process and display the information. We focus
on two applications that implement such a mode of communi-
cation. One is a battlefield information system, which is char-
acterized by a large number of “sensors” (i.e., soldiers) and a
clear hierarchical structure that can be used for the aggregation.
The other is a audio conferencing application, which is an ex-
ample for a very intuitive aggregation of audio sources. Sec-
tion III-A describe these applications in more detail and high-
light the properties relevant to this work.

There are also a number of applications that require informa-
tion aggregation. In the context of networking, ACK or NACK
aggregation is necessary for multicast to avoid an implosion on
the sender. This is often a simple Boolean function. In ATM net-
works, more complex functions are used to aggregate available
bit rate (ABR) responses from point-to-multipoint connections
[16].

A. Application I: Battlefield Information System

The purpose of a battlefield information system is to provide
status information of a large number of soldiers and equipment
to a group of commanders (“observers”). We assume that all
soldiers are connected to a common interconnection network
(e.g., via wireless links) and have the equipment to periodically
transmit their status information (e.g., geographic location, vital

360 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 1. Battlefield information application for aggregated hierarchical
multicast. Each node sends its status information to its hierarchical parent,
where it is aggregated.

statistics, and other useful data). The observers can receive this
data and display the status of all soldiers accordingly.

The challenge of this application lies in the large amount of
data that is received by an observer. Considering only a few
thousand soldiers who transmit every few seconds gives an av-
erage of several hundred data packets per second that have to
be processed and displayed. Thus, such a system s limited in its
scalability if all sources continuously sent multicast messages
to the group of observers.

It is unlikely that an observer is interested in the exact status
of every single soldier at all times. Instead, the overall status of
a group might be more relevant. Thus, it can be considered to
present aggregated status information of a group of soldiers to an
observer and thereby reducing the number of data streams that
are sent to a receiver. One way to aggregate geographic status
information, for example, is to send only the location of a group
instead of all individuals. The group could be represented by
its centroid, the weighted geographic average, or the bounding
box. This reduces the amount of detail in the representation, but
it also reduces the amount of data that needs to be transmitted.
Similarly, vital statistics can be aggregated. For example, the
predicate “healthy” of each soldier could be aggregated using a
Boolean “and” function. Repeating this aggregation on different
levels allows further reduction of data transmission.

We can see that the clear hierarchical structure of a military
organization lends itself well to an aggregation scheme, where
the data of a group is aggregated by its parent (i.e., the node
that is “in command”). An illustration of this is shown in Fig. 1.
More details on how to tap this hierarchy at the right level to get
the right detail of information is discussed in Section IV.

B. Application II: Audio Conferencing

An audio conferencing application, as illustrated in Fig. 2,
is another typical example of a many-to-many communication.
Each participant in the conference needs to be able to hear all
other participants and therefore needs to receive their audio data
stream. In a traditional scenario without network support, the
end-system has to receive all these data streams, mix them to-
gether, and play the result to the user. In a programmable net-
work, where data can be processed inside the network, it is pos-
sible to merge audio streams together on common nodes. This

Fig. 2. Audio conferencing application for aggregated hierarchical multicast.
Each end system sends audio that is mixed at nodes where multiple audio
streams merge. The end system receives a single, mixed audio stream.

aggregation reduces the overall data transmission as well as the
load on the end-system, which does not have to merge all data
streams anymore. A dynamically adaptable audio mixing tech-
nique called distributed partial mixing (DPM) has been pro-
posed by Radenkovicet al.[17]. DPM is TCP-fair and adjusts to
varying number of participants and network conditions. While
DPM can achieve better audio quality by delaying the mixing
step, our aggregation mechanism achieves lowest bandwidth
usage. Also, the AHM mechanism used here is simpler and il-
lustrates the aggregation step more clearly.

Similar to the battlefield application, there are also several
levels of aggregation. Depending on the application, it might
be desirable to listen only to a smaller group of people. Such a
scenario could occur when multiple people in two conference
rooms use audio conferencing. If everyone has their own mi-
crophone and speaker, one might choose to receive only audio
from the remote conference room and not from other partici-
pants in the local room (because direct audio communication
and the conference application audio might interfere).

C. Data Aggregation

From these two applications, it can be seen that aggregation
of data in the network is beneficial. For one, aggregation re-
duces the amount of data that is transmitted, which reduces the
network load. Another effect is that the load on the receiving
end-system is reduced, because aggregation steps that are nec-
essary to display the data are moved from the end-system into
the network.

