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Abstract—Computer networks require increasingly complex
packet processing functions in the data plane to adapt to new
requirements. To meet performance demands, packet processing
systems on routers employ multiple processor cores. To efficiently
utilize processing resources in such systems, we propose a novel
methodology for allocating tasks to processors. The main idea is
to obtain runtime profiling information and to duplicate tasks
with heavy processing requirements. Using our duplication algo-
rithm, a balanced workload can be obtained and the complexity
of packing tasks with different processing requirements can be
reduced. By translating traffic characteristics into processing
requirements, the system is able to adapt to dynamic changes
in the workload and balance the utilization of all processing
resources to maximize system throughput. Our approach can
adapt to any traffic change in a single iteration, whereas existing
adaptive approaches may require multiple steps. Results from
our prototype implementation based on the Click modular
router show that our system only requires on average 5.3%–
31.5% of the adaptation steps that are necessary in iterative
systems. In addition, our system achieves a throughput that is
1.32 times higher than the throughput achieved with symmetric
multiprocessing support with general-purpose task allocation.

Index Terms—network router, multi-core processor, network
processor, task allocation, scheduling.

I. INTRODUCTION

The complexity of operations performed in the data plane
of today’s Internet has expanded significantly beyond the
simple store-and-forward concepts proposed in the original
architecture [5]. Packet processing steps in IP routers are
numerous and include packet classification, content inspection,
traffic shaping, and accounting [6]. It can be expected that
the trend toward more functionality and complexity in the
data plane continues in order to accommodate demands for
more security features, operational controls, and new data path
services. A similar need for complex data path functionality
can be observed in the proposed architectures for the next-
generation Internet [7], where virtualized router platforms need
to perform packet processing operations for several parallel
networks with different data path functionality.

This need for flexible packet processing systems has led
to development of router architectures with programmable
packet processors that handle packets in the data path. These
systems employ highly parallel, programmable packet pro-
cessors ranging from embedded multi-core systems-on-a-chip
(i.e., network processors) to programmable logic devices with
high-performance I/O capabilities. However, multi-core pro-
gramming remains a challenge on parallel packet processing
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systems as complexity of network services increases [2].
Increasing diversity and complexity of networking workloads
makes the traditional run-to-completion programming model,
which implements the full functionality of the router on each
core, unsuitable for these systems. To exploit the parallelism
in multi-core systems, programming models have been de-
veloped to break monolithic network processing applications
into smaller tasks that can be distributed across multiple cores
[3], [12], [20]. A key problem in this context is to determine
an allocation of tasks to processing engines that maximizes
system throughput (or meets another optimization goal).

Task allocation in multi-core packet processing systems is
challenging due to several reasons. First, processing engines,
memories, and the I/O system of typical network processors
are tightly coupled. Overloading one system component may
present a bottleneck that impacts the performance of the over-
all system. Therefore, it is important that the task allocation
process considers the load placed on each component. Second,
network traffic changes dynamically and with it the demand
for different processing functions (e.g., IPSec processing varies
with amount of VPN traffic). This variability requires packet
processing systems to adapt to changes in processing demands
for different tasks. Thus, it is necessary to determine task
allocation at runtime rather than through offline optimization.

The task allocation process presented in this paper can
achieve a near optimal allocation of tasks and can adapt to
changes in traffic and processing workloads. The main idea of
our approach is to obtain runtime profiling information that is
used to understand the traffic and processing characteristics.
Based on this information, we determine how many parallel
instances of each task are necessary to avoid bottlenecks.
This step also ensures that processing tasks incur nearly equal
amounts of work and thus can be allocated more easily without
having to solve a complex packing problem. Through contin-
ued profiling and updating of these steps, runtime adaptation
is achieved. A particularly important aspect of our process is
its simplicity that ensures that it is feasible to implement such
a runtime system on resource-constrained packet processing
platforms.

The specific contributions of our paper are:
• A simple task profiling method that provides sufficient

information to determine processing requirements and
traffic characteristics.

• A novel task duplication algorithm that determines the
required number of task instances to avoid performance
bottlenecks.

• A task allocation algorithm that assigns all task instances
to processing resources while aiming for low communi-
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cation overhead between processor cores.
• A prototype implementation of the system based on a

modification to Click [12].
Our results show that the presented task allocation system
is effective in managing processing resources and adapting
to changes in workload. Our system can adapt in a single
iteration, which is 5.3%–31.5% of the number of steps taken
in iterative approaches. We also show that our runtime system
can achieve 1.32× higher throughput for computationally
demanding traffic than SMP Click [3], which is an adaptive
packet processing system that uses general-purpose multi-core
scheduling techniques.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work. Section III presents an overview
of the runtime management system architecture. The task
duplication algorithm, which is the central components of the
runtime management system, is introduced in Sections IV.
Section V presents the evaluation of our prototype system, and
Section VI summarizes and concludes this paper. Additional
discussion, including the task mapping algorithm we use in
our work, can be found in supplementary material published
together with this article.

II. RELATED WORK

Flexibility in the data plane of next-generation networks
has been explored in many different ways, ranging from new
forwarding features [6] to network virtualization [1] and net-
works with dynamically configurable services [25]. All these
approaches require a general software-programmable router
platform, which is the focus for our work. General-purpose
programmable packet processing systems have been developed
in form of high-performance, general-purpose workstation pro-
cessors (e.g., Sun’s Niagara2 platform [10]), network proces-
sors (e.g., Intel’s IXP platform [21]), and programmable logic
devices (e.g., P4 [11] and NetFPGA [16]). In the context of
next-generation Internet architectures, various router designs
have employed specialized hardware to provide programmable
packet processing functionality at high data rates (e.g., GENI
backbone platforms [22] and high-performance PlanetLab
nodes [23]). All these systems are characterized by featuring
multiple parallel processing engines.

