
Hardware Support for Secure
Processing in Embedded Systems

Shufu Mao and Tilman Wolf, Senior Member, IEEE

Abstract—The inherent limitations of embedded systems make them particularly

vulnerable to attacks. We have developed a hardware monitor that operates in

parallel to an embedded processor and detects any attack that causes the

embedded processor to deviate from its originally programmed behavior. We

explore several different characteristics that can be used for monitoring and

quantify trade-offs between these approaches. Our results show that our proposed

hash-based monitoring pattern can detect attacks within one instruction cycle at

lower memory requirements than traditional approaches that use control flow

information.

Index Terms—Embedded system security, processing monitor, security

enforcement.

Ç

1 INTRODUCTION

EMBEDDED systems are widely deployed and used in application
domains ranging from cellular phones to smart cards, sensors,
network infrastructure components, and a variety of control
systems. Two key characteristics make these systems particularly
vulnerable to attacks. First, the embedded nature of the processing
system limits the complexity of the device in terms of processing
capabilities and power resources. It also exposes the device to a
number of potential physical attacks. Second, as a direct result of the
limited processing capabilities, embedded systems are limited in
their capabilities to run software to identify and mitigate attacks.
Unlike workstation computers that can afford to run virus scanners
and intrusion detection software, embedded systems typically only
run the target application. Thus, embedded systems are inherently
more vulnerable to attacks than conventional systems.

Attacks on embedded systems can be motivated by several
different goals. The following list illustrates this point (but is not
meant as a complete enumeration of all possible scenarios):

1. Extraction of secret information (e.g., reading of crypto-
graphic key material from a smart card);

2. Modification of stored or sensed data (e.g., tampering with
utility meter readings);

3. Denial of service attack (e.g., reducing the functionality of
a sensor network); and

4. Hijacking of hardware platform (e.g., reprogramming of
TV set-top box).

In each of these cases, the attack relies on the ability to get access
to the embedded system and change its behavior (i.e., change in
instruction memory) or its data (i.e., change in data memory). In
most attack scenarios, a modification of behavior is necessary
even when modification of or access to data is the ultimate goal of
the attack. Therefore, we focus on the security of processing in
this paper.

When proposing our security mechanism for embedded
systems, we consider the following important criteria:

. Independence: A monitoring subsystem should use

independent system resources that overlap as little as

possible with the target of a potential attack. In particular,

using a single embedded Processor for processing applica-

tions and security-related software is a bad choice. If an

intruder can access the processor, then the security-related

software is just as vulnerable to attacks.
. Low Overhead: Embedded systems require a lightweight

security solution that considers the limitations of em-

bedded systems in terms of adding additional logic and

memory for monitoring.
. Fast Detection: A monitoring subsystem should be able to

react as quickly as possible to an attack. In particular,

attacks on embedded systems that simply change memory

state or extract private data may require only a few

instructions to cause damage. Therefore, it is important to

be able to detect an attack within a few instructions.

Our proposed secure monitoring system meets these design

goals. The main idea behind our design is to analyze the binary code

of an embedded system application and derive an augmented

control flow graph. During runtime, the embedded processor

reports on the progress of application processing by sending a

stream of information to the monitoring system. The monitoring

system compares the stream to the expected behavior of the

program as derived from the executable code. If the processor

deviates from the set of possible execution paths, then it is assumed

that an attacker has altered the instruction store or program counter

to alter the behavior of the system. Our evaluations on an embedded

system benchmark show that the proposed monitoring technique

can detect deviations from expected program behavior within the

time of a single instruction while only requiring a small amount of

additional logic and memory in the order of one-tenth of the

application binary size.

The remainder of this paper is organized as follows: Section 2

discusses related work. The overall system architecture and details

on the monitored information stream are presented in Section 3.

Section 4 presents an extensive evaluation of the proposed

architecture. Section 5 summarizes and concludes this paper.