In principle, there are three dimensions in which data aggre-
gation can be performed:

1) transmission frequency: reduction in the number of
packets transmitted;

2) number of senders: reduction in the number of data
streams;

3) amount of data: reduction in the size of data that is trans-
mitted.

These aggregation categories can possibly influence each
other. Aggregating a set of senders in to a single data stream
typically increases the amount of data that is sent on this stream
(as compared to a single sender). However, the reduction in the

WOLF AND CHOI: AGGREGATED HIERARCHICAL MULTICAST-A MANY-TO-MANY 361

number of streams leads to an overall reduction of transmitted
data.

There are several issues that have to be addressed in order to
achieve efficient data aggregation. For one, it has to be possible
to aggregate the data that is transmitted. In many cases, aggrega-
tion can be achieved by reducing the fidelity of the information
(e.g., scale change for geographic information) or generating an
overlay of different data streams (e.g., mixing of audio). Status
information can often be aggregated by simple arithmetic and
Boolean functions. However, certain data, e.g., text messages,
cannot be scaled or aggregated effectively without losing cru-
cial components of the data. In such a case, the information can
be concatenated and transmitted unchanged, losing the benefits
of reduction in bandwidth and processing requirements. For the
remaining discussion, we assume that an effective aggregation
algorithm is available.

The applications described above can use aggregation in
several dimensions. For example, in the battlefield informa-
tion system, it might be necessary to have high frequency
updates for the status of an individual soldier who moves
around quickly. The centroid of a group, though, moves at a
slower rate and therefore needs to be updated less frequently.
Also aggregating several individuals into a group reduces the
number of senders. In the conferencing application, the number
of streams is reduced at an aggregation node. However, the
frequency of transmission and the data size remains the same
due to the stringent requirements of audio applications. A
qualitative analysis of the benefits of aggregation is presented
in Section VI.

IV. HIERARCHY OFSOURCE-BASED MULTICAST SESSIONS

To make aggregation of data inside the network practical, two
key issues need to be addressed. First, it is necessary to provide
different levels of aggregation to different users. Only in a few
applications it can be argued that all users will need information
at one level of aggregation. Second, users have to be able to
dynamically change the level of aggregation that they receive.

We propose a hierarchy of multicast session to accommodate
these requirements. Each node in the hierarchy provides data
streams with a certain level of aggregation. To allow dynamic
adjustment of the level of aggregation, we use control informa-
tion from a node that identifies other nodes, which provide data
streams with higher and lower levels of aggregation. These ideas
are elaborated in Sections IV-A–D.

A. Hierarchy Layout

Each network node that aggregates data streams needs to pro-
vide the results to possibly multiple receivers. These receivers
can either be end-user applications or other nodes that aggregate
that data further. To avoid the overhead from multiple unicast
connections, we assume that a node provides its data stream in
a multicast tree with the root being the node. This is illustrated
in Fig. 3.

To obtain a hierarchical structure that can be used to navigate
through different levels of aggregation, we arrange nodes in tree
form. Thus, each node (other than the root of the tree) has a
parent assigned that is always a receiver of the aggregated data
stream (as illustrated in Fig. 3). The resulting tree structure is

Fig. 3. Aggregating node. Multiple data streams are received, aggregated, and
sent via multicast to a number of receivers.

shown in Fig. 4. Each layer represents a different level of aggre-
gation. The lowest layer, layer 0, contains the data sources (i.e.,
soldiers, telephones) that send unaggregated data. Each node in
layer 1 aggregates multiple layer 0 sources to a new stream. This
stream is sent upwards to layer 2, where it is aggregated with
other layer 1 streams. This continues up to the root node. In
general, a layer-node aggregates streams from layer and
sends it to layer . Users can connect to nodes in any layer
to receive data streams with different levels of aggregation. If
more detail is required, the observer can connect to a child of
the current node. If less detailed information is required, the ob-
server can move up to the parent of the current node.

This hierarchy maps each node of layer 1 and higher to a mul-
ticast group (each representing a different set of layer-0 sources
or different levels of aggregation). In practice, it might not be
feasible to use such a large number of multicast groups. To re-
duce the number of multicast sources, certain aggregation nodes
can be connected to their parents via unicast and not provide
their aggregated data stream of other observers. This however
reduces the granularity at which an observer can receive data.

It is important to note that the efficiency of the proposed hier-
archy is based on the assumption that it follows the underlying
network topology. This is a reasonable assumption as sources
that are closely co-located probably share the same networking
infrastructure and transmit somewhat related data.

