
1

High-Speed Prefix-Preserving IP Address
Anonymization for Passive Measurement Systems

Ramaswamy Ramaswamy and Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003

{rramaswa,wolf}@ecs.umass.edu

Abstract— Passive network measurement and packet header
trace collection are vital tools for network operation and re-
search. To protect a user’s privacy, it is necessary to anonymize
header fields, particularly IP addresses. To preserve the correla-
tion between IP addresses, prefix-preserving anonymization has
been proposed. The limitations of this approach for a high-
performance measurement system are the need for complex
cryptographic computations and potentially large amounts of
memory. We propose a new prefix-preserving anonymization al-
gorithm, top-hash subtree-replicated anonymization (TSA), that
features three novel improvements: precomputation, replicated
subtrees, and top hashing. TSA makes anonymization practical
to be implemented on network processors or dedicated logic at
Gigabit rates. The performance of TSA is compared with a con-
ventional cryptography based prefix-preserving anonymization
scheme which utilizes caching. TSA performs better as it requires
no online cryptographic computation and a small number of
memory lookups per packet. Our analytic comparison of the
susceptibility to attacks between conventional anonymization and
our approach shows that TSA performs better for small scale
attacks and comparably for medium scale attacks. The processing
cost for TSA is reduced by two orders of magnitude and the
memory requirements are a few Megabytes. The ability to tune
the memory requirements and security level makes TSA ideal
for a broad range of network systems with different capabilities.

I. INTRODUCTION

For the operation of networks and networking research it is
crucial to easily obtain measurements of network traffic. Pas-
sive measurement systems observe all the traffic that crosses a
particular node or link and record packet header information.
These packet traces are then used to extract statistics and infer
network behavior. While network traces provide extremely
useful data for network engineers and researchers, they also
pose a problem in terms of privacy. Many personal and
business transactions are performed over the Internet and it
is imperative that the privacy of a network user is maintained.
The IP addresses reveal the source and destination of each
communication and it is a simple exercise to determine, for
example, who is browsing which web servers.

To ensure that no private information is revealed in a
network trace, sensitive header fields need to be sanitized.
In most cases these fields are the IP source and destination
address, which are the focus of this paper. However, IP
source and destination addresses cannot simply be removed
from the trace, as they are necessary to derive any useful
networking statistic from the trace. Instead, IP addresses are

“anonymized.” The anonymization operation is a one-to-one
mapping between the original IP address as seen on the net-
work and the anonymized IP address that is used in the trace.
By employing cryptographic hash functions, this mapping
cannot be guessed easily and thus is secure in a cryptographic
sense. The main constraint on the anonymization algorithm
is that it should be “prefix-preserving.” This means that if
two original IP addresses have a common prefix of length l,
then the anonymized IP addresses should also have a common
prefix of exactly length l. This ensures that addresses that are
“closely” co-located in a network (e.g., in the same subnet) are
also closely co-located in the anonymized trace. Thus, some
information on network-level characteristics of the measured
traffic can be preserved across the anonymization step. The
details of such a prefix-preserving mapping for IP addresses
is discussed in detail in Section III.

In a measurement system, it is desirable to perform trace
anonymization as early in the collection process as possible.
By anonymizing header fields on the measurement node it-
self instead of external post-processing, it is less likely that
unanonymized data is leaked. This requires the anonymization
process to operate at a speed that can keep up with the
link rates of the measurement node. This sort of online ano-
nymization, however, cannot be achieved with current prefix-
preserving anonymization algorithms. The prefix-preserving
anonymization presented in [25] requires up to 32 crypto-
graphic hash (e.g., MD5) computations per IP address. In
our measurements in Section VI, we show that this translates
into 247,078 RISC instructions on a microprocessor. With link
rates in the order of Gigabits per second it is not possible
to implement the required processing in a cost-effective way.
Even dedicated cryptographic hardware cannot easily achieve
this processing rate.

In this paper, we present a novel prefix-preserving ano-
nymization algorithm, called TSA (top-hash subtree-replicated
anonymization), that addresses this problem by computing all
necessary cryptographic functions offline. In TSA, the ano-
nymization of an IP address only requires 1,395 instructions
and 26 memory lookups. The ability to limit the amount of
memory that is necessary for TSA to a few Megabytes makes
TSA an ideal algorithm to be implemented on router ports that
are equipped with network processors.

We compare the performance of TSA to that of a conven-
tional cryptography based anonymization scheme that caches

2

the anonymization mapping for active IP addresses to avoid
recomputation. However, from a network systems point of
view, it is not desirable to rely on any form of locality
in network traffic. We show that the rate at which new
IP addresses appear (i.e. compulsory misses in a cache) is
sufficiently large enough to to render caching ineffective.

A major challenge that needs to be addressed in the context
of anonymization is the issue of attacks on trace collection sys-
tems with the intent to compromise anonymized addresses. By
injecting traffic with a particular pattern that can be identified
by the attacker in the anonymized trace, the mapping between
an original and an anonymized IP addresses can be established.
The problem with prefix-preserving anonymization is that even
a single compromised address reveals a significant amount of
information about other IP address mappings. In Section IV,
we develop an analytic model of the security performance
of conventional anonymization and TSA under a worst-case
attack scenario to evaluate the tradeoffs between the different
approaches.

The “active” attack described above, provides a lower
bound on the security achievable by any prefix preserving
anonymization algorithm. We also investigate the effects of
a “passive” attack, in which an attacker, given an anonymized
trace, attempts to reveal address mappings in a random order
using inference attacks [14] or frequency analysis [25].

TSA is based on three additions to conventional prefix-
preserving anonymization, which address the above challenges
and makes TSA a practical solution for high-performance
network trace collection engines. These additions are:

• Precomputation: All necessary computation is done
offline. Anonymization is reduced to lookups in a data
structure.

• Subtree Replication: Precomputation requires a large
amount of space to store the results. Subtree replication
reduces this space.

• Top Hashing: Top hashing limits the prefix preserving
properties to areas of the IP address, where it is necessary.
This reveals less information to a potential attacker.

In Section II, we discuss existing anonymization methods
and other related work. Section III introduces the concept of
an anonymization tree and the details of the TSA algorithm.
Section IV introduces security metrics and provides an analytic
comparison of the resistance to attacks between TSA and
a conventional implementation of anonymization. The effect
of a random passive attack is also discussed in this section.
Section V illustrates the tradeoffs between security and space
requirements and identifies the optimal configuration of the
TSA algorithm. Section VI discusses implementation issues of
TSA and shows processing performance results. Section VII
compares the performance of TSA to a conventional anony-
mization scheme that utilizes caching. Section VIII summa-
rizes and concludes this paper.

II. RELATED WORK

Traditionally, two approaches have been taken towards
network measurement: active and passive [3]. In the active
approach, a sender and/or receiver measure and record the

traffic that they send/receive, obtaining end-to-end (e.g., path)
characteristics [15][16][26]. NLANR’s AMP (Active Mea-
surement Project) and Surveyor are large-scale measurement
infrastructures that perform such active measurements. Since
active measurement involves only traffic that was injected for
the purpose of measurement, no privacy issues arise and packet
anonymization is not necessary.

In the passive approach, measurements are taken at a given
point in a network and packet headers are observed and
collected to determine local characteristics of the network
and its traffic. Traces of packets passing through a passive
measurement point can be analyzed for traffic mix (e.g.,
protocol or application) [4][9][18] [10], packet sizes [23], or
“flow” size and burstiness [18][2][21]. The analyzed traffic is
generated by users of the network and the privacy of their
communications needs to be protected. For this reason, packet
payloads are typically not collected and packet header fields
(in particular IP addresses) are anonymized.

A simple way of anonymizing IP addresses is to assign an
arbitrary IP address mapping. One common technique is to as-
sign 10.0.0.1 to the first IP address observed in a trace, 10.0.0.2
to the second unique IP address and so on. Recurrences of
IP addresses are mapped to the same anonymized address as
the first occurrence. This method allows the identification of
packets that belong to the same flow, but correlations between
flows get lost. From a network management and research
point of view it is desirable to identify packets that originate
from the same subnet (e.g., to identify correlations in DDoS
attacks).