Most existing software development toolkits for parallel
packet processors allocate processing tasks to processor cores
automatically, but these allocations are static [8], [18]. Dy-
namic allocation mechanism have been proposed by Kokku
et al. [13], where complete processors are turned on and off
on demand, and in our prior work [26], where basic block
allocated individually to processing cores. Neither of those
systems uses a workload representation that is easily us-
able when developing packet processing systems (too coarse-
grained, monolithic functions in [13] and too fine-grained
instruction graph in [26]). A more suitable representation of
data path processing is the Click modular router abstraction
[12], which has also been expanded to be applicable for
multiprocessor systems (SMP Click by Chen and Morris [3])
and network processors (NP-Click by Shah et al. [20]).

Recently, Kuang and Bhuyan developed a dynamic task
allocation technique for network multi-processors [14]. This

approach uses a parallelizing compiler to generate a task
graph, which is then mapped to cores such that latency
constraints are met and throughput is maximized. It can also
be used to minimize power consumption [15]. The main
difference to our work is that this approach does not use
task duplication and thus needs to deal with tasks that can
differ drastically in the amount of work require. Therefore, the
task mapping process has a significantly higher computational
complexity than our approach. While this overhead can be
justified achieving near-optimal mappings, it may be less
practical for environments with highly dynamics changes in
traffic. In addition, neither [14] nor [15] consider task mapping
at runtime. In our work, we develop a task mapping approach
that dynamically adapts to changes in traffic.

The adaptation process in [13] uses the queue length
of packets waiting to be processed as an indicator when
more resources need to be allocated to a task. Similarly, the
staged event-driven architecture (SEDA) described in [24] uses
an adaptation algorithm based on response time to allocate
processing resources. Both approaches used iterative adapta-
tion of processing resources, whereas our approach directly
computes the required allocation. Our approach is beneficial
since changes in workload can be accommodated in a single
adaptation step rather than multiple, iterative corrections. As
our results show, the direct allocation approach leads to
significantly fewer adaptation steps than an iterative approach,
even if changes in workload only affect a small percentage of
traffic.

Mallik and Memik have proposed to directly allocate
processing tasks based on the statistics of their processing
characteristics [17]. Their system allocates tasks statically to
processors and uses an empirical approach to duplicating tasks
to fill all processor cores. In our system, we continuously
profile router tasks at runtime to dynamically reallocate tasks
to processor cores. In addition, we use a task duplication
approach that balances the workload more evenly to simplify
the allocation process and achieve higher throughput. Our prior
work [27], [28] discusses some initial ideas that have lead to
the system presented here.

III. RUNTIME MANAGEMENT SYSTEM ARCHITECTURE

The main task of a runtime management system for packet
processing hardware is to ensure that all processing resources
are set up to process the packets that traverse the data path of
the router. Changes in traffic characteristics require the system
to adapt the configuration of the packet processing system at
runtime. To implement such functionality, our runtime man-
agement system consists of several components that interact
as illustrated in Figure 1. The main aspects are the offline
programming and configuration step, the runtime management
subsystem and the packet processing hardware. In this section,
we describe each component in more detail to highlight their
operations and interactions with other system components.
Details on the specific algorithms used in each component
are discussed in the following sections.

It is important to note that our system focuses on the
runtime management of processing resources. While it is



3

Multi-core packet processing 
system

Offline programming 
and configuration

Runtime 
management

Data-path 
specification

Click configuration 

Graph of 
schedulable 

Click elements

Task replication

Task mapping

Processor 
core

Processor 
core

Processor 
core

Processor 
core

Installation of Click configuration on 
packet processing hardware

Update of profiling 
information

User

Implementation 
of Click 

elements

Packets

Click Click

ClickClick

 

Fig. 1. Architecture of Runtime Management System for Multi-Core Packet
Processing Systems.

also important to consider program data structures and their
placement in memory, we do not consider this problem within
the scope of this paper.

A. Programming and Configuration

The user (e.g., the administrator of the router system or the
virtualization system managing the network) determines what
functionality should be provided in the data path of the router.
This “workload” needs to be represented in a suitable way
such that it is (1) manageable for the user, (2) implementable
on the underlying hardware, and (3) usable for the runtime
system. Since no single representation can achieve all three
goals, we use different workload models and automatically
transition between them (as illustrated in Figure 1). For a
more detailed discussion on this issue, see the supplementary
material for this article.

The data path specification is typically represented as a
graph (see top of Figure 2, where a i represents a packet
processing application). Network services are represented by
nodes, and a directed edge indicates that there may exist some
packets that require processing of the service from where the
edge originates followed by the service to which the edge
points. For simplicity, we assume that there is one node at
which all packets enter the system and another node at which
all packets leave the system.
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Fig. 2. Workload Partitioning and Profiling Steps.

When moving from the data path specification to the graph
representation, each application needs to be partitioned into
tasks (as illustrated in Figure 2). This step is necessary so
that parallelism in multi-core packet processing systems can
be exploited. One important question is how to partition data
path operations. The programming language and development
environment in which a network service is created often
determines what level of partitioning is possible. For example,
transition points between semantically separate processing
steps in a network service (e.g., protocol header extraction,
route lookup algorithm, checksum computation, etc.) could be
used for partitioning. We chose to represent network services
at the level of “tasks,” where tasks are basic functional blocks
in the network service similar to Click modules.

It is important to note that for our system practically any
partitioning into tasks is suitable. In particular, the amount
of processing associated with tasks does not need to be
evenly distributed. With runtime profiling and task duplication,
the runtime system can automatically adapt and compensate
for differences. To transition from the task representation to
the Click representation, we can use a one-to-one mapping
between tasks and Click elements. Task dependencies are
represented by communication links and queues in Click.

B. Runtime Profiling

The processing demands on the packet processing system
are affected by two factors: first, by computational character-
istics of all tasks in the system; second, by network traffic that
exercises the processing system. In order to derive an optimal
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allocation of tasks to processing resources at runtime, both
factors need to be quantified and considered in the mapping
process.

Many systems have used offline profiling information to ob-
tain processing characteristics of tasks. However, these offline
solutions cannot consider variation in application sequences
that are due to changes in network traffic that occur during
runtime. Also, processing requirements may be data-dependent
and thus change depending on packet data (which cannot be
predicted). Therefore, we use a runtime profiling approach,
where profiling information is collected while the system is
operational.