B. Session Control

On the control plane of aggregated multicast, observers have
to be able to join and leave the various multicast sessions that
they are interested in. For this purpose, there are three functions
that need to be provided:

1) joining/leaving multicast groups;
2) initialization of the tree layout;
3) obtaining control information on parents/children of

nodes.
For joining multicast groups, we assume all nodes and

observers support standard multicast protocols (e.g., by using
multicast routers that exchange IGMP [18] messages and route
using MOSPF [19]). The initialization of the tree requires
all nodes-other than leaves-to know who their children are,
so they can subscribe to their multicast streams and further
aggregate them. This can be achieved by static configuration or
by using a naming scheme as described below. A scalable way
for configuring is to have the children send the parent a control
message that causes the parent to join the child’s multicast
group.

362 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 4. Hierarchy of data aggregation. The parent of each node and possibly multiple observers can connect to the multicast session provided by an aggregating
node.

Finally, the observer needs to obtain information on the name
and multicast identifier of the children and the parent of a node.
This is necessary so that the observer can change to a different
level of aggregation if necessary. For this purpose, the data
stream can be aggregated to include the multicast identifiers of
children and parent of a node. The real-time transport protocol
(RTP) used in our audio application supports “contributing
source identifiers,” which can be used for this purpose [20].
We assume that the multicast identifier for the root node is
always known to all observers (or at least easily obtainable) as
the starting point of navigation.

C. Naming Issues

For scalability reasons, the control data of a session cannot
contain the names/identifiers of all children, grandchildren, etc.
This would lead to exponential growth in control information
and defeat the purpose of aggregation. This poses some diffi-
culty if an observer that starts at the root node wants to “zoom
in” on a particular node. Since the control information at the
root node might only contain information on its children, it is
not clear which path to go in order to reach a particular node on
the lower layers.

To solve this problem, we add a naming scheme to the hier-
archy. Each node is identified by its name and the concatenation
of names of nodes in the path from the root to the node. This
results in a hierarchical naming scheme that gives a one-to-one
mapping from a name to a node and its multicast group. The con-
cept is similar to that used in the domain name service [21] in the
Internet or that of class names in object oriented programming
languages, like Java [22]. Thus, the full name of leafcontains
the list of higher layer nodes that lead to(i.e., the path from the
root to), which allows the observer to easily navigate through
the tree. For convenience and to abbreviate long names, certain
intermediary nodes can be aliased with unique names.

For our two example applications, such naming schemes can
easily be derived. For the battlefield applications, it is intuitive
that the hierarchical structure follows actual command chains.

Thus, the naming scheme can be derived by concatenating the
chain of command for a given node. In the conferencing appli-
cation, the naming scheme could be the name of the company
followed by the location of the building followed by the number
of the conference room from where the call is made.

The hierarchical structure, the distribution of control infor-
mation, and the naming scheme enables the observer to navi-
gate through different aggregation levels of a large number of
sensors and find a suitable level of detail. Next, we discuss the
actual algorithm used for aggregation of data inside the network.

D. Limitations

The proposed hierarchical structure assumed a static tree
structure and a fixed assignment of names to nodes. This can
cause problems if any of the following dynamic conditions
occur.

1) Nodes move physically. This can cause the underlying
networking topology to change and cause inefficiencies
in the aggregation process.

2) Nodes move logically in the hierarchy. This causes the
node names to not match the hierarchical naming scheme.

3) Tree becomes unbalanced. This does not cause incorrect
operation, but could cause performance degradation due
to large delays.

For the first case, it is necessary to adjust the logical hierarchy
to match with the underlying network topology. This change is
equivalent to moving nodes within the hierarchy. Such a move
requires that the names are adjusted accordingly and the aggre-
gating parent nodes are reconfigured to reflect the change. The
final case can also be solved by moving nodes to balance the
tree.

The control issues of these hierarchy adjustments are not
discussed in detail here. We are mainly focusing on changing
user interest on a fixed hierarchy (i.e., more or less granularity
of aggregation) and the performance issues of the aggregation
process.

WOLF AND CHOI: AGGREGATED HIERARCHICAL MULTICAST-A MANY-TO-MANY 363

V. AGGREGATIONALGORITHM

The aggregation of data is the functionality that has to be
provided inside the network. Here we discuss how packets can
be efficiently aggregated while providing bounds on delay and
jitter in case of packet losses. The focus is more on the issues
of packet buffering and timeouts than the actual aggregation of
the packet payload.

We assume all sources periodically transmit data in form of
discrete datagrams. These datagrams are transmitted unreliably,
as it is common for UDP in IP networks. Since it cannot be as-
sumed that the sources can be synchronized, the basic aggrega-
tion has to buffer packets until data from all sources is available.
Additionally, it is necessary to manage timer to ensure that lost
packets do not cause excessive delay and jitter in the data stream.