To strike a balance between privacy and usefulness of traces,
prefix-preserving anonymization has been proposed, which
anonymizes IP addresses while preserving the prefix nature of
IP addresses. This has been implemented in tcpdpriv [11] and
Crypto-PAN [25]. In Crypto-PAN incremental cryptographic
hash computations [20][12] are used to determine the address
mapping (executing approximately 247,078 RISC instruction
to anonymize a single address). In tcpdpriv, the anonymiza-
tion involves pseudorandom functions that cause the address
mappings to depend on traffic patterns and differ across traces.
The (raw, anonymized) mapping pairs are stored in a table to
maintain consistency. To avoid raw addresses being mapped
to different anonymized addresses, this table needs to be
distributed to all measurement nodes which is cumbersome
and makes tcpdpriv unsuitable for multinode measurements.
Moreover, the memory required by tcpdriv depends on the
number of entries in the table and grows larger as more
raw addresses are seen in the trace. In [14], a high level
environment which supports anonymization of both packet
headers and payloads using a policy script is introduced.
IP addresses are anonymized sequentially using a one-to-
one mapping and are not prefix preserving. The methods
proposed in this paper are suitable for offline anonymization
of packet traces. A cryptography based solution to compress
and anonymize packet traces is presented in [17]. However,
this method is too computationally intensive to be performed
online at a measurement node.

With increasing link speeds, network measurement systems
need to collect data at higher and higher traffic rates. High-

3

�

��

�

�

� � � � � � �

� �

Fig. 1. Anonymization Tree. Black nodes indicate that bits in the original
address are flipped to obtain the anonymized address.

performance measurement systems have been developed (e.g.,
Sprint’s IPMON project [6], AT&T’s Gigascope project [5],
and NLANR’s passive measurement efforts [13]) to allow
continuous monitoring of traffic. This requires that packets can
be anonymized online. This is currently not possible for high
speed links as cryptographic hashing is processing intensive.
Instead anonymization is performed offline. In our work,
we present an algorithm that allows online prefix-preserving
anonymization with very little processing requirement and
small space complexity.

III. TSA ALGORITHM

Before describing the details of our proposed anonymization
algorithm, we briefly discuss the concept of an anonymization
tree. This is a useful visual representation of the anonymization
function and is used to describe TSA below.

In prefix-preserving anonymization, two original addresses
IP1 and IP2 that share a common prefix of length l are
translated by the anonymization function A into different
addresses A(IP1) and A(IP2). In our terminology, we call the
cleartext, unanonymized addresses as “original” addresses and
the result of the anonymization as “anonymized” addresses.
Due to the prefix-preserving nature of A, the anonymized
addresses A(IP1) and A(IP2) must also have a common
prefix of exactly length l.

Since this property must hold for all pairs of addresses, the
anonymization function A, can be seen as a function that takes
the prefix tree as input and “flips” some of the nodes. The
result of a flip is that the left child becomes the right and vice
versa. This function A can then be represented by a binary tree,
where a flipped node is illustrated in black and a non-flipped
node in white [25]. We call such a tree an “anonymization
tree,” and an example for addresses with length 3 is shown in
Figure 1. Note that any combination of black and white nodes
in the tree yields a correct prefix-preserving anonymization
function (however simplistic if all nodes are white).

When an IP address is anonymized, a lookup in the tree
that represents A is performed using the bit sequence of
the original IP address. The sequence of black and white
nodes that are encountered during this lookup is recorded. The
original IP address is then XOR-ed with the lookup sequence,
where black nodes translate into ones and white nodes into
zeros. The resulting bit sequence is the anonymized IP address.
This process is illustrated in Figure 2. It can be observed that

any two addresses with a common prefix of length l share the
same anonymization lookup sequence for the first l bits and
thus share the same anonymized prefix.

In order to achieve the goal of anonymization, it should not
be possible to easily guess the color of some or all of the tree
nodes in A. For this purpose, cryptographic hash functions
are used to compute if a tree node should be flipped or not.
Without the knowledge of the key, the choice of color appears
to be random and thus cannot be guessed. If the colors of
the nodes of the anonymization tree can be revealed through
an attack on the anonymization system, then a simple bitwise
repetition of the XOR operation shown in Figure 2 on the
anonymized address reveals the original IP address.

In [25], the computation of the node color is done incremen-
tally by using the color of the previous nodes and the address
prefix as inputs. This requires 32 successive cryptographic
computations and is computationally expensive. This approach
is also inefficient because each cryptographic computation is
dependent on the result of the previous cryptographic computa-
tion. We address these problems by using precomputation and
subtree replication. With precomputation, the cryptographic
processing can be done efficiently offline and the per-address
computation is reduced to several table lookups. Due to the
space explosion caused by precomputation, we use subtree
replication to keep space requirements tractable. This comes at
the cost of an increased vulnerability to attacks on the privacy,
which is analyzed in detail in Section IV.

Another important observation is that nodes that are closer
to the root of the anonymization tree are more valuable to a
potential attacker. If the attacker can determine the color of
the root node, then the first bit of all addresses in the address
space is revealed. The problem is that if the anonymization
tree lookup sequence for even a single address is known the
color of the root node is known. This leads to the problem
that 20% of all address bits can be revealed by cracking just
22 such mappings. To alleviate this problem, we propose the
use of top hashing.

The details of our proposed top-hashed subtree-replicated
anonymization (TSA) algorithm are discussed in the following
subsections.

A. Precomputation

In [25] and [11], anonymization mappings are calculated
whenever new addresses are encountered. The motivation for
this approach is to do as few cryptographic computations as
necessary. For each address that is anonymized, the color of
the nodes in the anonymization tree are computed and stored.
This builds the anonymization tree incrementally and is based
on the addresses that are actually observed on the network
(illustrated in Figure 3). As we have previously mentioned,
these cryptographic operations are so complex that they cannot
be performed online on a high-speed measurement node.

The only way to avoid online cryptographic processing is to
precalculate the entire anonymization function A. In practice
a measurement node can be expected to observe IP addresses
from only a small fraction of the total address space. It is
still necessary to precalculate the anonymization mapping for

4

� � � � � �� � � � ��� � ��

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

�������	
��
�����

�������������
����

���
��������

���������
��
�����

���

Fig. 2. Illustration of Anonymization Process. The original address is XOR-ed with the lookup sequence in the anonymization tree. Black nodes represent
a ’1’ causing bit flips to obtain the anonymized address.

���

���

Fig. 3. Incremental Online Computation of Anonymization Tree. Tree nodes
are added for addresses that are anonymized.

���

���

Fig. 4. Precomputation of Entire Anonymization Tree. Tree nodes are
computed offline for any possible address.

all addresses in the address space as traffic patterns are not
known beforehand. This implies that the mapping for all 4
billion possible IPv4 addresses needs to be calculated and
stored (illustrated in Figure 4). For 32-bit addresses, this
yields a tree with 232 − 1 nodes of color white or black.
The minimum amount of memory for such a data structure is
4Gbits = 512MB where each node is represented as a single
bit. Pointers between nodes are not necessary because the
binary tree is complete. Conventional compression algorithms
cannot be employed to reduce the memory requirement due to
the pseudo-random nature of cryptographic functions that are
used to determine the node colors.

With a precomputed anonymization tree, an address map-
ping can be determined by performing 32 lookups in the binary
tree. No cryptographic computations are necessary, but the
required memory is very large. While it is conceivable that
next-generation measurement nodes could afford to allocate
half a Gigabyte of memory to store the precomputed anony-
mization tree, it is still desirable to reduce the memory require-

ments. This is particularly important for high-performance
routers with measurement capabilities because a copy of the
anonymization tree is required on each port and needs to be
implemented in faster, more expensive SRAM.

We address the issue of memory requirements by replicating
subtrees in the anonymization tree.

B. Subtree Replication

The major drawback of precomputation is the amount of
memory necessary to store the entire anonymization tree with
232 − 1 nodes. It is necessary to have the entire tree available
because the IP addresses of the network traffic are unknown
a priori. At the same time, most network traffic is limited in
the number of distinct addresses that can be observed. This
leads to the idea of replicating anonymization subtrees instead
of having a distinct anonymization subtree for each prefix.

The subtree replication scheme used in TSA is illustrated in
Figure 5. Subtrees are enclosed by triangles and are complete
binary trees as described above. Instead of having 2l unique
subtrees for level l, we create only a small number of unique
subtrees. These are virtually replicated and act as subtrees for
all 2l nodes in this level. In Figure 5, there are 8 subtrees of
which 2 are unique. The remaining 6 subtrees are copies of
the 2 unique subtrees (these are shaded in Figure 5). This
significantly reduces the memory requirement as only the
unique subtrees need to be stored. The choice of which subtree
to use to anonymize an IP address is determined by performing
a mod operation on the original IP address which returns a
value between one and the number of unique subtrees.