2 RELATED WORK

The term “embedded system” covers a broad range of possible

system designs, processor architectures, and performance and

functionality characteristics. In our work, we focus on embedded

systems that can be broadly characterized as middle to lower end

in the performance spectrum. Their main characteristics are:

1) medium to low-performance embedded processor core (e.g.,

single RISC processor); 2) targeted use for one or only a handful of

applications; and 3) typically used in a networked setting.

Examples for practical embedded systems that fit these character-

istics are: cellphones, networked sensors, smart cards (typically not

networked though), low-end network routers (e.g., home/small

office gateway), networked printers, etc.

Attacks on embedded system can have a wide range of

approaches. Ravi et al. describe mechanisms to achieve physical

security by employing tamper-resistant designs [1]. Wood and

Stankovic consider a networked scenario where systems are

exposed to additional remote attacks [2]. Embedded systems are

also susceptible to side-channel attacks (e.g., differential power

analysis [3]). Solutions to this problem have been proposed [4], and

we do not consider this aspect in our work.

In terms of developing a general, hardware-based architecture to

protect embedded systems against a range of attacks, Gogniat et al.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010 847

. The authors are with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003-9284.
E-mail: {wolf, smao}@ecs.umass.edu.

Manuscript received 23 Feb. 2008; revised 14 Nov. 2008; accepted 11 June
2009; published online 29 Jan. 2010.
Recommended for acceptance by S. Fahmy.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-02-0086.
Digital Object Identifier no. 10.1109/TC.2010.32.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

have proposed one such in [5]. This work does not give details on

what the proposed monitors would look like. Our work can be seen

as one example of how to monitor processing to ensure secure

execution of applications.

In the context of monitoring processing on embedded systems,

the system by Arora et al. [6] and the IMPRES system [7] are

conceptually similar to our work. The main difference is that their

finest granularity of monitoring is the basic block level due to the use

of per-block hash values (in [6]) or per-block encrypted checksum

(in [7]), and deviations in the program execution are detected when

the hash value or checksum does not match at the end of a basic

block. In our work, deviations from the binary can be determined

within a single (or a few) instructions. In addition, Arora et al. use

control flow information to track program execution. As we discuss

in Section 4, our proposed hash-based monitoring performs

significantly better (i.e., faster detection) than control-flow-based

monitoring.

The SAFE-OPS system by Zambreno et al. [8] uses information

that is collected across multiple executed instructions to determine

valid operation. This system can detect errors and attacks at the

end of such a sequence, whereas our system may immediately

detect the first instruction that deviates.

Abadi et al. [9] also use a control flow graph for monitoring

program execution. Nakka et al. [10] introduce integrity checks

into the microarchitecture and use special check instructions.

Ragel et al. [11] introduce microinstruction to monitor for fault

detection, return address checks, and memory boundary checks.

The main difference to our work is that these approaches require

changes in the machine code to implement the necessary checks,

while, in our work, binaries do not need to be modified. We also

believe it is important to separate the processor from the monitor

by using separate system resources to reduce vulnerability. Suh

et al. use the concept of “information flow” to track if data is

considered authentic or spurious (i.e., potentially malicious) [12].

This system requires a much more complex design that needs to be

integrated with the processor.

A completely different approach to ensuring secure execution

of programs is to identify noninstruction memory pages with an

NX (No eXecute) or XD (eXecute Disable) bit. The idea is to avoid a

change of control flow to a piece of code that belongs to data

memory. This mechanism is useful to avoid, for example, buffer

overflow attacks. It does not consider a scenario where an attacker

overwrites instruction memory. Another approach to defending

against buffer overflow attacks is described by Shao et al. in [13],

where bound checks are used and function pointers are protected

by XORing them with a secret key.

Anomaly and intrusion detection by comparing behavior

against a model is also used in other domains (e.g., mobile ad

hoc networks [14]). In our case, we have a simpler problem since

our model is derived from the actual binary of the application.

Thus, there is no guesswork on how accurate the model is—it is

exactly the same as the application.