Consider a router that has to mergedata streams, ,
to a new, aggregated data stream. Assume we are given an ag-
gregation function that generates a packet from packets

. If a packet has not
been received during a period and the timeout is triggered after

, the merging function can use either an older data
packet of stream or use the neutral element as a place-
holder. Let us also assume for now that all sources send packets
of the same size (same amount of information or samples) and
with the same frequency. The resulting procedure for buffering
and merging packets is shown in detail in Fig. 5. There are four
parts to the algorithm.

1) Part I (lines 7–12): A packet arrives and is stored in the
buffer.This requires that the buffer slot for that stream is
not yet used.

2) Part II (lines 13–26): A packet arrives and its buffer slot
is already taken.This happens, when the algorithm was
waiting for packets from other streams that were lost
or delayed. With the arrival of a second packet from a
stream, we know that it is time to send the aggregated
packet. Thus, empty buffer slots are filled with “null
packets” and the data is aggregated and sent.

3) Part III (lines 27–34): All buffer slots are filled.In this
case, one packet from each flow is available and we can
aggregate the data and send out the result.

4) Part IV (lines 36–46): A timeout occurred.In this case,
missing packets are replaced by “null packets” and the
aggregated result is sent.

The packets are stored in the buffer array,, that has slots.
The variable keeps track of the number of valid buffer
entries. The timer is set to every time the first packet
is put into the empty buffer. This way, no packet is ever stored
longer than . The timer is cleared (set to) when the
buffer is cleared.

This algorithm can also be extended to reduce the frequency
of transmissions on the aggregated data stream. By buffering

packets from each stream, the frequency of the aggregated
stream is reduced to the frequency of the sources. The ef-
fects on delay and jitter of periodic transmissions are discussed
in Section VI-B.

Fig. 5. Packet merging algorithm.

VI. EVALUATION

To show the effectiveness of aggregated hierarchical mul-
ticast, we first look at the reduction of link bandwidth that
is achieved over a centralized solution. Second, we analyze
the complexity and correctness of the aggregation algorithm
and show its effects on delay and jitter. Third, we show
measurements from a prototype implementation of the audio
conferencing application that confirm the trends derived in the
analysis.

A. Bandwidth and Computation

To analyze the benefits of aggregation in the network, we
compare aggregated hierarchical multicast with traditional

364 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 6. Traffic reduction in aggregated hierarchical multicast over many-to-
one communication.

many-to-one communication, where the receiver aggregates all
data. For this analysis we assume that the aggregation reduces
the number of data streams on each node. The packet size and
bandwidth for all streams is assumed to be equal. Assume
a balanced tree of height with nodes of degree. Say the
receiver is the root of the tree and it wants to observe all leaves
of a subtree with height. Also assume the tree maps to the
network topology such that there is one link between nodes.

In aggregated hierarchical multicast, each leaf of the subtree
sends one message to its parent, which is further aggregated
until it reaches the root of the subtree. The total amount of band-
width (in terms of messages times links used) in AHM is

In traditional many-to-one communication, all leaves have to
send a message to the root. Thus, the amount of bandwidth used
is

When a user wants to observe a subtree of a certain height, in
AHM all messages are aggregated up to the root of the subtree.
The result is then sent to the user. In the traditional approach,
messages from the leaves are send individually to the receiver.
Fig. 6 shows a comparison in terms the fraction of traffic that is
necessary in AHM compared to traditional many-to-one com-
munication. The graph shows results for different subtree sizes

in a tree of height . Even for small subtrees (i.e.,
few nodes that get aggregated), the total traffic is 60–80% for
AHM than for the traditional approach.

However, aggregation in the network has its price. Each data
stream is aggregated possibly multiple times on the way to its
destination. In one-to-many communication, each message is
aggregated only once at the receiver. In a centralized system,
the total number of aggregation computations is

because one packet from each leaf is processed once at the
root (assuming each packet triggers an aggregation computa-
tion-even just one). For AHM, each node processes exactly one

Fig. 7. Computational overhead for aggregated hierarchical multicast over
many-to-one communication.

packet from each child, which adds up to the number of internal
tree nodes times the degree of the nodes

This results in the processing overhead illustrated in Fig. 7,
which shows the factor of additional aggregation steps for AHM

. Since the complexity of the aggregation de-
pends on the number of streams that need to be aggregated, the
total number of stream aggregations are counted. It shows that
for small node degrees potentially twice as many ag-
gregation computations are necessary. Higher degree trees have
less of a computational overhead. Considering that higher de-
gree trees also require fewer transmissions, they are a more fa-
vorable choice for aggregated hierarchical multicast.