The drawback of subtree replication is that this anonymiza-
tion mapping can be revealed more easily. If the color of nodes
in a subtree are revealed and the attacker knows which subtrees
are copies of each other then one revealed address can cause
a large amount of anonymization information to be revealed.

To make it harder to identify which subtrees are duplicates
of each other, we consider a modification to subtree replica-
tion, called subtree replication with hashed mapping. In this
scheme, the choice of which subtree to use is determined
by a cryptographic hash function which is also precomputed
for all possible unanoymized IP addresses and stored in a
table. A lookup operation is performed on this table using
the unanonymized IP address as an index to determine which
subtree to use for anonymizing the IP address. This makes
it more difficult to attack the anonymization algorithm, but
also requires more memory to store the table containing the
precomputed hash values.

The impact of the choice of size and number of unique
subtrees and the use of hashed mapping is analyzed in detail in

5

���
��� ��� ������

������

���	
���

�����	��

���	
���

Fig. 5. Subtree Replication in Anonymization Tree. Reuse of subtrees reduces
memory requirements.

1

10

100

1000

10000

100000

0 4 8 12 16 20 24 28 32

lo
g(

N
um

be
r

of
 e

nt
rie

s)

Prefix length(bits)

Fig. 6. IPv4 Prefix Length Distribution.

Section IV. We show that subtree replication can be configured
to be reasonably secure while requiring significantly less
memory than a complete anonymization tree.

To alleviate the decrease in security due to subtree replica-
tion, we discuss next a method of increasing security for small
scale attacks by protecting the nodes close to the root of the
anonymization tree.

C. Top Hashing

From a security point of view, one of the major drawbacks
of prefix preserving anonymization is that there is a correla-
tion between the original IP addresses and the anonymized
addresses. If two addresses share a prefix of a certain length,
they share a prefix of the same length in the anonymized trace.
This of course is desirable from a networking research point
of view as the prefix relation gives clues of network traffic
properties.

There are two key observations that lead to our proposed top
hashing improvement. First, the nodes closest to the root in
the anonymization tree reveal most information about other
addresses if their color is revealed. They represent short
prefixes that are shared by a large number of addresses. If
the root node is revealed, the first bit of all anonymized IP
addresses is known. Second, in the Internet the prefix nature
of IP addresses is only relevant for the lower 24 bits of
an IPv4 address. This is due to the historical assignment of
IP addresses. There are no address blocks larger than 224

���

���

Fig. 7. Top Hashing of Anonymization Tree. Hashing of initial bits limits
prefix preserving property to subtrees and increases resilience to attacks.

addresses (formerly Class A). Thus, if two addresses share a
prefix that is shorter than 8 bits, they are not any “closer”
in networking terms than two addresses that do not share
a common prefix. Figure 6 shows the prefixes of a BGP
table obtained from the Route Views Project [1] (AT&T, ID
7018, RIB date 01/23/04) and supports the observation that
the shortest common prefixes occurring in the Internet are 8
bits of length.

The top hashing in TSA exploits this absence of short
prefixes to improve the resistance of the anonymization al-
gorithm to attack. Instead of using an anonymization tree
for the most significant bits of an address, a cryptographic
hash function is used to anonymize these bits. The remaining
bits are anonymized with the conventional anonymization tree.
This is illustrated in Figure 7. The benefit of this approach
is that the hash function removes all correlation between the
prefixes and thus a compromised address does not reveal
information about other address prefixes. The cost of this
approach is that the prefix nature of the most significant bits
is not preserved, but as shown above, this has no practical
impact on IPv4 network traces.

Top hashing is an improvement that is not specific to TSA.
It is applicable to other anonymization algorithms (such as
[25]). We show in Section VI that top hashing improves perfor-
mance by reducing processing requirements while increasing
security for both TSA and other conventional anonymization
algorithms.

IV. SECURITY ANALYSIS

The proposed TSA algorithm makes several changes to
conventional prefix-preserving anonymization using an anony-
mization tree. These changes improve the performance of the
anonymization (no online cryptographic computation, reduc-
tion of space requirement due to subtree replication), but also
impact the “security” of the anonymization process. We use
the term “security” to mean the ability of the anonymization
algorithm to resist an attack that intends to reveal mappings
between original and anonymized IP addresses. We do this by
determining how easily an attacker can determine the colors
of nodes in the anonymization tree (or a hash table) and how
much information is revealed about other address mappings
that share the same common prefix.

6

���
��� ��� ������

�������	

�	�����

���

�������	

������

��

������

	
�������

������

���

�������	

�����

��������

Fig. 8. Configurable Parameters in TSA.

To understand the impact of using top hashing and subtree
replication, we derive expressions for various security metrics
and compare them to conventional prefix-preserving anony-
mization. To obtain general results, we consider a range of pos-
sible parameter configurations, which are shown in Figure 8.
Top hashing is performed on the top t most significant bits of
the IP address. Subtree replication uses r unique subtrees of
height s.

A. Attack Model

The anonymization mechanism is under attack when the
mapping of original IP addresses to anonymized IP addresses
is revealed. There are two ways by which an attacker can
compromise the anonymization mapping of an IP address:
active and passive attacks.

In an active attack, traffic of a certain pattern with carefully
selected IP addresses is injected into the network and then
identified in the anonymized trace. For example, one could
send a sequence of n packets with packet lengths of l1 . . . ln.
If the sequence is chosen randomly and n is sufficiently large,
the pattern of packet lengths is unique in the anonymized
trace. Then the attacker knows the IP addresses used for the
original traffic as well as the IP addresses that were generated
by the modification. Using a simple XOR computation as
shown in Figure 2, the color of the nodes in the anonymization
tree can be determined. With each IP address mapping that
is compromised in such a way, the attacker gains more
information about the anonymization tree.

In a passive attack, the attacker can only observe the
anonymized traffic, but not actively inject traffic. This is
the case when an attack is aimed at a recorded trace. In-
stead of injecting traffic, statistical methods and heuristics
can be employed to identify frequently used IP addresses
(e.g., popular web servers) with the goal of mapping them
to frequently occurring anonymized addresses. This makes
passive attacks more complex to analyze than active attacks.
We have simulated a passive attack on an anonymized trace.
The results are presented in Section IV-G.

We are interested in analyzing the performance of the
anonymization algorithms under a worst case attack model.
This assumes that the attacker can inject arbitrary traffic and

�������

���	
��
�

������	
��

�
���

���������

�����������������
	
���������������

������	
�������

������������

����������

����	���������������
	
�

����� �
�����	

�

����������!�	������������

���
	
�����	
������
������	

�

���!�!������������������
	
����

���
���������"�#������	

Fig. 9. Illustration of Relation Between IP Address Space and TSA
Components.

easily identify this traffic in the anonymized trace. The key
question is how much information can be revealed in such an
attack given that the attacker can compromise i IP address
mappings of his/her choice. It is always assumed that the
attacker chooses the IP addresses in such a way as to maximize
the amount of information that can be revealed. Typically, this
means that the IP addresses are chosen to reveal different paths
in the anonymization tree that are as distinct as possible (and
thus reveal the color of as many unknown nodes as possible).
This is called a semantic attack in [25].

B. Security Metrics

In this security analysis, we use two metrics that have
been introduced in [25] to evaluate the security of prefix
preserving anonymization schemes against semantic attacks.
These metrics are:

• The number of unknown non-leaf nodes in the anon-
ymization function, C: The value of C represents the
number of non-leaf nodes in the anonymization tree
whose color (i.e., if they flip bits or not) is unknown.
This metric is useful for understanding which parts of the
anonymization tree have been revealed. It however does
not capture the impact of revealing different nodes (e.g.,
revealing the root node has an impact on 232 addresses
whereas a leaf node impacts only two addresses).

• The number of unknown address bits, U : This is the total
number of bits that are unknown in all 232 addresses
of the complete address space. When an address is
compromised, all bits in the address are revealed. Addi-
tionally, certain bits in other anonymized addresses may
also be revealed due to the nature of prefix-preserving
anonymization. Figure 9 illustrates the 32 · 232 bits of
all IP addresses that are represented in U . Different
components of the anonymization scheme “protect” these
bits from becoming compromised.