3 PROCESSING MONITOR

To achieve secure processing on an embedded system, we use a

monitoring system that verifies that the processor indeed performs

the operations that it was intended to. For an attacker to abuse an

embedded system, it is necessary to modify its operation in some

way: either by adding a new piece of instruction code that performs

malicious operations or by modifying the existing application to

execute malicious code. In this work, we assume that the embedded

system workload is “secure” when the applications are executed

correctly without any deviation from their binary code. Execution

of any instruction that is not part of that binary or that is executed

not in the correct order is considered an attack.

3.1 System Architecture

To detect an attack, we employ the system architecture shown in

Fig. 1. The system consists of two major components operating in

parallel, the conventional embedded processing subsystem and the

security monitoring subsystem.

The conventional embedded processing subsystem consists of a

general purpose processor, memory, I/O, and any other compo-

nents that are necessary to execute the embedded system applica-

tion. The only addition is an extension to the processor core that

continuously sends a stream of information to the monitoring

subsystem. There is also a feedback component from the monitor-

ing system to the processor. In the case an attack is detected, the

monitor can halt the processor and initiate a recovery attempt.

The security monitoring subsystem implements the monitoring

capability that compares the stream of information sent from the

processor with the expected behavior derived from the offline

analysis of the binary. A “monitoring graph” represents the

sequence of possible control flows between basic blocks. More

detailed information about the processing steps within each basic

block is also maintained. To be able to keep track of all permissible

control flows, a call stack is necessary. If the comparison logic

determines that there is a discrepancy between the stream of

information from the processor and the monitoring graph, it

determines that an attack occurred and initiates an interrupt to the

processor.

As indicated in the figure, the monitoring graph is generated in

an offline process, where the binary of the application is simulated

and analyzed. The simulation is necessary to resolve those branch

targets that cannot be determined statically. We assume the

simplicity of applications used in embedded systems permits a

resolution of all branch targets through simulation. This process

only requires the binary and not the source code of the application.

848 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 1. System architecture for secure embedded processing.

This system architecture reflects the design goals of a secure

processing system that we have discussed in Section 1: The

monitoring component uses system resources that are indepen-

dent from the embedded processor (Independence). Thus, an

attacker would need to attack the general purpose processor and

the monitoring system (at the same time) to avoid detection. The

monitoring component operates in parallel with the embedded

system processor. Since it does not replicate the data path of the

processor, but solely monitors the control flow, it is considerably

less complex (Low Overhead). We propose a number of different

alternatives for the information stream below. In most cases, this

stream contains information about individual instructions, or a

block of a few instructions. This fine level of granularity allows the

monitor to react quickly when processing deviates from what is

expected (Fast Detection).

The complexity of the monitoring graph and the ability to

detect attacks clearly depend on the choice of information that is

passed between the processor and the monitoring system.

3.2 Information Stream Alternatives

There are endless choices of what characteristics to monitor with

when attempting to detect attacks. We consider several alternatives

of information streams that reflect various “processing patterns”

that occur when executing an application. When implementing

secure processing and monitoring on an actual system, only one

such pattern would be used. In addition, the offline analysis and

the monitoring graph representation discussed in Fig. 1 need to

change with different patterns. All of the information required for

each pattern can be obtained from the application binary. Fig. 2

illustrates examples for each of the five patterns:

. Address Pattern: The idea behind using the instruction

address as an indicator for monitoring processing is that

each instruction address is unique. Assuming instruction

memory cannot be corrupted, a program must follow

exactly the same sequence of instructions as it had been

programmed to do. Using addresses, however, is vulner-

able for the same reason. If an attacker can replace parts of

the application code with a sequence of instructions that

has the same basic block structure as the original, this

change goes undetected. This vulnerability is due to the

pattern using no information on what instructions are

actually executed on the processor.