This evaluation shows that there is a tradeoff between
bandwidth and computational overhead. AHM significantly
reduces the number of messages sent on links, but it increases
the amount of computation required up to a factor of two.
In general, higher degrees of nodes lead to more favorable
configurations.

B. Aggregation Algorithm

For the aggregation algorithm presented above, we evaluate
both the computational complexity as well as its correctness.

1) Computational Complexity:Two parts of the aggregation
algorithm contribute to its computational complexity. One is the
per packet processing and the other is the aggregation of the
stored packets. As for the per packet processing, the complexity
is constant . The packet merging is , since it uses all
stored packets. If we do an amortized analysis, though, we can
add credit for each of the received packets, which is used for
the computation. This results in a constant amortized
complexity. Note, that if we have to merge any set of packets
with (due to packet loss or reordering), the amortized anal-
ysis does not hold, because no credit was added for null packets.
In addition to the complexity of the aggregation, one must con-
sider the complexity of the aggregation function. It can be
expected that for most practical applications,requires signif-
icantly more processing than the buffering of the packets.

WOLF AND CHOI: AGGREGATED HIERARCHICAL MULTICAST-A MANY-TO-MANY 365

Fig. 8. Aggregation algorithm with no packet loss.

2) Correctness:To show correctness of the aggregation al-
gorithm, we show for different cases that it operates as desired
and discuss the effects of jitter. The consideration of jitter is in-
sofar important that it affects the proper operation of the algo-
rithm. The analysis shows, though, that jitter is not increased by
the aggregation step and thus, limited to the amount of jitter that
is introduced by the data source.

Let be the packet sent by source. This packet is re-
ceived by the router at time. The interarrival time of packets
from one source be . To account for jitter, we define the
random variable that is bound my the maximum jitter

. We also assume that
to avoid reordering of packets and that the average

jitter is zero . Thus, the expression for packet arrival
times is

The time for the first packet, , can be set arbitrarily.
As for correctness, the objective of the algorithm is to merge

one packet from each source and send out the aggregated result.
In the case where there is no packet loss, no jitter, and packets
from all streams have the same interarrival time, it is easy to
see that within a time of the buffer is filled with one packet
from each stream (Part I). When the buffer is full, the packets
are aggregated and sent out (Part III). If we allow packet loss,
the algorithm needs to detect the loss and replace the missing
packet with before merging. With jitter, the algorithm also
has to make sure that a delayed packet is not wrongly assumed to
be lost. Therefore we give an upper bound on the allowable jitter
for which the algorithm still performs correctly. The following
four scenarios discuss variations of packet loss for two streams,
derive an upper bound for the jitter, and extend the results to
three or more streams.

a) No Packet Loss:As shown in Fig. 8, the first packet
received from stream is buffered. As a packet arrives from
stream , both are merged and one aggregated packet is sent
out. Due to jitter, the arrival order of packets can change (e.g.,
from for the first packets to for the third packets
in Fig. 8). This does not affect the output of the algorithm, since
output is only generated when packets from both streams are
available. Even if the order of packets changes constantly (e.g.,

), the algorithm will
still work correctly. This assumes, though, that temporally close

Fig. 9. Aggregation algorithm with packet loss and�t < t .

Fig. 10. Aggregation algorithm with packet loss and�t � t .

packets are matched by the aggregation algorithm and patterns,
like do not occur.

When three packets from one stream are received in a row
without any packets from the other stream (e.g.,

), the middle packet has to be merged with , since no
packet from the other stream is available. But this only occurs
for significant jitter, because three packets have to be received
in a shorter time that two packets from another stream can be
spaced apart. Thus, we have to have

which gives us an upper bound for of .
b) Packet Loss and Large : With the possibility of

packets getting lost, the setting for the timeout value
becomes important. As with any timer, the goal is to set the
timeout no larger than it is necessary to detect packet loss. But
it should not be so small that a timeout occurs when packets are
just delayed due to jitter. The first observation from this is that
maximum time between packets that should be merged together
is . Thus, .

If the timeout is set to , it almost
never times out on packet loss. As shown in Fig. 9, if a packet
gets lost, say , most likely the next packet of A (in this
example) arrives before the timer expires and replaces. It
can also happen that packets are merged out of order. In Fig. 9,
this happens for and . For some applications, this is an
undesired effect and can be avoided by reducing .

c) Packet Loss and Small : The packet loss sce-
nario for a smaller timeout is shown in Fig. 10. Here, a timeout
occurs before arrives, which causes to be merged with
and sent. This is the same behavior as in Fig. 9, except that the

366 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

TABLE I
WORST-CASE, AVERAGE, AND BEST-CASE DELAY FOR AGGREGATIONALGORITHM

packet is delayed less, because the timeout happens before
arrives. Also, it maintains the order of merged packets for this
example. the loss of causes a timeout and to be merged
with , not with as it happened above. and are then
properly merged together.