We collect the following profiling information:

• Task Service Time si: For each task ti, we determine
the service time si (measured, for example, in number
of processing cycles per packet). Since this value may
be different for each packet, we consider s i as a sample
from a random variable Si. We assume the distribution
of Si matches the empirical observations of si.

• Task Utilization u(ti): Based on usage counters, we can
derive the utilization of a particular task ti, which is
denoted by u(ti).

Using this information, we can annotate the graph repre-
sentation of the workload with execution time distributions
Si and utilization u(ti) for each task. This is also illustrated
in Figure 2. Since task utilization changes over time, we
denote it as dependent on time parameter τ : uτ (ti). This
time-dependence is further considered in Section III-D, where
dynamic adaptation is discussed. We assume that the service
time distribution is not time-dependent (although that could
be considered in a straightforward extension of this work).

Note that the task service time and task utilization can
be obtained easily in a practical system. A packet processor
can be augmented to count the number of times, n i, a task
processes packets over a window of time, δ, as well as the
total amount of processing time spent, Pi. The processing time
is simply sum of the execution time of each time a packet is
processed by task si:

∑
j=1...n s

j
i . Using ni and Pi, the service

time can be estimated as E[Si] = Pi/δ and the utilization
as ui = ni/δ. This process only requires the use of two
registers on each processor core. With a sufficiently large δ, the
overhead for moving profiling information from the core to the
runtime management system can be kept to a minimum. Thus,
obtaining the necessary profiling information for our runtime
system can be implemented practically on packet processing
systems.

C. Task Duplication and Mapping

Once profiling information is available, the runtime system
can determine which tasks are particularly processing inten-
sive. These tasks present potential performance bottlenecks if
they cause processor cores to become overly loaded and trigger
stalls in the software pipeline of the packet processing system.
In conventional packet processing systems, the imbalance in
processing time of tasks can be addressed by two approaches:

• Tasks can be modified to obtain a more balanced service
time. This process typically requires the user/programmer

 

Fig. 3. Task Duplication Example with di−1=1, di=3, and di+1=2.

to change the implementation of the tasks, which is diffi-
cult. Even if it is possible to automate the re-partitioning
process, the drawback is that the semantic boundaries
between tasks blur (i.e., protocol processing steps may
be broken into multiple components).

• Tasks mapping can be performed with unbalanced tasks.
In such an approach, tasks with high processing re-
quirements are combined with tasks with low processing
requirements on the same processor core (e.g., in separate
hardware threads). The combination of high and low
processing requirements can achieve a balanced process-
ing load on the core. The drawback of this approach is
twofold: (1) The problem of finding a good combination
of tasks is equivalent to solving the bin packing problem,
which is known to be intractable. It was noted in [9] that
the imbalance of individual processing workloads is the
major obstacle that keeps heuristic solutions from getting
optimal mapping results. (2) Since the combination of
tasks on a core is based on their processing require-
ments rather than on proximity of tasks in the packet
flow through the system, high internal communication
overhead may ensue.

We present a novel approach to tackle these problems. We
neither change the computational requirements of an individual
task nor require the solving of a packing problem. Instead,
we exploit that packet processing operations are (nearly)
independent among packets of different flows and thus allows
us to create additional task instances for processing-intensive
tasks. Using this idea of task duplication, we create a task
graph with di instances of each task ti. As illustrated in
Figure 3, each task instance is connected to all instances of
preceding and succeeding tasks. When distributing packets
evenly among all task instances, the utilization of each instance
is reduced to ui/di. Thus, we can use di to control how
much processing is performed by each task. In Section IV,
we present an algorithm for determining a d i for all tasks
such that processing requirements are nearly balanced across
all instances. This balance of processing requirements among
all instances then simplifies the task mapping problem as it
removes the need to solve a packing problem. Since all tasks
instance require nearly the same amount of processing, any
allocation with an equal number of instances per processor
core avoids performance bottlenecks.

With the ability to allocate tasks instances to processors
nearly arbitrarily, a secondary metric can be employed to
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optimize the allocation. In our system, we consider locality
(i.e., where tasks that are dependent on each other are mapped
relative to each other). If a task passes packets to another
task and both tasks are placed on the same processor, then
state can efficiently be transferred through local registers or
cache. If the tasks reside on different processors, the processor
interconnect needs to be used for the transfer. An algorithm
to find a suitable mapping is described in the supplementary
material.

D. Dynamic Adaptation

After a configuration of duplicated tasks and their mapping
to processors has been determined and installed in the data
path of the router, the runtime system needs to adapt dy-
namically. Dynamic adaptation is crucial for packet processing
systems. The processing workload required by network traffic
cannot be known in advance since end-systems may send
packets to any arbitrary destination using any protocol. Thus,
a packet processing system needs to either (1) over-provision
for any possible traffic scenario or (2) dynamically adapt. With
an increasing diversity of services that are provided in packet
processing systems, the first choice is becoming less feasible.
Thus, the task duplication and task mapping results need to
adapt to changes in traffic.

The adaptation process used in our system is shown as
Algorithm 1. For the system to adapt to changes in traffic, it
is necessary to monitor traffic and its load on the system. For
monitoring, the system profiles utilization parameter uτ (ti)
for each task as an indicator of input traffic change. (It is also
possible to monitor the service time distribution S i in case
processing demands change, but for our discussion, we assume
Si does not change over time.) If the difference between the
current uτ (t) and the previous uτ (t− 1) exceeds a threshold,
ε, a new configuration is computed. First, the new number
of task duplicates, d, is determined and then the mapping of
tasks to threads, m. Both steps are explained in more detail
below. Once the new mapping has been computed, the system
switches from the previous task-to-processor allocation to the
new one. The adaptation process is continued indefinitely at a
fixed interval.