. Opcode Pattern: In contrast to the address pattern, the

opcode pattern focuses solely on the operations that are

performed on the processor. The intuition behind using this

information for monitoring processing is that the sequence

of operations parallels the underlying functionality of the

program. An attacker would need to replace instructions

with malicious instructions that use the same opcodes (but

possibly different operands) in the same sequence. This

type of attack is likely to be more challenging than in the

case of the address pattern.

. Load/Store Pattern: A pattern that considers the operands

of instructions to monitor processing is the load/store

pattern. In this pattern, only load and store instructions

and their target registers are considered. Instructions that

are not memory accesses are ignored (shown as wildcard

in the figure) and only the number of wildcards between

memory accesses is stored in the pattern graph. The reason

for considering the target register rather than the target

address in memory is that it allows for dynamic allocation

of data structures in memory.

. Control Flow Pattern: Another intuitive pattern is the

control flow pattern. In this pattern, all control flow

operations are stored (e.g., branches, calls, and returns)

including their branch targets, if applicable. It allows the

monitor to track any change in the program counter, but

exhibits a similar vulnerability as address patterns since

there is no information exchange on the actual operation of

the processor. In related work, similar information is used

to monitor processing [6]. In some cases, the control flow

information is limited to system calls. We consider control

flow at the level of basic blocks.

. Hashed Pattern: Another pattern we propose to use for

monitoring is the hashed pattern. In this case, several

pieces of information (in our case, instruction address and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010 849

Fig. 2. Examples of monitoring graphs for different information streams.

instruction word) can be compacted to a smaller hash

value. This is particularly useful since opcode, operands,

etc., can consume a lot of memory space. This pattern can

be used with different lengths of hash functions. We use

the function name hashn to indicate that an n-bit hash

function is used. An attacker would need to generate

malicious code that consists of the same sequence of hash

values as the original code, which is difficult—even for

small values of n. Note that the inclusion of instruction

address in the hash limits the program to a fixed location.

It is also possible to use an address offset to allow the

program to be moved within memory (at the cost of

opening a potential attack that changes the base address).

3.3 Monitoring Graph and Comparison Logic

Given the monitoring graph that matches one of the patterns from

above and is installed securely on the embedded system at the

same time as the application binary, the comparison logic can

verify that the processing on the embedded system follows a

possible path of execution.

When monitoring within a basic block, the comparison logic

simply follows the sequence of patterns that is stored in the

monitoring graph. For example, in the case of the opcode pattern,

the monitor compares the opcodes reported by the processor to

those in the current basic block of the monitoring graph. If

wildcards are used (e.g., for the load/store pattern), any instruc-

tions reported by the processor can match the wildcard, except

those that are part of the pattern (loads and stores in this case). The

necessary logic is straightforward to implement since it comes

down to a simple comparison between what the processor reports

and what is stored in the monitoring graph.

When the end of a basic block is reached, control flow branches

to one of two or more targets. The monitoring logic does not

replicate the data path of the processor, and thus, cannot

determine which branch is taken. Instead, the comparison logic

allows for multiple parallel execution paths. That is, the monitor

allows the current state of execution to be in multiple locations in

the monitoring graph at the same time. As monitoring progresses,

some of these states turn out to be invalid, and thus, are pruned

from the set of concurrent states. If all states lead to invalid

comparisons, then an attack is detected.

To illustrate this process, consider an opcode monitor at the end

of a basic block where the current instruction is a conditional branch.

In the next instruction, the processor either jumps to the branch

target (e.g., an add instruction) or continues with the following

instruction (e.g., a sub instruction). After validating the branch, the

opcode monitors allow both following instructions to be valid states.

If either an add or a sub is reported by the processor, the monitor

accepts it as correct. At the same time, the path that does not match

gets pruned. Depending on the code of the application, the duration

for which the monitor is in an ambiguous state varies (e.g., if the

initial sequence of opcodes is the same for both paths). As a result,

detection of possible attacks can be drawn out until all ambiguity is

removed and the monitor is certain that a reported processing

sequence is invalid. We quantify this ambiguity in Section 4.