If the timeout becomes too small (e.g.,),
the algorithm might not function properly, since it times out on
almost every packet, merges it with , and effectively sends
twice as many packets. The ideal combination of timeout and
jitter is where packets from different streams are close enough
together that they can be merged together without packets from
the same stream replacing each other. The maximum time be-
tween two samples from different streams is .
The minimum time between two samples of the same stream is

. Thus, the algorithm works best if

This leaves an upper bound on of . The
timeout setting for this case should be

.
d) Three or More Streams:So far we have looked only at

the case of two streams that are merged. For a larger number
of streams, the above analysis changes slightly. For the lossless
case, the worst case pattern becomes

(this pattern also applies for streams with more than
three sources). the minimum distance between the firstand
the second is . the maximum distance between
the two As is . Thus, the jitter is limited by

This gives a limit of for the jitter. The analysis
for the timeout in the packet loss case also changes slightly.
The maximum time between a set of samples fromdifferent
streams is . The minimum between two
samples from the same stream remains . Thus, the
bound for is given by

This solves to with the same timeout of
. This result indicates that the

tolerance for jitter decreases as the number of streams increases.
e) Delay and Jitter Propagation:The worst-case, av-

erage, and best-case delay introduced by the aggregation
algorithm is shown in Table I. the delay from processing of
is not considered here, since it can be assumed to be constant
and just added to the expressions in Table I. With a timeout
setting of , as recommended
above, the worst case is always bound by the timeout. Also,
the average and best-case are bound by the timeout in case of
packet loss. This shows that the delay per aggregation stage is
roughly limited to for small jitter.

Since it is important to keep a bound on jitter for the cor-
rectness of the algorithm, we now look at the jitter that occurs
on the output. (Note, that we cannot just subtract the best case
delay from the worst case delay to obtain jitter, since these cases
assume different offsets between streams.) If no packet loss oc-
curs, the jitter of the output remains . This can be easily
shown by the following argument. Assume there was no jitter
and stream sends the packet that fills the buffer and trig-
gers the aggregation. Taking jitter into consideration, the aggre-
gation cannot be delayed by more than , since no packet
can arrive later that after the expected time for the packet
from . Also, the buffer cannot fill earlier than before
the expected time for the packet from. Thus, the total jitter
is . If we allow packet losses, a similar argument can be
made. The aggregation cannot happen any earlier thanbe-
fore the expected time for the packet from. If a loss occurs,
the aggregation might be delayed by , which is typically

. This introduces significant jitter, but
packet loss should only occur infrequently.

f) Other Issues:Finally, we look at a few issues that have
been neglected so far. In the above analysis, we assumed each
packet contains the same amount of information. This might not
be a realistic assumption. If packets contain different amounts of
information, we need to buffer them in a way that we can receive
several, possibly small data packets from one stream before we
start aggregating. For this purpose per-stream ring buffers can
be used. If data is received from a stream, it is put in the ring
buffer (part I of the algorithm). If the buffer is filled, we treat it
like part II of the algorithm. For part III, we change to condition
when to start aggregating. We require that the average amount
of packet data is available from each stream. Requiring less than
that, can lead to a fragmentation effect and the generation of
packets per .

Another issue is maintaining the order of packets when aggre-
gating. For some applications it is undesirable to merge packets
with different “timestamps” (as shown for packets and
in Fig. 9). For this purpose, we can also use the ring buffers de-
scribed above. If a packet loss or reordering is detected, we just
fill the buffer with up to where data is available again. When
merging, we merge with these instead of the newer data.

C. Measurements

To evaluate the performance of the described algorithm in a
real application, we have implemented a prototype of the audio
conferencing application described above. The prototype aggre-
gates PCM -law encoded data streams and RTP/RTCP [20] as
the protocol that communicates control information (e.g., source
identifier). Our implementation is limited only insofar that it
uses unicast connections between nodes and does not imple-
ment all control features. All measurements were performed on

WOLF AND CHOI: AGGREGATED HIERARCHICAL MULTICAST-A MANY-TO-MANY 367

Fig. 11. Processing delay for 400 byte packets and node degrees ofk =

1 . . . 5.