We determine C and U as a function of i, which is the
number of addresses that have been compromised by the
attacker (where 0 ≤ i ≤ 232). The larger the values of C and
U for a given i, the more resistant an anonymization scheme is
to attacks. As explained above, we assume a worst case attack
model where the attacker chooses the sequence of addresses
so as to reduce C and U as much as possible.

7

C. Security Analysis for Conventional Anonymization

Conventional anonymization (CA) represents the algorithm
that uses the anonymization tree as shown in Figure 3. This
is equivalent to precomputation and it makes no difference in
terms of security if the tree node colors are computed online or
offline. Thus, we assume a complete binary tree with 32 levels
for the anonymization function. The attacker uses the worst
case attack pattern that uses distinct paths in the anonymization
tree and reveals the nodes closest to the root as quickly as
possible.

Initially, CCA
0 , the number of unknown nodes in the anon-

ymization tree when no addresses have been compromised, is
simply the number of non-leaf nodes in the anonymization
tree. Note that C0 depends on the algorithm that is used
(CA in this case) and varies between different anonymization
schemes. Since the number of non-leaf nodes in a complete
binary tree of height, h is 2h − 1, it follows that:

CCA
0 = 232 − 1. (1)

As each address is compromised, a certain number of internal
nodes in the anonymization function are revealed. We rep-
resent this quantity as CCA

i , the number of known nodes in
the anonymization function as i addresses are compromised.
When one address is compromised, we reveal the root node of
the anonymization tree and one node in each of the remaining
31 levels. Under a worst case attack, the next address that
is compromised reveals (again) the root node, and different
nodes on the remaining 31 levels. Thus, for i = 2, the root
node plus two nodes on each of the next 31 levels are known.
The maximum number of nodes known in each level l is 2l.
The total number of nodes revealed after i addresses have been
compromised is:

CCA
i =

31∑

l=0

min(i, 2l), (2)

where l, represents the level of the binary tree on which a
particular node is present (0 ≤ l ≤ 31).

Finally, Ci is given by:

CCA
i = CCA

0 − CCA
i i = 1, 2, . . . , 232, (3)

where CCA
0 and CCA

i are given by Equations (1) and (2)
respectively.

The metric UCA
i , which weighs the impact of a revealed

node on the entire address space, can be expressed in a similar
way. Since we have 232 addresses and each address is 32
bits long, U0, the number of unknown address bits when no
addresses are compromised, is given by:

U0 = 232 · 32 = 237. (4)

U0 is independent of the particular anonymization algorithm
used as it pertains to the IP address space. As i addresses are
compromised, the number of address bits that are revealed in
the entire address space is represented by UCA

i . When the root
node is revealed, the most significant bit for 232 addresses is
revealed. When one node on the next level (l = 1) is revealed,
the second bit is revealed for 231 addresses. When both the
nodes in the next level (l = 1) are revealed, the second bit

is revealed for all 232 addresses. UCA
i is the product of the

number of nodes revealed in the anonymization tree and the
number of bits revealed per node after i addresses have been
compromised. This is given by:

UCA
i =

31∑

l=0

min(i, 2l) · 232−l. (5)

The first portion is the same expression as CCA
i , and 232−l

represents the number of bits revealed per compromised node
on level l. Finally, UCA

i is given by:

UCA
i = U0 − UCA

i i = 1, 2, . . . , 232, (6)

where U0 and UCA
i are given by Equations (4) and (5)

respectively.

D. Security Analysis for Top Hashing

For top hashing (TH), we derive similar expressions for
UTH

i and CTH
i . We denote t as the number of most significant

bits of the address which are chosen to be hashed. Once again,
we assume a complete anonymization tree with 32 levels and
a worst case attack scenario. Each individual t-bit hash is
considered as a single node in the anonymization tree.

CTH
0 , is the number of non-leaf nodes in the anonymization

tree when no addresses have been compromised. The top-
hash of the tree consists of 2t nodes. Each node consists of a
complete binary tree with 32 − t levels. CTH

0 is given by:

CTH
0 = (232−t − 1) · 2t + 2t = 232. (7)

We also assume that the attacker will first attempt to reveal the
top hash table before proceeding to reveal internal nodes in the
subtrees of the top hash. To reveal the top hash, 2t addresses
will be required. For the ith compromised address, min(i, 2t)
nodes will be revealed in the top hash table (we cannot reveal
more than 2t entries in the top-hash). The number of nodes
revealed in the subtree is derived in a manner similar to that of
Equation (2). The only difference here is that the summation
extends from level t to level 31, (since the first t levels are
protected by the top-hash). CTH

i is given by:

CTH
i = min(i, 2t) +

31∑

l=t

min(i, 2l). (8)

The expression for CTH
i is the same as Equation (3) for CCA

i .
UTH

i can also be computed as shown in the previous
section. We can derive an expression for UTH

i , the number of
address bits revealed when i addresses are compromised, by
multiplying Equation (8) with the number of bits revealed as
a node in the anonymization tree is compromised. In the top-
hash, t bits are revealed for 232−t addresses when a single hash
is discovered. The product of these quantities with the first
term of Equation (8) gives the number of bits revealed for the
top-hash alone when i addresses are compromised. Similarly,
232−l bits are revealed for each node that is discovered in the
lth level (t ≤ l ≤ 31) of the address tree. The product of this
quantity with the second term of Equation (8) gives us the

8

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

U
[%

]

Compromised Addresses

CA
TH(t=8)

Fig. 10. Percentage of Unknown Bits in Address Space (Ui) for Conventional
Anonymization (CA) and Top Hashing (TH) as a Function of the Number of
Compromised Addresses.

number of bits revealed in the remainder of the address space.
So UTH

i is given by:

UTH
i = t · 232−t · min(i, 2t) +

31∑

l=t

min(i, 2l) · 232−l. (9)

The expression for UTH
i is the same as Equation (6). U0 is

given by Equation (4).
A comparison between the number of revealed address bits

under attack, Ui, for conventional anonymization (CA) and our
proposed top hashing (TH) scheme is shown in Figure 10. Ui

is expressed as a percentage of U0. It can be observed that for
the initial 256 compromised addresses top hashing reveals less
information. In particular, with only one compromised address,
1/16th of the address space in conventional anonymization is
revealed, causing an immediate drop of UCA

1 to 93.75%. The
slower decrease of UTH

i in top hashing is a direct result of
using a hash instead of a prefix-preserving mapping for the
most significant 8 bits. However, once all 256 hash mappings
of these 8 bits have been discovered, top hashing behaves the
same way as conventional anonymization.

To show the impact of the parameter t, which specifies
the size of the top hash, Figure 11 shows UTH

i for a range
of values for t. Note that the x-axis shows the number of
compromised addresses on a logarithmic scale. UCA

i and
UTH

i reach zero at 231 compromised addresses, because
all the information of the anonymization function has been
discovered. Due to the prefix-preserving nature, the remaining
231 addresses can be obtained by flipping the least significant
bit. For larger values of t, top hashing performs very well and
does not reveal very much information until the entire hash
function has been discovered. The IP prefix distribution shown
in Figure 6 indicates however that t > 8 would cause a loss
of prefix-sharing relation in the anonymized trace. In cases
where this is acceptable, larger values of t can provide better
overall security.

E. Security Analysis for Subtree Replication

In this section, we derive expressions for Ui and Ci for both
subtree replication (SR) and subtree replication with hashed

0

20

40

60

80

100

2^0 2^4 2^8 2^12 2^16 2^20 2^24 2^28 2^32

U
[%

]

Compromised Addresses

CA
TH(t=4)
TH(t=8)

TH(t=12)
TH(t=16)

Fig. 11. Percentage of Unknown Bits in Address Space (Ui) for Conventional
Anonymization (CA) and Top Hashing (TH) for Different Values of t as a
Function of the Number of Compromised Addresses.

mapping (SR-H). In SR, the replicated subtree is simply
determined using a mod(r) function. In SR-H, a cryptographic
hash function is used to determine this mapping. Both analyses
also use top hashing and are based on the results from the
previous section.

As shown in Figure 8, the s lower bits of the address are
considered for replication. Additionally, the subtree replica-
tion factor, r, gives the number of unique subtrees that are
replicated. For example, s = 8 and r = 256 means that the 8
bit deep subtrees at the end of the address tree are replicated.
There are 224 such subtrees, out of which the first 256 subtrees
are unique. Thus, each subtree is replicated 216 times.