In addition to a data structure to maintain parallel state in the

monitoring graph, the comparison logic also needs to maintain

parallel call stacks for each state. A call stack is necessary since most

instruction set architectures provide call and return instruc-

tions. The return instruction has an unknown target unless a stack

of previously observed call instructions is maintained. Since

different execution paths may traverse different sequence calls and

returns, these call stacks need to be maintained independently for

each monitoring state.

4 RESULTS

We present results on the performance and resource requirements

of the proposed monitoring system for the five different informa-

tion stream patterns. The setup to obtain results is as follows: We

simulate the behavior of the monitoring system using an embedded

system application workload on an ARM instruction set architec-

ture. We use the MiBench benchmark suite [15] to generate realistic

workloads. This suite encompasses over two dozen applications

from six different application domains (automotive/industrial,

consumer, office, network, security, and telecom). These applica-

tion domains match very well with the embedded system’s

complexity that our research targets, and thus, can be considered

a representative workload. We employ the SimpleScalar simulator

[16] to extract relevant monitoring information and the objdump

utility for binary analysis to generate monitoring graphs. A 4-bit

hash function is used as a representative of hashed pattern.

We pay particular attention to comparing our hash4 monitor to

the control flow monitor. The latter is practically identical to the

monitoring approach proposed by Arora et al. [6], which is the

current state of the art in monitoring in embedded systems.

The first important result is that our implementation of the

monitoring system performs application monitoring correctly for all

applications. That is, no false positives are reported by the monitor

when executing the applications on the given benchmark inputs. To

quantify the trade-offs between different monitoring patterns, we

consider two performance metrics: 1) memory requirement for the

monitoring graph and 2) duration of monitoring ambiguity.

4.1 Monitoring Graph Size

The size of the monitoring graph that was generated from the

binary of each application is shown in Fig. 3. Each pattern is

represented in different shading. We assume a 32-bit address

space and an efficient coding of the monitoring graph (e.g., run

length coding of sequences of wildcards, efficient coding of

850 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 3. Size of monitoring graph for different benchmarks and information streams.

consecutive addresses). Each monitoring graph stores the patterns

for each basic block as well as the branch pointer at the end of each

basic block.

Fig. 3 shows also the size of the application binary, which is

1-5 MB in most cases. In comparison, the size of the monitoring

graph is only around 100 kB with the exception of two applications.

This shows that the memory requirements for the processing

monitor are only in the order of one-tenth of the memory

requirements of the application.

When comparing the monitoring graph sizes of different

monitoring patterns, address is consistently the largest, while

hash4 is the smallest. The difference is approximately a factor of

2 across all benchmarks.

4.2 Monitoring Ambiguity

To illustrate how ambiguity in the monitoring system occurs, we

show a snapshot of a monitoring trace for a thousand instructions

for one application in Fig. 4. In most cases, applications alternate

between one and two parallel states. The second parallel state is

typically generated by a control flow operation where the actual

path is uncertain for a few instructions. In some cases, the program

spawns a large number of parallel states, which can be caused by

a loop or similar code that has a very regular pattern. The three

patterns opcode, load/store, and control flow are particularly

affected by this behavior.

The average number of parallel states in the monitoring logic is

shown in Fig. 5. The closer the value is to 1, the less frequently

ambiguous states occur. With larger values, the chances that the

monitoring system could be circumvented increases. The address,

opcode, and hash4 patterns are all very close to the ideal for all

benchmarks. The control flow pattern shows slightly higher

averages for some applications. Large outliers occur for the

load/store pattern for five applications.

The average number of parallel states is only one way of

aggregating information about ambiguity. Another way is to

consider the length of time that the monitor is in an ambiguous

state (measured in number of instructions). This measure is

independent of how many ambiguous states are encountered.