Fig. 12. Median processing delay for varying packet sizes and node degrees.

a heterogeneous set of machines with Pentium processors and
NetBSD and Linux operating systems using and environment
similar to the active network node [23].

1) Processing Delay:The processing delay is the time be-
tween the arrival of the packet that triggers aggregation and the
transmission of the aggregated packet. It varies depending on the
size of the packet, the aggregation complexity, and the number
of packets in the buffer. Fig. 11 shows the processing times for
1000 aggregations for degrees of and a packet size
of 400 bytes. The processing delay is relatively uniform over the
number of packets. Higher degree aggregations require slightly
more processing.

To show the effects of varying node degree and packet size,
Fig. 12 shows the median delay for packets of sizes 80, 240, 400,
and 800 byte. The degree of the node varies again from 1–5. The
increase in processing time is proportional to the packet size,
as should be expected. Over the range of data, there is also an
increase in processing time due to higher node degrees, but it is
not quite as significant.

For audio conferencing, a bounded one-way delay of packets
is very important to achieve good user satisfaction. As Figs. 11

Fig. 13. Jitter for 400 byte packets at source.

Fig. 14. Jitter for 400 byte packets after four aggregation steps.

Fig. 15. Jitter for various transmission frequencies and aggregation layers
expressed as fraction of�t.

and 12 show, the delay on a single node depends on the ag-
gregation degree as well as the packet size. This delay of a
few milliseconds is small compared to the propagation delay
on transcontinental links. Therefore it can be assumed that the

368 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 16. Jitter for various transmission frequencies and node degrees expressed
as fraction of�t.

overall delay is dominated by the propagation delay when the
number of aggregation steps is not excessive.

2) Jitter: The jitter that is introduced by the aggregation af-
fects the correctness of the aggregation and needs to be bound,
as discussed in Section VI-B. The jitter for an audio data source
is plotted in Fig. 13. It can be seen that the average jitter is lim-
ited to 10 . Looking at the jitter after traversing five aggrega-
tion steps, Fig. 14 shows that it has increased to about 50.

Next, we look at jitter over a range of transmission frequen-
cies, aggregation layers, and node degrees. Fig. 15 shows the
jitter as a fraction of the transmission time on different layers
of a hierarchy. While jitter increases on higher layers, it is still
very small (less then). Additionally, Fig. 16 shows that the
jitter is not drastically increasing for larger node degrees. Alto-
gether, jitter does increase on higher levels of the hierarchy and
for larger degree nodes, but it remains in the order of 1% of the
interpacket time and therefore does not pose any problems.

These measurements indicate that the aggregation algorithm
is robust and performs well over a wide range of aggregation
levels, node degrees, and packet sizes.

VII. SUMMARY

Aggregated hierarchical multicast is a many-to-many com-
munication scheme that can significantly reduce the amount of
data that needs to be transmitted over the network. It is based
on aggregating data flows inside the network and presenting a
hierarchy of views to the observers. The aggregation is done
scalably on programmable network nodes avoiding the need of
a central processing facility.

The analysis of AHM shows that the bounds on jitter and
delay con be guaranteed for periodically transmitting senders
using the algorithm presented in this paper. Our prototype im-
plementation of the audio conferencing application on a pro-
grammable router shows that aggregation of packet data is fea-
sible and low jitter can be achieved in a real system.

As pervasive devices become smaller, more numerous and
ubiquitous, it will become increasingly important to have a scal-
able communication paradigm to support such an environment.

We believe aggregated hierarchical multicast is an important
step in this direction as it demonstrates the power of a pro-
grammable network infrastructure and makes the operation of
large-scale sensor networks feasible.

REFERENCES

[1] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler, “Wireless
Sensor Networks or Habitat Monitoring,” Intel Research, Berkeley,
CA, Tech. Rep. IBR-TR-02-0006, 2002.

[2] J. M. Rabaey, A. M. Josie, J. L. da Silva Jr., D. Patel, and S. Roundy,
“Picoradio supports ad hoc ultra-low power wireless networking,”IEEE
Comput., vol. 33, pp. 42–48, July 2000.

[3] P. Bhagwat, I. Korpeoglu, C. Bisdikian, M. Naghshineh, and S. K.
Tripathi, “BlueSky: A cordless networking solution for palmtop com-
puters,” inProc. 5th Annual ACM/IEEE Int. Conf. Mobile Computing
Networking (MOBICOM), Seattle, WA, Aug 1999, pp. 69–76.

[4] E. M. Royer and C.-K. Toh, “A review of current routing protocols for ad
hoc wireless networks,”IEEE Pers. Commun., vol. 6, no. 2, pp. 46–55,
Apr. 1999.