Algorithm 1 Runtime Adaptation Process.
1: function runtime adaptation()
2: while true do
3: if (difference(utau(t),utau(t− 1))> ε) then
4: d← task duplication()
5: m← map()
6: commit configuration(d,m)
7: end if
8: pause(interval)
9: end while

There are several implementation concerns with this ap-
proach. First, profiling should not cause too much overhead.
It is possible to obtain uτ (ti) and Si by simply maintaining
two counters. One counter increments every time a task
receives a new packet (i.e., reflecting the utilization), and one

counter counts the total processing time spent by a task (i.e.,
reflecting the cumulative service times). Whenever the runtime
adaptation system needs to update its value of uτ (ti) and
Si, it simply reads these two counter values from each task.
A second concern is the impact of duplication and mapping
computation on the forwarding performance of the system. We
assume that the processing resources used for this computation
are isolated from the data path of the router. For example, most
modern network processors have a dedicated control processor
that can be used for the runtime adaptation computation. Third,
a new mapping of tasks may change the flow of traffic through
the system. Thus, it is necessary to drain existing packets
before reconfiguring the task allocation. This process may
require that new packets be queued briefly until the system
has been changed to the new configuration. Processing state
may be migrated via shared memory (e.g., as discussed in
[29]). Since we expect adaptation only to occur at time scales
of seconds and the adaptation itself only takes milliseconds,
we do not expect this to pose a performance bottleneck.

With this overview of the runtime system’s operation, we
turn to a more detailed discussion of its key elements (ap-
plication partitioning and task duplication) in the following
sections. Task mapping is discussed in supplementary material.

IV. TASK DUPLICATION

Task duplication is a key aspect of our runtime system. In
order to fully utilize the available system resources and thus
support the highest possible data rate, we need to consider
the load that tasks place on the system’s processing resources.
A task’s processing requires not only depend on how compu-
tationally demanding the task is (i.e., expected service time
E[Si]), but also how frequently it is used (i.e., task utilization
u(ti)). Thus, we define wi as the amount of “work” that is
imposed by task ti:

wi = u(ti) · E[Si]. (1)

Clearly, the amount of work for different tasks may vary
significantly. Note that this imbalance is not only due to
differences in task size when partitioning, but also due to
differences in utilization. The latter is dependent on dynamic
traffic requirement. Therefore, the balance issue cannot be
addressed by using different workload representations that
partition tasks differently. Task duplication is then used to
decrease imbalance of individual tasks’ work.

A. Duplication Process

We can adapt the amount of work of a task by changing
its utilization through duplication. With a higher number of
duplications, the utilization of each task instance decreases.
We use parameter di to indicate the number of duplicated
instances that exist for task ti. These instances are named
t1i , t

2
i , . . . , t

di

i . Any incoming edge ej,i from tasks tj to ti is
duplicated: ej,i1 , ej,i2 , . . . , ej,idi . Similarly, outgoing edges are
duplicated. Due to the reduced edge utilization of u(e j,i)/di,
fewer packets are processed by each task instance and the task
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utilization decreases to u(ti)/di. Correspondingly, the amount
of work required by each task instance is denoted as w ′

i:

w′
i =

u(ti)

di
· E[Si]. (2)

B. Duplication Choice

The main question remaining is: How to determine the best
set of di (i.e., which task to duplicate how many times)? Our
goal is to balance the amount of work that each task performs
in order to simplify the mapping process. Thus, the ideal
scenario would be one where w ′

1 = w′
2 = · · · = w′

T . However,
such a scenario may require very large values for d i if w′

i

do not share common factors. Such a solution would conflict
with practical constraints. In all systems, there is a limit on
the number of tasks instances that can be supported. Software-
based systems have limits on the number of software threads
per processor (to limit scheduler complexity) and hardware-
based systems (e.g., network processors) have limits on the
number of hardware threads per core. We denote the number
of processors with N and the number of threads per processor
with M . Thus, the duplication constraint is:

T∑

i

di ≤ N ·M. (3)

To make duplication choices that observe this resource
constraint, we use a greedy approach shown as Algorithm 2.
While processing resources are available, we identify the task
that has the highest w′

i value. Adding a duplicated task instance
to this task reduces the amount of work done by each instance
because u(ti)

di+1 ·E[Si] <
u(ti)
di
·E[Si] for any di, u(ti), and E[Si].

We repeat this process until all processing resources are used.

Algorithm 2 Task Duplication Algorithm.
1: function task duplication()
2: for i = 1 to T do
3: di ← 1
4: w′

i = u(ti)/di ·E[Si]
5: end for
6: while

∑T
i=1 di < N ·M do

7: j ← argmaxi w
′
i

8: dj ← dj + 1
9: w′

j ← u(tj)/dj · E[Sj ]
10: end while
11: return d

Depending on the number of tasks in the workload and the
number of available processing resources, there may be more
tasks than resources (i.e., T > N ·M ). This scenario is not
very likely since even low-end network processor support high
levels of multi-threading and Click applications do not require
a large number of elements. However, if such a case occurs,
then either tasks need to be merged or multiple tasks need to
be combined onto a single processing resource. While both
approaches are possible, we do not consider them further in
this paper and assume T ≤ N ·M .

The duplication algorithm always seeks to assign tasks to
all threads in the system. While this approach yields a good
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Fig. 4. Example Task Graphs for Different Systems. Schedulable units are
separated by queues and denoted by dashed lines. (Unqueue elements are
omitted for simplicity.)

balancing of processing load, it may be the best choice in
cases where the system is only lightly loaded. If the overall
system is only lightly loaded, other optimization criteria can be
considered (e.g., response time as proposed in [24] or jitter).
Alternatively, some processor cores can be turned off to save
power (e.g., as proposed in [13]).

V. EVALUATION

To show the effectiveness of the proposed runtime system
and its duplication and mapping algorithms, we present eval-
uation results from a prototype implementation.

A. Prototype System

Before discussing results, we first describe the prototype
system, its workloads, and the testbed setup.

1) System Configurations: To evaluate the impact of run-
time adaptation and task duplication, we compare several
variations of our proposed router system with a traditional
Click router. The systems used in our evaluation are:

• System I (Original Click on Unicore Processor [12]): This
configuration uses unmodified Click source code.

• System II (Original Click with SMP Support [3]): This
configuration uses unmodified Click source code that
supports parallelism in form on multiprocessors. Both
System I and II use the queue allocations determined by
the original Click model. As illustrated in Figure 4(a),
this leads to schedulable units that may contain multiple
Click elements. These units all need to be allocated to
the same processor.