Instead, it considers how long it takes for the monitor to get

back to being certain about the correctness of processing (i.e.,

being in a single state). Fig. 6 shows the cumulative density

function of all applications and all patterns. The benchmarks are

ordered by decreasing percentile of ambiguous path length 1 of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010 851

Fig. 4. Snapshot of monitoring of 1,000 instructions in patricia application.

hash4 monitoring (i.e., the benchmark where hash4 has most

frequently an ambiguous path length of 1 is listed first).

The address pattern achieves the overall shortest durations of

ambiguity. In several cases (e.g., blowfish, fft, ispell, and quicksort), it

is closely followed by the hash4 pattern. The opcode and load/

store patterns show similar trends. It is important to note that the

average number of ambiguous states in Fig. 5 takes into account

how many parallel state occur. In Fig. 6, we show only the duration

of the ambiguity (no matter how many parallel states there are). In

the control flow pattern, this difference can be observed. Fig. 6

shows that the duration of ambiguity for control flow can be very

long (e.g., sha, typeset, and rijndael). This is not visible in Fig. 5

because the ambiguity may only consist of two parallel states.

Nevertheless, it is quite apparent that using solely control flow

information to monitor the correct execution of a program shows

less than desirable performance.

We further compare the control flow monitor and our proposed

hash4 monitor in Fig. 7. This figure shows a comparison of the size

of the monitoring graph with the 95 percentile of ambiguous path

length. The shorter the ambiguous path length and the smaller the

monitoring graph size, the better the overall performance. Clearly,

the hash4 results cluster in the lower left corner. The control flow

monitoring graphs are only slightly larger in size, but perform

much worse than hash4 in terms of ambiguity. The lines in the

graph connect the corresponding data points for all benchmarks. It

can be observed that the hash4 monitor is strictly better (i.e., lower

monitoring graph size and lower ambiguous path length) for all

benchmarks. Again, this indicates that our proposed monitoring

approach, which uses a hash pattern to report processor informa-

tion, is a suitable approach toward ensuring secure processing on

an embedded system.

4.3 Evaluation with Attacks on Instruction and Data
Memory

To put the above results in context, we show the monitoring

performance of our system in scenarios where instruction and data

memory are actually modified. It would be very difficult to craft

actual exploits for MiBench application (assuming that there even

exist vulnerabilities). Instead, we introduce synthetic attacks that

target the application binary and the application memory. While

these experimental attacks do not lead to useful exploits, they still

represent the changes that would occur during a real attack. Thus,

it is important to evaluate how quickly a monitoring system can

detect such changes.

4.3.1 Attacks on Application Binary

To create an attack on the application binary, we introduce

random bit flips into the executable. Bit flips represent the

smallest possible change an attacker could apply to a binary in

order to change program behavior. Of course, not all bit flips

change program behavior (e.g., bit flip in unused portion of

instruction word, change of register value that is never read, etc.),

and thus, may not be detected by some monitoring approaches.

Thus, it is important to consider what fraction of bit flips can be

detected and how long it takes from the execution of the modified

instruction to the point where the monitor is aware of the change.

For our results, we choose one application (gsm) from MiBench

and show the fraction of undetected bit flip attacks and the speed

at which detected attacks are noticed in Table 1. We find that the

hashed pattern has the lowest percentage of undetected bit flips

and the fastest possible detection speed. Other patterns cannot

detect a larger fraction of the attacks (e.g., the opcode pattern can

only detect the attacks if the opcode of the instruction is changed or

the control flow is changed) and take a long time until the program

execution shows deviation from expected behavior (e.g., due to

wildcards). The percentage of undetected attacks in the hash

pattern depends on the size of the hash. When only 4 bits are used,

the hash has 16 potential values, and thus, there is a 1
16 ¼ 6:25%

probability that the hash value does not change, despite a bit flip.

With larger hashes (e.g., hash16 or hash32 pattern), this probability

decreases significantly (at the cost of larger monitoring graphs and

more computational overhead).