An expression for CSR
i can be obtained as done previously

by computing CSR
i , the number of nodes of the anonymization

tree that are revealed as i addresses are compromised. This is
given by:

CSR
i = min(i, 2t) +

31−s∑

l=t

min(i, 2l) +

31∑

l=32−s

min(i, r · 2l−32+s)
232−s

r
, (10)

where the first term represents the number of nodes revealed
in the top-hash portion and the second term represents the
number of nodes revealed in the main portion of the anon-
ymization tree. Note that the second term is summed from
t to (31 − s) since (t ≤ l ≤ 31 − s) for the middle level.
The last term in the equation expresses the number of nodes
revealed in the subtree portion of the anonymization tree. For r
unique subtrees, a total of

∑31

l=32−s min(i, r · 2l−32+s) nodes
are revealed. This causes the same number of nodes to be
revealed in the remaining 232−s

r
subtrees as well since the

same subtree is reused. The expression for CSR
i is the same

as Equation (3). CSR
0 is specified by Equation (7) (replicated

nodes are counted individually).
USR

i can be obtained from Equation (6). U0 is the same as
the previous cases and is given by Equation (4). To compute
USR

i , we can use Equation (10) and multiply each term of the
equation with the number of bits revealed by compromising
the nodes. For the top hash, the number of bits compromised

9

0

20

40

60

80

100

2^0 2^4 2^8 2^12 2^16 2^20 2^24 2^28 2^32

U
[%

]

Compromised Addresses

CA
SR(s=8,r=2^0)
SR(s=8,r=2^4)
SR(s=8,r=2^8)

SR(s=8,r=2^12)
SR(s=8,r=2^16)
SR(s=8,r=2^20)
SR(s=8,r=2^24)

Fig. 12. Percentage of Unknown Bits in Address Space (Ui) for Conventional
Anonymization (CA) and Subtree replication with top hashing (SR) for
Different Values of Unique Subtrees r as a Function of the Number of
Compromised Addresses. Top hashing is set to t = 8 and the subtree height
is s = 8.

is t · 232−t. For the remainder of the anonymization tree, the
number of bits revealed is 232−l. The expression for USR

i is:

USR
i = t · 232−t · min(i, 2t) +

31−s∑

l=t

min(i, 2l) · 232−l +

31∑

l=32−s

min(i, r · 2l−32+s) · 232−l 2
32−s

r
(11)

Figure 12 compares Ui for subtree replication (including top
hashing) and conventional anonymization. The height of the
subtrees is s = 8. The replication parameter r that determines
the number of unique subtrees is varied from a single subtree
(r = 20) to all unique subtrees (r = 224). The single unique
subtree is the lower bound of the performance and performs
strictly worse than CA. The larger the value of r, the closer
SR comes to CA (for i > 2t) and TH shown in Figure 10.
For r = 216, SR shows comparable security performance to
CA and TH for up to 216 compromised addresses while using
only 1/256th of the number of subtrees of TH.

The impact of the subtree height, s, is shown in Figure 13.
The height is varied from 4 to 16 bits with a constant replica-
tion of r = 256. Smaller subtrees reveal less information due
to replication and thus perform better. The effect to top hashing
on SR can be identified by the “hump” in the plots of Figure 12
and Figure 13. This shows that top hashing increases security
by reducing U at a slower rate when compared to conventional
anonymization. If top hashing were to be removed from SR,
then the reduction in U for all SR plots will either keep up
with or be less than the reduction in U for the CA plot until
256 addresses are compromised (since t = 8). When more
addresses are compromised, the graphs will be identical to
those shown in Figure 12 and Figure 13.

F. Security Analysis for Subtree Replication with Hashed
Mapping

The major drawback of SR is that once the unique subtree
has been completely compromised (by compromising its 2s

address mappings), all copies of the subtree are also com-
promised. Subtree Replication with Hashed Mapping (SR-H)

0

20

40

60

80

100

2^0 2^4 2^8 2^12 2^16 2^20 2^24 2^28 2^32

U
[%

]

Compromised Addresses

CA
SR(s=4,r=2^8)
SR(s=8,r=2^8)

SR(s=12,r=2^8)
SR(s=16,r=2^8)

Fig. 13. Percentage of Unknown Bits in Address Space (Ui) for Conventional
Anonymization (CA) and Subtree Replication with Top Hashing (SR) for
Different Values of the Subtree Height s as a Function of the Number
of Compromised Addresses. Top hashing is set to t = 8 and the subtree
replication is r = 2

8.

addresses this problem. Instead of having a simple mod(r)
function to determine which subtree is used when traversing
the anonymization tree, SR-H uses a cryptographic hash to
choose the subtree. This makes it more difficult for an attacker
to determine all address mappings.

The worst case attack for SR-H requires that each unique
subtree is revealed (assuming the attacker can guess which
these are) by compromising all its address mappings. Then
the attacker tries to compromise the duplicate subtrees with
the following method. By compromising a single address in
a duplicated subtree, the attacker obtains a mapping between
one original and one anonymized address. Since all unique
subtrees are already revealed, a simple comparison of the
obtained mapping with all subtrees yields the unique subtree
that is used. It is unlikely (but possible) that there are a large
number of different subtrees that contain the same mapping. If
this is the case, the attacker can compromise more addresses
to obtain the unique subtree. Since we consider the worst case
attack, we assume the subtree can be identified by the first
compromised address.

Thus, with SR-H, the attacker needs one extra compromised
address per subtree to reveal the entire data structure. While
this might seem easily achievable, it does contribute to a
significant effort for configurations where the number of
subtrees is large.

The expression for USR−H
i can be derived from Equation

(11) and is given by:

USR−H
i = t · 232−t · min(i, 2t) +

31−s∑

l=t

min(i, 2l) · 232−l +

31∑

l=32−s

min(i, r · 2l−32+s) · 232−l +

min(max(s · 2s · (i − r · 2s−1), 0),

s · (232 − 2s · r)) (12)

The third term represents the number of bits revealed by
revealing nodes in the subtree. Since a hash is used, bits
in the duplicated subtrees are not revealed when nodes in

10

0

20

40

60

80

100

2^0 2^4 2^8 2^12 2^16 2^20 2^24 2^28 2^32

U
[%

]

Compromised Addresses

CA
SR-H(s=8,r=2^0)
SR-H(s=8,r=2^4)
SR-H(s=8,r=2^8)

SR-H(s=8,r=2^12)
SR-H(s=8,r=2^16)
SR-H(s=8,r=2^20)
SR-H(s=8,r=2^24)

Fig. 14. Percentage of Unknown Bits in Address Space (Ui) for Conventional
Anonymization (CA) and Subtree Replication with Hashed Mapping and Top
Hashing (SRH) for Different Values of Unique Subtrees r as a Function of
the Number of Compromised Addresses. Top hashing is set to t = 8 and the
subtree height is s = 8.

a particular subtree are compromised. The third term is not
multiplied by 232−s

r
(which is the number of repeated subtrees)

to account for this fact. The fourth term accounts for the
fact that an additional address needs to be compromised in
order to reveal a duplicated subtree. We assume that the
attacker is capable of revealing the r unique subtrees before
compromising the remaining duplicated subtrees. This means
that the attacker will need the first r ·2s−1 addresses to reveal
the unique subtrees. Subsequently, the attacker can reveal one
entire subtree (s · 2s bits) with a single address. The max
function is required since the number of bits revealed will be
negative when i < r · 2s−1. We have a total of s · 232 bits
in the subtrees out of which 2s · r · s bits have been revealed
in the unique subtrees. The min function is needed to ensure
that the number of bits revealed by the fourth term does not
exceed the maximum number of bits that can be revealed in
the repeated subtrees which is (s · 232) − (2s · r · s).

The results for USR−H
i with s = 8 are shown in Figure 14

as compared to CA. It can be observed that SR-H now tracks
the security performance of CA (for i > 2t) and TH for up to
220 compromised addresses. For i > 220, whole subtrees can
be compromised quickly with the attack described above. A
similar trend can be seen in Figure 15, where the subtree height
is varied. For certain configurations (e.g., s = 16 and r = 28),
USR−H

i is above UTH
i for large i (which is not a result of

top hashing). This is due to a different attack strategy in SR-H
than in CA. In SR-H, it is more desirable to first compromise
the unique subtrees completely (the flat part of the plot in
Figure 15), and then discover the duplicate subtrees quickly.
This leads to USR−H

i leveling off and then dropping steeply.