• System III (Runtime Adaptation without Task Duplica-
tion): This configuration uses a version of Click that we
have modified to separate all elements by queues. As
illustrated in Figure 4(b), each element can be allocated
separately to a different processor. This system does not
use task duplication (to allow a quantitative evaluation
of the overhead from profiling and additional queues).
Runtime adaptation occurs in form of changes to task
mapping when task utilizations change.
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• System IV (Runtime Adaptation with Task Duplication):
This configuration is based on System III, but does use
task duplication (as illustrated in Figure 4(c)). Runtime
adaptation occurs in form of changes to the number of
duplicated tasks instances and changes to the task map-
ping. This configuration represents the entire functionality
proposed in this paper.

In most cases, we compare Systems IV and II. System II
(SMP Click [3]) represents the current state of the art of packet
processing with general multiprocessor support. System IV
represents the concept of task duplication and the associated
task mapping that we present in this paper.

2) Traffic and Processing Workload: The complete Click
router configuration that we use for this evaluation is shown in
supplementary material. The configuration offers two choices
on how packets are processed via different applications in the
data path: (1) Path I: conventional IP forwarding and (2) Path
II: VPN termination with IP forwarding. Path II represents a
processing-intense data path since VPN termination requires
cryptographic processing of the IPSec packet payload [19].
Thus, the overall processing demand is roughly proportional
to the amount of traffic sent via Path II. To control the amount
of traffic that traverses each path, we use the StrideSwitch
element to direct packets in different proportions along each
path. Our Click configuration consists of a total of 23 elements
(i.e., tasks that can be duplicated and scheduled).

To explore network traffic with varying processing require-
ments, we use the workload illustrated in Figure 5. Traffic
initially is mostly allocated to Path I and then transitions
to Path II (i.e., from low processing requirements to high
processing requirements). This transition happens in steps (i.e.,
intervals), and runtime adaptation is performed every time
traffic changes. For experiments that compare our system to
Click and SMP Click, we need to pick fixed traffic profiles.
For these cases, we have identified three specific scenarios
(also illustrated in Figure 5): Scenario I (99% IP forwarding,
1% VPN termination), Scenario II (50% IP forwarding, 50%
VPN termination), and Scenario III (1% IP forwarding, 99%
VPN termination).

3) Testbed Setup: The hardware platform for our testbed
is a four-core Intel development board that is specifically
designed for embedded systems. It is equipped with two 2.0
GHz Dual-Core LV Xeon processors and two dual port Intel
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82571EB Gigabit Ethernet Controllers. The software is based
on a modified Click release (version 1.6.0) running on a
patched Linux kernel (version 2.6.16.13). Click is configured
as kernel module and handles all packets transferred through
the systems network interfaces. Four workstations connected
to the system transmit and receive network traffic at varying
data rates and packet sizes.

4) Representativeness of Evaluation: It is important to note
that the results obtained from this experimentation config-
uration are representative for systems beyond this specific
setup. While we use a general-purpose multicore processor
system, the results are equally applicable to network processor
systems. Click has been ported to network processors [20], and
network processor cores that are ANSI C programmable have
been developed [4].

In terms of processing workload, we only consider IPSec as
a computationally intensive application (i.e., Path II). However,
the results are representative of any type of packet processing.
The runtime system does not distinguish between what opera-
tions are actually performed on a packet. As the Internet moves
toward more data path services, Scenario III is becoming more
representative.

B. Validation of Correct Operation

To show the correct operation of our duplication algorithm,
we compare the work per task before duplication, w i, with
the work per task after duplication, w ′

i in Figure 6 (for
Scenario I and M ·N=96). The distribution of work per task
instance before duplication is clearly unbalanced with tasks
requiring between 5 cycles and 746 cycles per packet (155×
difference). After duplication, these differences are much less
pronounced. Task instances require between 5 cycles and
68 cycles (13.5× difference). While duplication reduces the
difference between tasks significantly, the results are not a
completely even distribution. The remaining imbalance is due
to a few tasks with very small wi values (that cannot be
increased by duplication). When ignoring the three tasks with
smallest wi, the difference between the largest and smallest
w′

i is only 2.43× after duplication.
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TABLE I
SYSTEM UTILIZATION FOR DIFFERENT NUMBERS OF PROCESSORS (N )

AND TOTAL NUMBER OF THREADS (N ·M )

Number of Number of threads (N ·M )
Processors (N ) 32 64 128 256 512

2 88.37% 95.16% 97.19% 99.85% 99.44%
4 82.15% 92.45% 95.48% 93.45% 98.60%
8 50.55% 74.90% 86.34% 92.42% 96.63%
16 49.38% 72.36% 86.28% 92.43% 96.14%
32 47.17% 70.74% 86.28% 92.43% 96.14%

Note that for the scenario shown in the figure, 14 of the 23
tasks did not receive any packets (since they are associated
with ARP processing) and thus their utilization (and work)
is zero. Therefore, the 14 rightmost task instances have zero
work associated with them. Still, each instance is present in
the system to ensure that all packets can be correctly processed
in case traffic changes.

One key question in the context of duplication is what value
M , the number of threads per processor, should be. The higher
M , the more balanced the overall workload. However, very
high values of M create overhead in the scheduling system
of Click and are thus undesirable. Therefore, we explore the
question of how well we can utilize a system with limited
M for different numbers of processor cores, N . The results
are shown in Table I where the system utilization for different
configurations is shown. A higher utilization indicates that the
systems performs better under that configuration. For small N ,
the balance is near optimal. For larger numbers of processors,
a larger number of threads are necessary to achieve balance.
Even for just four cores, it is desirable to allow a total of
over 64 tasks in order to get a utilization that is above 90%.
For high numbers of threads, the system achieves very high
utilization of over 96%.