In Table 1, we also compare our results to the performance of

control-flow-based monitors as they have been proposed by Arora

et al. [6]. The monitor used in that work compares the hash of all

executed instructions at the end of a basic block. Thus, the detection

speed can be as slow as average basic block length (which is

reported to be approximately six instructions for gsm [15]). The

probability for not detecting a bit flip attack is again based on the

length of the hash used, which is 32 bits. Thus, the monitor in [6]

can detect the same number of attacks as our hash32 pattern, but

requires six times as much time to respond.

4.3.2 Attacks on Application Memory

Attacks on application memory often occur when systems are

attacked remotely via the network and the attacker does not have

access to the application binary. Typical examples are buffer

overflow attacks [17], where data structures overwrite portions of

the stack. When a return address in the stack is overwritten, the

attacker can change the control flow of the program.
To create an attack on application memory, we use one instance

of a buffer overflow attack. During runtime, we overwrite a 10-word
stack data structure with 20 words of malicious branch instructions,
thus causing the return pointer of a function call to be overwritten.
When the function returns, control flow is changed to the target of
our malicious branch.

Table 2 shows the performance of our monitors when detecting

buffer overflow attacks. All monitors detect the stack attack. Both

address pattern and hashed pattern can detect the malicious

branch in just one instruction. This is expected since the incorrect

branch leads to a different address, which affects the address and

hash pattern. (Note that for different stack attack scenarios, the

hash pattern may not detect the branch on the first instruction with

6.25 percent probability, as explained above.) For opcode and

load/store patterns, the attack is not detected until several

instructions are executed (in our scenario, two instructions). For

852 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 5. Average number of ambiguous states for benchmark applications.

the control flow pattern, the attack can only be detected after the

basic block ends (i.e., 10 instructions in our scenario). The monitor

in [6] detects this attack within one instruction by maintaining

valid branch targets.

The ability of our hash4 monitor to detect attacks within the

execution time of a single instruction is an important distinction.

Embedded system attacks can be launched using just a few

instructions (e.g., writing a secret key to I/O, modifying or erasing

stored data, etc.), and thus, immediate response is crucial for

successful defenses. Therefore, we conclude that this approach

outperforms the control flow monitor (which is similar to the

monitor proposed in Arora et al. [6]) by requiring less memory (see

Figs. 3 and 7) and detecting some attacks faster (see Table 1) and

some attacks equally fast (see Table 2).

5 SUMMARY

In this paper, we have presented an architecture for secure

processing in embedded systems. The key idea is to use a

monitoring subsystem that operates in parallel with the embedded

processor. The monitor verifies that only processing steps are

performed that match up with the originally installed application.

Any attack would disturb the pattern of execution steps, and thus,

alert the monitor.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010 853

Fig. 6. Cumulative density function of ambiguous execution path length for benchmark applications. The x-axis shows the length of ambiguous paths and the y-axis

shows the cumulative density function. The key in the upper right corner is applicable to all figures.

We have shown the operation and performance of the proposed
monitoring system on the MiBench embedded systems benchmark
suite. We have determined the monitoring graph size and
monitoring detection speed for five patterns. Our results show
that solely relying on control flow information—as it has been
done in the past—is not an efficient way of detecting attacks.
Instead, we have proposed a hash-based pattern that uses less
memory and can detect deviations from intended processing
within a single instruction cycle. This novel approach to monitor-
ing processing on an embedded system presents a significant
improvement over prior approaches. We believe this work is an
important step toward providing hardware-based security solu-
tions in embedded systems that address the inherent limitations of
these architectures.

ACKNOWLEDGMENTS

This material is based upon work supported by the US National
Science Foundation under Grant No. CNS-0447873.

REFERENCES

[1] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper Resistance
Mechanisms for Secure, Embedded Systems,” Proc. 17th Int’l Conf. Very
Large Scale Integration Design (VLSI Design ’04), pp. 605-611, Jan. 2004.

[2] A. Wood and J.A. Stankovic, “Denial of Service in Sensor Networks,”
Computer, vol. 35, no. 10, pp. 54-62, Oct. 2002.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Proc. 19th Ann.
Int’l Cryptology Conf. Advances in Cryptology (CRYPTO ’99), pp. 388-397,
1999.