G. Passive Attacks

In a passive attack, the attacker is assumed to have obtained
a trace in which the IP addresses have been anonymized in
a prefix preserving manner. The attacker attempts to reveal
mappings between the raw and anonymized IP addresses, but
is limited to the addresses that actually occur in the trace.
Thus, a worst case attack is not possible. This type of attack

0

20

40

60

80

100

2^0 2^4 2^8 2^12 2^16 2^20 2^24 2^28 2^32

U
[%

]

Compromised Addresses

CA
SR-H(s=4,r=2^8)
SR-H(s=8,r=2^8)

SR-H(s=12,r=2^8)
SR-H(s=16,r=2^8)

Fig. 15. Percentage of Unknown Bits in Address Space (Ui) for Conventional
Anonymization (CA) and Subtree Replication with Hashed Mapping and Top
Hashing (SRH) for Different Values of the Subtree Height s as a Function of
the Number of Compromised Addresses. Top hashing is set to t = 8 and the
subtree replication is r = 2

8.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2^202^182^162^142^122^102^82^62^42^22^0

U
[%

]

Number of Compromised IP Addresses

TSA
CA

Random-1
Random-2
Random-3

Fig. 16. Percentage of Unknown Bits in Address Space(Ui) as a Function of
the Number of Compromised Addresses for Subtree Replication with Hashed
Mapping and Top Hashing (TSA), Conventional Anonymization (CA), and 3
Random Passive Attacks. Top hashing is set to t = 8, subtree height is s = 8

and subtree replication is r = 2
8.

is quite complex to analyze. Instead, we have simulated such
an attack on a real trace obtained from the main Internet access
link at the University of Massachusetts.

Figure 16 shows the results of such an attack. The worst
case shows the decrease in Ui for the active attack analyzed
previously. This graph was obtained from Figure 14 with
subtree replication and top hashing (SRH) and with parameters
t = 8, s = 8, and r = 28. Three random attacks are simulated.
In each attack, addresses to compromise are chosen at random
from the pool of available addresses in the trace. It can be seen
that the decrease in U for all 3 random attacks is less than
the worst case indicating that passive attacks are significantly
less effective than worst case attacks. Eventually, as more IP
addresses are compromised, we would expect both graphs to
merge. We were unable to simulate the attack till this point
due to a lack of unique IP addresses in the anonymized trace.

H. Analysis Summary

The security analysis for the different anonymization algo-
rithms yields several important observations:

11

• Top hashing improves the security of the anonymization
for small scale attacks (i < 2t) and never decreases the
security below that of CA.

• Subtree replication causes a decrease in security because
a compromised address reveals bits in all duplicated
subtrees, too. For larger numbers of unique subtrees,
subtree replication approximates the performance of TH
and CA.

• Subtree replication with hashed mapping performs similar
to TH and CA even for smaller numbers of unique
subtrees. Only for very large-scale attacks (i > 220),
address bit mappings are revealed more quickly.

• Passive random attacks do not provide as much infor-
mation as the worst case active attacks. A passive attack
requires more IP addresses to be compromised to reveal
the same amount of information.

This shows that SR-H achieves the performance of TH and
CA while using less memory in most cases. The following
section addresses the issue of memory requirements and how
a good balance between security and memory consumption
can be found.

V. SECURITY-SPACE TRADEOFF

There is an inherent tradeoff between the amount of memory
that is required to store the anonymization data structure and
how resistant the anonymization algorithm is against attacks.
In TSA, there are three parameters that can be adjusted for
this purpose: top hash size t, subtree size s, and the number
of unique subtrees r. In this section, we derive an expression
for the memory size required for a given set of parameters
and define a metric that describes the security performance.
We explore the tradeoffs and identify the best combination of
parameters.

A. Space Requirements

The space requirement, S, for different anonymization
algorithms is determined by the number of nodes in the
anonymization trees and the number and size of the hash
tables used. Since each node only stores the information if the
corresponding address bit should be flipped or not, a single bit
of information is sufficient. A complete binary tree of height
h has 2h−1 internal nodes and thus requires that many bits of
storage. Hash tables that map 2n entries to 2m values require
2n · m bits of storage.

For conventional anonymization, the space requirement is
SCA = 0 because all values are computed online. If they were
to be stored for reuse to reduce the overall processing cost then
the maximum amount of storage would be a complete tree:

SCA
max = 232 − 1. (13)

This is equivalent to a precomputed anonymization tree. Top
hashing replaces the top t levels of the tree with a hash
function, which increases the overall space consumption to:

STH = 2t · t + 232 − 2t (14)

Thus the overhead from top hashing is STH − SCA
max =

2t · (t − 1) + 1. When subtree replication is added, the space

SSR s

in MB 4 8 12 16 20 24
2
0 32.00 2.00 0.13 0.02 0.13 2.00

2
4 32.00 2.00 0.13 0.13 2.00 32.00

2
8 32.00 2.01 0.25 2.01 32.00 512.00

r 2
12 32.01 2.12 2.12 32.01 512.00 –

2
16 32.12 3.99 32.12 512.00 – –

2
20 33.88 33.88 512.00 – – –

2
24 62.00 512.00 – – – –

2
28 512.00 – – – – –

TABLE I
MEMORY REQUIREMENT FOR SUBTREE REPLICATION (INCL. TOP HASH)
IN MB. INVALID PARAMETER COMBINATIONS OF THE NUMBER OF UNIQUE

SUBTREES (r) AND THE SUBTREE HEIGHT (s) ARE INDICATED BY ’–’.

requirement consists of the smaller anonymization tree of
height 31 − s (plus top hashing overhead) and the r unique
subtrees of height s − 1:

SSR = 2t · (t − 1) + 232−s + r · (2s − 1). (15)

This does not consider hashed mapping, which requires an
additional hash table to map between the 232−s nodes and
the r unique subtrees. Thus, the space requirement for subtree
replication with hashed mapping is:

SSR−H = 2t ·(t−1)+232−s +r ·(2s−1)+(232−s) · dlog2 re.
(16)

Tables I and II show the memory requirements for SR and
SRH which were calculated using the above formulae. As
discussed previously, t should be as large as possible, but
cannot be larger than t = 8 due to the prefix distribution
in the current Internet. For large values of r, the memory
consumption of SRH exceeds that of SR due to the size of
the tables required for hashed mapping. For the subtree height
parameter, s, the memory requirement is smallest around s =
12, because the size between the original anonymization tree
and the subtrees is balanced. For smaller s, the original subtree
requires more memory, and for larger s, the replicated subtrees
require more memory. The parameter r has little impact on
the space requirement for r < 2s. This is important to note
as in this range r has significant impact on the security of the
anonymization algorithm (see Figure 12). This leads to the
question on which parameter combination of r and s yields
the best security for a given size of memory.

B. Resistance to Attack

To make the comparison between different parameter com-
binations tractable, we introduce a security metric, Rp, that
reduces the functions of Ui shown in Section IV to a single
value. We call Rp “resistance to attack” and define it as the
number of addresses that need to be compromised to reduce
Ui to p percent of U0:

Rp = min(i)|
Ui

U0

≤ p. (17)

The parameter p specifies the desired “security level.” If p is
large (e.g., p = 90%), then R90% is small, because only few
addresses need to be compromised to reduce Ui to 90% of
U0.

12

SSR−H s

in MB 4 8 12 16 20 24
2
0 32.00 2.00 0.13 0.02 0.13 2.00

2
4 160.00 10.00 0.63 0.16 2.00 32.00

2
8 288.00 18.01 1.25 2.07 32.00 512.00

r 2
12 416.01 26.12 3.62 32.10 512.01 –

2
16 544.12 35.99 34.12 512.13 – –

2
20 673.88 73.88 514.50 – – –

2
24 830.00 560.00 – – – –

2
28 1408.00 – – – – –

TABLE II
MEMORY REQUIREMENT FOR SUBTREE REPLICATION WITH HASHED

MAPPING (INCL. TOP HASH) IN MB. INVALID PARAMETER

COMBINATIONS OF THE NUMBER OF UNIQUE SUBTREES (r) AND THE

SUBTREE HEIGHT (s) ARE INDICATED BY ’–’.