[5] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network research,”IEEE Commun.
Mag., vol. 35, pp. 80–86, Jan 1997.

[6] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vin-
cente, and D. Villela, “A survey of programmable networks,”Comput.
Commun. Rev., vol. 29, no. 2, pp. 7–23, Apr. 1999.

[7] K. Psounis, “Active networks: Applications, security, safety, and archi-
tectures,”IEEE Commun. Surveys, vol. 2, no. I, p. Ql, 1999.

[8] L. Peterson, Ed., “NodeOS Interface Specification,” AN Node OS
Working Group, Tech. Rep, 2002.

[9] I. Kouvelas, V. Hardman, and J. Crowcroft, “Network adaptive contin-
uous-media applications through self organized transcoding,” inProc.
Network Operating Systems Support Digital Audio Video, Cambridge,
U.K., July 1998.

[10] L.-W. Lehman, S. J. Garland, and D. L. Tennenhouse, “Active reliable
multicast,” inProc. IEEE INFOCOM, San Francisco, CA, Apr 1998, pp.
581–589.

[11] S. K. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J. Kurose, D.
Towsley, and S. Zabele, “Scalable fair reliable multicast using active
services,”IEEE Network, vol. 14, no. 1, pp. 48–57, Jan 2000.

[12] T. Harbaum, A. Speer, R. Wittmann, and M. Zitterbart, “AMnet: Ef-
ficient heterogeneous group communication through rapid service cre-
ation,” inProc. Active Middleware Workshop, Pittsburgh, PA, Aug 2000.

[13] (2002) Intel 1XP2800 Network Processor. Intel Corp. [Online]. Avail-
able: http://developer.intel.com/design/network/products/npfamily/
ixp2800.htm

[14] (2000) IBM Power Network Processors. IBM Corp. [Online]. Avail-
able: http://www.chips.ibm.com/products/wired/communications/
network_processors.html

[15] K. L. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and S. Wen, “Concast:
Design and implementation of an active network service,”IEEE J. Se-
lect. Areas Commun., vol. 19, pp. 404–409, Mar. 2001.

[16] X Zhang Jr., K. G. Shin, D. Saha, and D. D. Kandlur, “Scalable flow con-
trol for multicasr ABR services in ATM networks,”IEEE/ACM Trans.
Networking, vol. 10, pp. 67–85, Feb. 2002.

[17] M. Radenkovic, C. Greenhalgh, and S. Benford, “Deployment issues for
multi-user audio support in CVE’s,” inProc. ACM Symp. Virtual Reality
Software Technology, Hong Kong, Nov. 2002, pp. 179–185.

[18] S. Deering, “Host Extensions for IP Multicasting,” Stanford Univ., Stan-
ford, CT, RFC 1112, 1989.

[19] J. Moy, “MOSPF: Analysis and Experience,” Network Working Group,
RFC 1585, 1994.

[20] H. Schulzrinne, S. Casner, R. Frederick, and Van Jacobsen, “RTP:
A Transport Protocol for Real-Time Applications,” IETF Network
Working Group, RFC 1889, 1996.

[21] P. Mockapetris, “Domain Names—Implementation and Specification,”
Network Working Group, RFC 1035, 1987.

[22] B. Joy, G. Steele, J. Gosling, and G. Bracha,The Java Language Speci-
fication, 2nd ed. Norwell, MA: Addison-Wesley, 2000.

[23] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner,
“A scalable, high performance active network node,”IEEE Network,
vol. 31, pp. 8–19, Jan. 1999.

WOLF AND CHOI: AGGREGATED HIERARCHICAL MULTICAST-A MANY-TO-MANY 369

Tilman Wolf received the Diploma degree in informatics from the Universität
Stuttgart, Stuttgart, Germany in 1998. He received the M.S. degree in computer
science, the M.S. degree in computer engineering, and the D.Sc. degree in com-
puter science in from Washington Unversity, St. Louis, in 1998, 2000, and 2002,
respectively.

He is currently Assistant Professor in the Department of Electrical and Com-
puter Engineering at the University of Massachusetts, Amherst. His research
interests are advanced computer networks, programmable routers, network pro-
cessor design, and benchmarking.

Sumi Y. Choi (S’02) received the B.S. degree in mathematics from Yonsei Uni-
versity, Seoul, Korea, in 1994 and the M.S. degree in computer science from
Brown University, Providence, RI. She is currently pursuing the Ph.D. degree
in computer science and engineering at Washington University, St. Louis.

Her research interests include programmable networks, routing algorithms,
resource management, and network design.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