C. Comparison to Iterative Adaptation

As discussed in Section II, the adaptation approaches de-
scribed in [13] and [24] are based on monitoring queue
lengths and response time. In response to increasing queue
lengths or increasing response time, these approaches allocate
additional resources and thus can adapt to changing work-
loads. A key difference to our duplication approach is that
these approaches changed allocations iteratively. If there is a
significant change in the amount of traffic going to a particular
tasks, these approaches cannot immediately determine how
many additional resources are necessary. Instead, multiple
adaptation steps are necessary until enough resources have
been allocated and queue lengths no longer grow or response
time requirements are met. In contrast, duplication explicitly
computes the number of tasks necessary for handling a certain
workload based on u(ti).

To demonstrate that there are significant benefits to the
duplication approach, we present a comparison of the number
of adaptation steps that are necessary as workload changes. We
consider a workload change from Scenario I to Scenario III
with different step sizes (i.e., 1% steps, 2% steps, etc.). Table II
shows the average and maximum number of adaptations that
are necessary to accommodate these changes for both types

TABLE II
NUMBER OF ADAPTATION STEPS OF ITERATIVE APPROACHES VS.

DUPLICATION

Workload Iterative Duplication Fraction
change avg. max. avg. max. (for avg.)

1% 2.16 37 0.68 1 31.5%
2% 3.65 63 0.71 1 19.5%
3% 5.19 79 0.88 1 17.0%
5% 8.32 97 0.79 1 9.5%

10% 17.22 121 0.89 1 5.2%
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of approaches. The results show for larger workload changes,
the number of adaptation steps in an iterative process can be
very large. This implies a larger overhead for adaptation since
the system needs to reconfigure multiple times. In contrast,
duplication can determine how to adapt in a single step. (The
average for duplication is below one since some changes do
not require changes in task allocations.) These results show
that there is great benefit in using duplication over iterative
adaptation since it makes the system more responsive.

D. Processing Time for Adaptation

The analysis of the computational complexity of the al-
gorithms used in our work is provided in supplementary
material. The measured processing times of the prototype
task duplication and task mapping algorithms are shown in
Figure 7. The number of tasks is T = 23. As expected,
for task duplication we can observe a general trend that is
approximately linear with the number of task instances, M ·N .
For low duplication limits, the executing time is slightly below
the extrapolated slope since the algorithm runs faster while
it still fits into the processor’s cache. For task mapping, the
initially linear trend gains an upward slope as large number
of duplications increase the number of edges, E. Overall,
the results show a roughly linear trend for the aggregate
processing time. Even for large numbers of task instances,
the processing time is very fast (e.g., around 200 milliseconds
for M ·N=8000.).

For practical systems, where the task duplication limit is
fixed, the aggregate processing time puts a lower bound on the
adaptation interval. The execution time (and thus the interval
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bound) may be higher if the same processor is used for
computing task duplication and mapping and for forwarding
packets. In a high-performance system, however, runtime
management is typically performed on a dedicated control
processor.

E. Performance Comparison

To compare the performance of all four systems discussed
above, we show their throughput performance for all three
scenarios in Figure 8. Since we focus on the processing aspect
of the router (rather than its ability to get packets in and out of
the system), we send large (1452-byte) UDP packets. (Results
for minimum size packets are discussed below.) In Scenario
I, there is very little processing, but in Scenario III, all packet
payloads need to be processed by cryptographic algorithms.
We make the following observations:

• Scenario I: This scenario, which has very low computa-
tional demands, is dominated by System I, the traditional
Click unicore system, which achieves over 1.2Gbps in
throughput. The main limitation for other systems, which
utilized multiple processor cores, is the overhead for
packet I/O and coordination among processors. Sys-
tems II, III, and IV can forward between 700Mbps and
900Mpbs. Our proposed System IV performs slightly
better than Systems II and III, but its full capabilities
cannot be shown in a scenario that has limited processing
demands.

TABLE III
PEAK THROUGHPUT RATES FOR ALL ROUTER SYSTEMS.

Scen- Pkt. size Peak throughput in Mbps Improvement of
ario in bytes I II III IV System IV over II

I
64 57 44 33 39 -12.0% (=0.88×)

1452 1237 837 813 936 11.8% (=1.11×)

II 64 66 61 48 49 -19.7% (=0.80×)
1452 432 603 647 798 32.2% (=1.32×)

III 64 72 56 45 48 -13.9% (=0.86×)
1452 276 435 237 575 32.0% (=1.32×)

• Scenario II: In this scenario, where more processing is
required, traditional Click (System I) starts to perform
poorly since it uses only a single processor core (around
400Mbps). Our proposed System IV achieve around
800Mbps at its peak. SMP Click (System II) levels out
at 600Mbps.

• Scenario III: This scenario requires the most amount
of processing per packet. In this case, our proposed
System IV achieves nearly 600Mbps, whereas SMP Click
(System II) peaks out at just above 400Mbps.

The peak rates are summarized in Table III. This table also
shows throughput results for small packets. For small packets,
the proposed System IV does not perform as well as SMP
Click (between 12% and 20% lower throughput). This is due
to the overhead of task duplication, which leads to more packet
movement between processors. However, small packets require
much less processing in Path II since their payload is minimal.
Therefore, such traffic (similar to Scenario I) is not represen-
tative of processing-intensive workloads for which we target
the design of System IV. Instead, Scenarios II and III with
larger packets should be considered the main evaluation target
for our platform. As the Internet moves toward more data
path services (at least on the network edge), such scenarios
will become more common. Also, System IV performs better
than System II for packet size larger than around 134–146
bytes, which indicates that System IV outperforms System II
for typical packet size distributions found in the Internet.

For these processing-intensive scenarios, our runtime adap-
tation system with task duplication (System IV) can sustain a
1.32× higher data rate than SMP Click (System II). Also, our
system performs consistently well for all three scenarios and
does not show the severe degradations observed in Click (Sys-
tem I). This indicates that our runtime system uses available
processing resources more effectively. Thus, we can conclude
that our approach of task duplication and mapping presents
a significant improvement to runtime management of parallel
packet processing systems.