SR(s=8,r=2^8)
SR(s=16,r=2^8)

SR(s=8,r=2^16)

SR−H(s=16,r=2^8)

SR−H(s=8,r=2^8)

SR(s=4,r=2^8)

SR−H(s=8,r=2^16)

SR−H(s=4,r=2^8)

SR−H(s=8,r=2^24)

CA

TH(t=8),SR(s=8,r=2^24)

1

2

4

8

16

32

64

128

1 10 100

lo
g2

[R
_9

0%
]

log[Space (MB)]
1000

Fig. 17. Space-Security Tradeoff for Different Anonymization Algorithms
(for R90%).

C. Optimization

The tradeoff between space and security can be explored
by comparing S and R. For R, a security level needs to be
specified and for this evaluation we are considering R90% and
R50%. R90% corresponds to a very high security level, where
only 10% of compromised address bits are tolerable. R50% is
a low security level, where half the address space is revealed.

Figures 17 and 18 show the results for a variety of pa-
rameters of r and s. For R90%, conventional anonymization
performs very poorly, because two compromised addresses
reveal more than 10% of U . All TSA configurations perform
significantly better due to the use of top hashing. The space
consumption for convention anonymization is assumed to be
SCA

max, but could be also be considered to be SCA = 0
(which cannot be shown on this graph). SR and SR-H perform
comparably, with SR(s = 8, r = 28), SR(s = 16, r = 28),
and SR-H(s = 16, r = 28) performing best. All three
configurations require only 2MB of memory and show a
resistance to attack of R90% > 64.

For R50%, CA shows high resistance to attack (with the
same space constraint as discussed before). SR-H(s = 16,
r = 28) shows a slightly higher resistance, which is due to the
different attack strategy against hashed mapping discussed in
Section IV. The best configurations for TSA are SR-H(s = 16,
r = 28) with 2MB memory and (s = 8, r = 216) with 4MB
memory. For both algorithms, R50% > 10, 000.

SR(s=8,r=2^8)
SR(s=16,r=2^8)

SR(s=8,r=2^16)

SR(s=4,r=2^8)

SR−H(s=8,r=2^8) SR−H(s=8,r=2^16)

SR−H(s=8,r=2^24)

SR−H(s=4,r=2^8)

SR−H(s=16,r=2^8)

CA
TH(t=8)

SR(s=8,r=2^24)

1

4

16

64

256

1024

4096

16384

1 10 100

lo
g2

[R
_5

0%
]

log[Space (MB)]
1000

Fig. 18. Space-Security Tradeoff for Different Anonymization Algorithms
(for R50%).

The results show that TSA performs better than exist-
ing anonymization algorithms for high security levels and
performs comparably at lower security levels. TSA requires
only 2–4MB of memory to achieve this performance. For
conventional anonymization the amount of memory (if pre-
computation is used) can be as large as 512MB.

VI. IMPLEMENTATION

We have implemented prototypes of TSA and conventional
anonymization to evaluate the processing performance aspects
of these algorithms in detail. For conventional anonymization
we have implemented both an online version (as performed
in [25]) and a precomputed version (with a fully precomputed
anonymization tree). For TSA, we have implemented versions
using SR (both with and without top hashing) and versions
using SR-H (both with and without top hashing). To evaluate
processing cost, we used the PacketBench system [19]. Pack-
etBench simulates the functionality of a network processor
while providing an easy to use environment for implementing
packet processing functionality.

We compare the number of instructions executed to anon-
ymize a single IPv4 address and the number of memory
accesses necessary for all the algorithms. The results are
shown in Table III. Conventional anonymization (CA) either
has a high processing cost (for the online versions), or requires
a large amount of memory to store the anonymization data
structures (the precomputed version). When computed online,
CA requires several hundred thousands instructions to process
a packet. This is due to the computational complexity of
performing numerous cryptographic operations (MD5 com-
putations in this case). This significant overhead for MD5
computations has been observed previously in the context of
IPv6 authentication [24] and deemed unsuitable for packet-
level processing at high line speeds.

In contrast, all the configurations of TSA in Table III
require less than 500 instructions per address. This reduction
of processing cost by three orders of magnitude makes it
possible to implement TSA in high-performance measurement
nodes. The memory accesses in TSA are between 25 or 35
depending on the configuration. These can be performed in
parallel, because the location of all nodes in the tree are known
beforehand.

13

Top hashing has three effects on all algorithms. It reduces
processing cost since the computation for the bits of the IP
address covered by the top hash are replaced by a single
lookup to the top hash table. It increases memory requirements
by a small amount since we need to store the top hash table.
Finally, it increases the security of all algorithms particularly
for R99% and R90% levels.

Overall, Table III shows that TSA is able to solve both
problems with conventional anonymization - (1) the high
processing cost of online conventional anonymization and (2)
the large memory requirements of precomputed conventional
anonymization, while maintaining comparable security levels.

One concern of high-performance processing is the growing
gap between processor clock speed and memory access time.
Accesses to SRAM and SDRAM can take a significant amount
of time which can increase the overall processing cost of
TSA. We have used a multibit trie implementation [22] to
reduce the number of memory accesses necessary to traverse
the anonymization tree. Our current prototype runs on an Intel
IXP 2400 network processor [7] and requires 4 accesses to the
anonymization data structures instead of 26. This results in a
significant performance boost. The drawback is that a multibit
trie requires more memory than a simple binary tree as some
of the information is stored redundantly.

The final implementation issue is how to initialize the
anonymization data structure that is used by TSA. This is
done offline and only once (unless the anonymization keys
are changed). The memory representing the anonymization
tree can be filled with random bits since any combination of
node colors yields a correct prefix preserving anonymization
mapping. The top hash table needs to be filled with a sequence
of bits that represent a one-to-one mapping of the t input bits.
This can be achieved by enumerating all 2t bit combinations
and permutating t-bit chunks. The hash table for subtree repli-
cation with hashed mapping can be filled with pseudo-random
bits as it represents a many-to-one mapping. In order to make
the anonymization reproducible and consistent across multiple
measurement nodes, all bit sequences for initializing the data
structures are derived from keyed hash functions [8]. The
cryptographic strength of the entire anonymization algorithm
depends on the cryptographic strength of these hash functions.

VII. EFFECT OF CACHING

We compare the performance of conventional anonymiza-
tion (CA) with that of TSA. We assume that conventional
anonymization is augmented with a caching scheme to avoid
recomputation of anonymization mappings. For the perfor-
mance of CA to match TSA, the following relation must be
satisfied:

instructionsCA · miss rate = instructionsTSA (18)

instructionsCA and instructionsTSA are the per packet
processing cost in instructions for conventional anonymization
and TSA. miss rate is the total miss rate for the cache.

From Table III, we can see that conventional anonymization
takes 247,078 instructions per address. We need to perform
two anonymization operations per packet for a total of 494,156

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 U

ni
qu

e
IP

 A
dd

re
ss

es

Number of Packets (in millions)

Auckland
Bell

San Diego
UMass

Fig. 19. Number of Unique IP Addresses Seen as a Function of Packets
Encountered.

instructions. TSA costs 359 instructions per anonymization
operation for a total of 718 instructions per packet. This
implies that miss rate must be 0.00145 (or 0.145%) in order
for caching to be effective.

Figure 19 shows the variation in the number of unique IP
addresses seen in the trace as a function of the number of
packets encountered. This function is plotted for 4 traces.
The San Diego, Auckland and Bell traces were obtained
from [13]. The UMass trace was obtained from the main
Internet access link at the University of Massachusetts. The
anonymization mapping has to be calculated for all these
addresses irrespective of the caching scheme used. The slope
of these graphs represents the compulsory miss rate.

Figure 20 plots the variation in total miss rate for the San
Diego trace. It can be seen that the miss rate is always greater
than 0.00145 for different cache sizes varying from 16k entries
to 1M entries. Even if we had an infinitely large cache, the
miss rate is still not low enough to compensate for the high
processing cost of conventional anonymization. The graph for
an infinite entry cache represents the slope of the graphs
shown in Figure 19. In Figure 19, it is worthwhile to note
that for both the Bell and Auckland traces, the rate at which
unique IP addresses appear is not very large and caching of
anonymization mappings may work in such a situation. It is
very clear that this is not the case for the San Diego and
UMass traces.