[4] S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi, “Towards Sound Approaches
to Counteract Power-Analysis Attacks,” Proc. 19th Ann. Int’l Cryptology
Conf. Advances in Cryptology (CRYPTO ’99), pp. 398-412, 1999.

[5] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin,
“Reconfigurable Hardware for High-Security/High-Performance Em-
bedded Systems: The SAFES Perspective,” IEEE Trans. Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 2, pp. 144-155, Feb. 2008.

[6] D. Arora, S. Ravi, A. Raghunathan, and N.K. Jha, “Secure Embedded
Processing through Hardware-Assisted Run-Time Monitoring,” Proc. De-
sign, Automation, and Test in Europe Conference and Exhibition (DATE ’05),
pp. 178-183, Mar. 2005.

[7] R.G. Ragel and S. Parameswaran, “IMPRES: Integrated Monitoring for
Processor Reliability and Security,” Proc. 43rd Ann. Conf. Design Automation
(DAC), pp. 502-505, July 2006.

[8] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, and N. Memon, “SAFE-
OPS: An Approach to Embedded Software Security,” ACM Trans. Embedded
Computing Systems, vol. 4, no. 1, pp. 189-210, Feb. 2005.

[9] M. Abadi, M. Budiu, �U. Erlingsson, and J. Ligatti, “Control-Flow Integrity
Principles, Implementations, and Applications,” Proc. ACM Conf. Computer
and Comm. Security (CCS), pp. 340-353, Nov. 2005.

[10] N. Nakka, Z. Kalbarczyk, R.K. Iyer, and J. Xu, “An Architectural
Framework for Providing Reliability and Security Support,” Proc. 2004
Int’l Conf. Dependable Systems and Networks (DSN), pp. 585-594, June 2004.

[11] R.G. Ragel, S. Parameswaran, and S.M. Kia, “Micro Embedded Monitoring
for Security in Application Specific Instruction-Set Processors,” Proc. 2005
Int’l Conf. Compilers, Architectures, and Synthesis for Embedded Systems
(CASES), pp. 304-314, Sept. 2005.

[12] G.E. Suh, J.W. Lee, D. Zhang, and S. Devadas, “Secure Program Execution
via Dynamic Information Flow Tracking,” Proc. 11th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XI),
pp. 85-96, Oct. 2004.

[13] Z. Shao, Q. Zhuge, Y. He, and E.H.-M. Sha, “Defending Embedded Systems
Against Buffer Overflow via Hardware/Software,” Proc. 19th Ann.
Computer Security Applications Conf. (ACSAC), pp. 352-363, Dec. 2003.

[14] G.F. Cretu, J.J. Parekh, K. Wang, and S.J. Stolfo, “Intrusion and Anomaly
Detection Model Exchange for Mobile Ad-Hoc Networks,” Proc. Third IEEE
Conf. Consumer Comm. and Networking (CCNC ’06), pp. 635-639, Jan. 2006.

[15] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown, “MiBench: A Free, Commercially Representative Embedded
Benchmark Suite,” Proc. IEEE Fourth Ann. Workshop Workload Characteriza-
tion, Dec. 2001.

[16] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Dept.
of Computer Science, Univ. of Wisconsin in Madison, Technical Report
1342, June 1997.

[17] K.-S. Lhee and S.J. Chapin, “Buffer Overflow and Format String Overflow
Vulnerabilities,” Software: Practice and Experience, vol. 33, no. 5, pp. 423-460,
Apr. 2003.

854 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 7. Monitoring graph size compared to 95 percentile ambiguous path length. All

25 benchmark applications are plotted for each monitoring pattern.

TABLE 1
Performance of Monitor to Detect Bit Flip Attacks on Application Binary

The results are based on 100 simulations using the gsm application.

TABLE 2
Performance of Monitor to Detect Buffer
Overflow Attacks on Application Memory