VI. SUMMARY AND CONCLUSION

The need for flexibility and performance in the data path of
routers motivates the need for packet processing systems that
utilize multiple parallel processor cores. To provide the ability
to adapt to changing traffic characteristics, it is essential to
have a runtime management system in place that can adjust
the allocation of processing tasks to processing resources.
We present a runtime system that uses runtime profiling and
a novel task duplication algorithm to achieve a balanced
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workload across all processor cores in a single iteration. We
present a prototype implementation of this runtime system
that is based on the Click modular router. Our extensive
evaluation of this system shows the correct operation of the
algorithms. Our results also show that our runtime system
requires only 5.3%–31.5% of the adaptation steps of iterative
approaches and outperforms SMP Click by providing 1.32×
higher throughput for processing intensive packets. We believe
that the concepts introduced in this runtime system present
an important step toward implementing and deploying highly
parallel packet processing systems in the current Internet and
next-generation network architectures.
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Supplementary Material: Runtime Task Allocation
in Multi-Core Packet Processing Systems

Qiang Wu, Student Member, IEEE, Tilman Wolf, Senior Member, IEEE

This supplementary material provides additional discussion,
algorithms, and results that go beyond what is presented in the
article.

I. WORKLOAD REPRESENTATION

Section III.A of the article discusses workload representa-
tions. The following three representations of workload move
progressively from a user-friendly representation to a workload
model that can be efficiently implemented:

• Data Path Specification: From a user’s point of view,
packet processing systems of routers implement several
network, transport, or application layer functions. These
packet processing “applications” range from protocol
processing steps (e.g., IP forwarding, firewalling, VPN
termination) to more complex network services [1], [3].
The data path specification determines which sequences
of applications can be traversed by packets. Typically,
there are multiple, different applications available on a
router, and different packets traverse a different sequence
of these applications as they are being processed. Gen-
erally, the application representation – while easy to
understand for a user – does not provide sufficient detail
to allow for a high-performance implementation.

• Graph Representation: To provide more details about the
operation of the data path, the graph representation uses
nodes to represent processing tasks and directed edges to
denote communication paths (i.e., dependencies). Each
task denotes a schedulable unit that runs on the hardware
platform and performs a set of operations on packets it
receives. This representation is used in our system to
collect profiling information and to run the task mapping
algorithm.

• Implementation with Click Elements: The Click modular
router is a software system that allows the construc-
tion of custom data path functions from basic function
blocks called “elements” [2]. Each element belongs to
a corresponding C++ class, which implements a spe-
cific functionality in the packet processing procedure.
Communication between Click elements is performed via
connections and queues. Each element has input and
output ports, which serve as the endpoints of packet
communication between elements. Connections between
elements in form of directed edges represent a potential
path on which packets can travel.

Q. Wu is with Juniper Networks, Inc.; T. Wolf is with the Department of
Electrical and Computer Engineering, University of Massachusetts, Amherst,
MA, 01003, USA; email: qwu@juniper.net, wolf@ecs.umass.edu

II. TASK MAPPING

This section presents the mapping algorithm that is used in
our work after task duplication has been performed.

Mapping tasks to processing resources based on their pro-
cessing requirements is a load balancing problem. As dis-
cussed in the article, the packing problem of fitting processing-
intensive tasks with less processing-intensive tasks onto a
shared processing resource is intractable. However, the use of
task duplication allows us to control the work requirement of a
task as defined by Equation (1) in the article by adjusting d i as
stated in Equation (2) in the article. (Note that this flexibility
is not available for the general task mapping problem, but can
be exploited in the network processing domain.) Given a set
of balanced tasks, it is much simpler to determine a balanced
mapping as we discuss below.

A. Problem Statement

Assume we are given the task graph of all subtasks in all
applications by T task nodes t1, . . . , tT and directed edges ei,j
that represent processing dependencies between tasks t i and
tj . For each task, ti, its utilization u(ti) and its service time
Si is given. Also assume that we represent a packet processing
system by N processors with M processing resources on each
(i.e., each processor can accommodate M tasks and the entire
system can accommodate N ·M tasks). The goal of our work
is to (1) determine the optimal number of duplicates d i for
each task ti and (2) find a mapping m that assigns each of
the T tasks (and their duplicates) to one of N processors:
m : {t1, . . . , tT } → [1, N ]. This mapping needs to consider
the constraint on resource limitations:

∀j, 1 ≤ j ≤ N : |{ti|m(ti) = j}| ≤M. (1)

The quality of the mapping can be measured by several
different metrics (e.g., system utilization, power consumption,
packet processing delay, etc.). In our work, we aim to find a
mapping that provides the most balanced processor utilization
(i.e., a mapping such that the difference between the max-
imum and minimum processor utilization across the system
is minimized) and effectively exploits locality in processing.
Task duplication is the basis for load balancing and mapping
is used to achieve locality. Clearly, it is impossible to perform
this optimization without more detailed knowledge of the
processing demands of each task and the paths that packets
take through the system. Thus, runtime profiling information
is essential.
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B. Task Mapping Algorithm

Given a workload graph with duplicated task instances, we
need to map each task to a packet processing resource. An
effective mapping algorithm needs to consider two important
aspects:

• Task Locality: Tasks ti and tj that are connected through
an edge eij (or through a short path of edges), in practice
often may share data structures. Thus, placing these tasks
on the same packet processing engine may improve the
efficiency of the system (e.g., caching is more effective,
locks on data structures cause less overhead, etc.). If there
is a choice of tasks, the task tj with higher utilization
u(tj) is preferred as more packets traverse between the
current task ti and tj . Thus, placing both tasks on the
same processor increases locality for more packets.

• Workload Balance: The resulting mapping should balance
the total work allocated to all processors. Fortunately,
since all task instances require approximately the same
amount of work (due to the previous duplication step),
the algorithm can derive a balanced solution simply by
allocating the same number of tasks to each processor. It
is not necessary to solve a complex packing problem to
balance the amount of work on each process.

In light of these goals, we use the utilization-based depth-
first (UDFS) algorithm shown as Algorithm 1 for task map-
ping. The algorithm greedily clusters tasks on a processor
until all processing resources are fully utilized. The order of
graph traversal determines the allocation of tasks to processor
cores. High-utilization downstream tasks are traversed first to
increase task locality.