From a systems point of view, it is desirable for new IP
addresses to arrive at a constant rate. A burst of unique IP
addresses will require a series of anonymization computations
to be performed which can possibly reduce the ability of the
measurement node to process packets at link speed. Figure
21 shows the probability of a new IP address (a miss in
the cache) being the nth in a sequence of continuous unique
IP addresses (a sequence of misses in the cache) for all the
four traces analyzed previously. Although a majority of the IP
addresses appear individually, the UMass trace exhibits some
bursty behavior. Due to the observed miss rates and burstiness,
TSA presents a better choice than conventional anonymization
with caching.

14

Algorithm Instructions Memory Accesses Memory Security
per IP Address per IP Address in MB R99% R90% R50%

CA (online, no top hashing) 247,078 0 0 1 2 16384
CA (online, with top hashing) 185,313 1 <0.01 8 80 16384
CA (precomputed, no top hashing) 460 32 512 1 2 16384
CA (precomputed, with top hashing) 348 25 512 8 80 16384
TSA SR(s = 8,r = 2

16, no top hashing) 463 32 4.1 1 2 12288
TSA SR(s = 8,r = 2

16, with top hashing) 357 25 4.1 8 80 12288
TSA SR-H(s = 16,r = 2

8, no top hashing) 464 33 2.1 1 2 30720
TSA SR-H(s = 16,r = 2

8, with top hashing) 359 26 2.1 8 80 30720

TABLE III
COMPARISON OF ALL PERFORMANCE ASPECTS OF TSA WITH CONVENTIONAL ANONYMIZATION. CA DOES NOT REQUIRE ANY ACCESS TO

ANONYMIZATION DATA STRUCTURES IF EACH ANONYMIZATION IS COMPUTED ONLINE. TOP HASHING IS SET TO 8 BITS.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 20 40 60 80 100 120 140 160

M
is

s
R

at
e

Number of Packets (in millions)

16k entries
64k entries

256k entries
1M entries

Infinite entries

Fig. 20. Variation in Miss Rate as a Function of the Number of Packets
Encountered for Different Cache Sizes. The San Diego trace was chosen for
this analysis.

VIII. SUMMARY AND CONCLUSION

In this paper, we have proposed and analyzed a novel
prefix-preserving anonymization algorithm called TSA. The
key characteristics are precomputation, subtree replication
with hashed mapping, and top hashing. The proposed algo-
rithm outperforms the conventional anonymization mechanism
(even while using caching) in terms of computation speed
while providing comparable levels of security to attacks. The
memory requirements for our algorithm are small enough to
efficiently implement it on measurement systems. The various
performance aspects of the two best configurations of TSA
are shown in Table III and contrasted to conventional prefix-
preserving anonymization. The significantly lower processing
cost per IP address is the main criteria that makes TSA suitable
for online anonymization of network traces and eliminates the
need for post-processing. This is an important step towards a
practical deployment of large-scale continuous measurement
systems and ensuring that the privacy of network users is
protected.

IX. ACKNOWLEDGMENTS

This work was supported in part by NSF grant award ITR-
CNS-0325868. The UMass trace was provided by Sharad
Jaiswal and Yong Liu from the Department of Computer
Science at the University of Massachusetts at Amherst. All

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

1 2 3 4 5 6 7 8+

nth packet in a sequence of misses

p
ro

b
ab

ili
ty

AUCKLAND
BELL
SAN DIEGO
UMASS

Fig. 21. Probability of a Miss being the nth in a Sequence of Continuous
Misses for Various Traces.

other traces were obtained the from the NLANR Measurement
and Network Analysis Group (NLANR/MNA) under NSF
Cooperative Agreement No. ANI-0129677 (2002) and ANI-
9807479 (1998).

REFERENCES

[1] Advanced Network Technology Center, University of Oregon. Route
Views Project Page, 2003. http://www.routeviews.org/.

[2] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft. Pop-level and
access-link-level traffic dynamics in a tier-1 POP. In Proc. of the First
ACM SIGCOMM Internet Measurement Workshop, pages 39–53, San
Francisco, CA, Nov. 2001.

[3] S. Bhattacharyya and S. Moon. Network monitoring and measurements:
Techniques and experience. In Tutorial at ACM Sigmetrics 2002, Marina
Del Rey, CA, June 2002.

[4] k. claffy, G. Miller, and T. Kevin. The nature of the beast: Recent
traffic measurements from an internet backbone. In Proc. of 1998 INET
Conference, Geneva, Switzerland, June 1998.

[5] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck.
Gigascope: High performance network monitoring with an SQL inter-
face. In Proc. of the 2002 ACM SIGMOD International Conference on
Management of Data, page 623, Madison, WI, June 2002.

[6] C. Fraleigh, C. Diot, B. Lyles, S. B. Moon, P. Owezarski, D. Pa-
pagiannaki, and F. A. Tobagi. Design and deployment of a passive
monitoring infrastructure. In Passive and Active Measurement Workshop
(PAM2001), Amsterdam, Netherlands, Apr. 2001.

[7] Intel Corporation. Intel IXP2400 Network Processor, 2004.
[8] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for

Message Authentication. IETF Network Working Group, Feb. 1997.
RFC 2104.

[9] S. McCreary and k. claffy. Trends in wide area ip traffic patterns: a
view from Ames Interent Exchange. In PITC Specialist Seminar on IP
Traffic Modeling, Measurement and Management, Sept. 2000.

15

[10] T. McGregor, H.-W. Braun, and J. Brown. The NLANR network analysis
infrastructure. IEEE Communications Magazine, 38(5):122–128, May
2000.

[11] G. Minshall. TCPDPRIV. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html,
1.1.10 edition, Aug. 1997.

[12] National Institute of Standards and Technology. Advanced Encryption
Standard (AES), Nov. 2001. FIPS 197.

[13] National Laboratory for Applied Network Research - Passive Mea-
surement and Analysis. Passive Measurement and Analysis, 2003.
http://pma.nlanr.net/PMA/.

[14] R. Pang and V. Paxson. A high-level programming environment for
packet trace anonymization and transformation. In Proceedings of
the ACM SIGCOMM Conference, pages 339–351, Karlsruhe, Germany,
August 2003.

[15] V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM
Transactions on Networking, 5(5):601–615, Oct. 1997.

[16] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM Transac-
tions on Networking, 7(3):277–292, June 1999.

[17] M. Peuhkuri. A method to compress and anonymize packet traces. In
Proc. of First ACM SIGCOMM Internet Measurement Workshop, pages
257–260, San Francisco, USA, November 2001.

[18] D. Plonka. Internet traffic flow size analysis. Technical report, University
of Wisconsin, http://net.doit.wisc.edu/data/flow/size/, 2000.

[19] R. Ramaswamy and T. Wolf. PacketBench: A tool for workload charac-
terization of network processing. In Proc. of IEEE 6th Annual Workshop
on Workload Characterization (WWC-6), pages 42–50, Austin, TX, Oct.
2003.

[20] R. L. Rivest. The MD5 message digest algorithm. RFC 1321, Network
Working Group, Apr. 1992.

[21] S. Sarvotham, R. Riedi, and R. Baraniuk. Connection-level analysis and
modeling of network traffic. In Proc. of the First ACM SIGCOMM
Internet Measurement Workshop, pages 99–103, San Francisco, CA,
Nov. 2001.

[22] D. E. Taylor, J. W. Lockwood, T. Sproull, J. S. Turner, and D. B. Parlour.
Scalable ip lookup for programmable routers. In Proc. of the Twenty-
First IEEE Conference on Computer Communications (INFOCOM),
pages 562–571, New York, NY, jun 2002.

[23] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic
patterns and characteristics. IEEE Network Magazine, 11(6):10–23, Nov.
1997.

[24] J. D. Touch. Performance analysis of MD5. In Proc. of ACM SIGCOMM
95, pages 77–86, Cambridge, MA, aug 1995.

[25] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon. Prefix-preserving ip
address anonymization: Measurement-based security evaluation and a
new cryptography-based scheme. In Proc. of 10th IEEE International
Conference on Network Protocols (ICNP’02), pages 280–289, Paris,
France, Nov. 2002.

[26] M. Yajnik, S. B. Moon, J. Kurose, and D. Towsely. Measurement and
modeling of the temporal dependence in packet loss. In Proc. of IEEE
INFOCOM’99, pages 345–352, New York, NY, Mar. 1999.