Algorithm 1 UDFS Task Mapping Algorithm.
1: function map next(i,p)
2: while ∃ ei,j with tj unmapped do
3: k ← argmaxj(u(tj))
4: if tasks allocated to(p) ≤M then
5: m(tk)← p
6: p← map next(k,p)
7: else
8: m(tk)← p+ 1
9: p← map next(k,p+ 1)

10: end if
11: end while
12: return p
13:

14: function map()
15: m(t1)← 1
16: map next(1,1)
17: return m

We initially map node t1, which is assumed to be the ingress
node for all traffic, to the first processor. Then, using the
map next function, we search among all outgoing edges to
find the highest utilized downstream task. If there are still
resources available on the same processor, the task that is
pointed to by this edge is mapped to the same processor.
Otherwise it is mapped to the next processor. This process

is repeated recursively to achieve depth-first mapping. The
recursion terminates when a node has no outgoing edges to
unmapped tasks (e.g., egress node). The variable p keeps track
of which processor is currently being used for task allocation.
Note that the algorithm maps tasks and their duplicates, but
to simplify notation, only tasks are mentioned.

An alternative to the depth-first search in UDFS is a
breadth-first search. In that case, task allocation roughly fol-
lows a software-pipelining approach (rather than the run-to-
completion approach in UDFS). In scenarios with multiple dif-
ferent processing paths for network traffic, UDFS is preferable
due to higher locality and fewer packet transitions between
processors.

In this paper, we focus on the processing aspect of a router’s
data path operation. Intercommunication cost between tasks
is closely related to the underlying hardware architecture.
For example, in SMP systems with a shared memory bus,
intercommunication between two tasks can be implemented
either via cache (when tasks are on a same core) or memory
(when tasks are on different cores). On systems with dedicated
inter-processor communication channel (e.g. next-neighbor
register on Intel IXP 2400), intercommunication cost can
be largely reduced by utilizing such channels. The proposed
UDFS algorithm tries to map neighboring tasks that have most
intercommunication on same core. Therefore it is applicable
to most systems. Detailed analysis on such cost in the UDFS
algorithm can be found in [4].

III. EVALUATION SETUP

Section V.A of the article discusses the prototype system
setup consisting of Systems I–IV. This section provides addi-
tional discussion on their configuration, including the full task
graph.

Systems III and IV are designed based on the concept
of task graph that is inherent to Click. Figure 1 shows the
data path configuration. For each task, we use multiple Click
elements to make sure it is schedulable across all processor
cores. For example, the inset in Figure 1 illustrates the
task ipsec_postproc_b, which contains a Click element
Unqueue that can be executed on any data path processor
core. This operation pulls packets from the task’s input queue
and the processes them all the way to the end of the task.
Between tasks, we use MSQueue elements as edges. On
systems only permitting data exchange in shared memory,
duplicating edges has very limited benefits. We therefore use
a large queue for each edge, and map all logically duplicated
edge instances to their original queue.

Since inter-task queues do not get duplicated during task
duplication, it is possible that multiple element instances pull
packets from a single queue. Therefore, it is necessary to
modify the MSQueue element to allow multiple pulls. We also
implement a blocking mechanism for MSQueue that allows
it to stall an upstream tasks’ processing in case the queue is
full.

We also extended each Click kernel thread with a profiling
database, which records utilization of each task as well as
its average service time using the processors’ high-resolution
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Fig. 1. Tasks in Click Router Configuration Used in Evaluation. Tasks contain multiple Click elements (as shown for ipsec_postproc_b).
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Fig. 2. Work wi of Six Tasks over Different Intervals.

time stamp counter (TSC) register. A user space program reads
profiling information periodically from each kernel thread,
calculates duplication and mapping results for the task graph,
and generates a (potentially different) Click router configu-
ration that is then installed in the prototype system. In our
prototype, the runtime system updates the configuration after
fixed intervals.

IV. EVALUATION

This section provides additional evaluation and analysis
results.

A. Profiling

To illustrate the functionality of the profiling component in
our runtime system, we show in Figure 2 the profiling informa-
tion for six characteristic schedulable elements over the range
of all processing workloads (Figure (5) in the article). The
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y-axis of this figure shows the total work per task per packet
(as defined in Equation (1) in the article) in processor cy-
cles. Initially, the ip_classifier and ip_lookup tasks
require as much work as ipsec_postproc_b. As IPSec
traffic increases, ipsec_postproc_b dominates processing
requirements. The other tasks in the system follow similar
patterns.

B. Task Duplication and Mapping

The profiling information from Figure 2 is used to duplicate
tasks. Figure 3 shows the number of times each of the
tasks is duplicated. For simplicity, several tasks are combined
into “other tasks.” The total number of available schedulable
threads for each of the N = 4 processor cores is assumed to be
M = 64. Thus, a total of 256 tasks are created. As expected,
the tasks that require most processing are duplicated most
frequently (initially, ip_classifier and ip_preproc,
and later ipsec_postproc_b).
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TABLE I
COMPUTATIONAL AND SPACE COMPLEXITY OF ALGORITHMS.

Algorithm Computational complexity Space complexity

Task duplication O(MN log T ) O(T )
Task mapping O(MN +E) O(MN + E)

C. Runtime Adaptation Algorithm Complexity

There are two main algorithms in the runtime adaptation
system: Task duplication and task mapping. The computational
complexity and space complexity of each algorithm is shown
in Table I. The task duplication algorithm requires the sorting
of tasks once and then a sorted insert for each duplicated task.
Since we assume T ≤M ·N , the computation cost is bounded
by O(MN logT ). (Note that the Algorithm shown as Algo-
rithm 2 in the article does not use an optimized sorted insert
to keep the description simple. Thus, this implementation of
the algorithm has a running time proportional to MNT .) The
space complexity of the duplication algorithm is bounded by
T since one value of di needs to be stored for each task.
The mapping algorithm has a computational requirement of
O(MN + E), where E is the number of edges in the task
graph. Each of the M ·N task instances need to be mapped
and each of the E may need to be traversed (even just to
determine that the task instance that is pointed to by the edge
is already mapped). The space requirement is O(MN + E)
since each of the task instances and each of the edges need to
be stored.
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