
Challenges and Applications for
Network-Processor-Based Programmable Routers

Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts Amherst
wolf@ecs.umass.edu

Abstract— The growth in ubiquity, performance, and commer-
cial and academic use of computer networks continues to demand
more performance and flexibility from the underlying network
infrastructure. The lack of security, quality of service, and man-
ageability in the current Internet poses a significant challenge and
highlights the importance of considering other network designs.
Programmable routers provide a vehicle for experimenting with
new architectures that allow the dynamic deployment of new
protocols and services. To achieve the necessary throughput
performance, programmable routers employ network processors,
which are embedded system-on-a-chip multiprocessors. This
paper discusses the challenges that such systems pose in terms of
system architecture, programming abstraction, and deployment.
The potential applications highlight the benefits of making router
programmability a first-class networking function.

I. INTRODUCTION

Several shortcomings of the design of today’s Internet are
expressing themselves in the lack of flexibility, security, and
manageability. When the Internet was originally designed in
the 1970’s, the goal was to have a simple, packet-switched
communication infrastructure, which connects a large number
of systems through routers [1]. The network itself was kept
relatively simple and provided basic communication between
the end-systems. This led to networking protocols, where most
of the complexity is implemented on the end-systems (e.g.,
retransmission of lost packets, congestion control based on
round-trip time measurements).

Over time, several additions have been proposed and im-
plemented in the Internet, because the initial design did not
consider them. Since the Internet does not support the dynamic
deployment of new protocols, these features needed to be
added as special processing functions to routers. The following
list highlights a few, which are characterized by the need of
support by the network (i.e., they cannot be implemented on
end-systems only):

• Random Early Detection (RED [2]) is a queue manage-
ment scheme for routers to fairly drop packets from rogue
TCP flows. This is can be implemented in a very simple
fashion, but it constitutes a type of processing on a router.
Almost all current routers implement some form of RED,
but only few use it in practice.

• Network address translators (NAT [3]) are another com-
mon component in IP networks. A NAT allows multiple
hosts in a stub domain to use a single globally unique
IP address. IP packets passing between the stub domain

and the Internet are modified by the NAT. This reduces
the number of IP addresses used by a stub domain and
thereby extends the time before all IP addresses are
assigned.

• Firewalls [4] are a standard security component of most
networks. Packets are filtered depending on rules defined
by the network administrator. This enables the blocking
of network traffic that could compromise the security of
hosts on the network (e.g., port scanning). The firewall
rules can be numerous and complex, which requires
significant computational power on the firewall to keep
up with typical access link speeds.

• Intrusion detection systems (e.g., snort [5]) check packet
headers and content against signatures of well-known
attacks. Traffic the is considered malicious can be blocked
dynamically.

• Web switching [6] is a method of distributing a web
server over several physical machines while presenting a
single font-end to the outside. Web switches parse HTTP
requests in packets and determine the appropriate server
to which to forward the request. Since the HTTP request
is sent only after the TCP connection is established, the
web switch also has to splice the TCP connection between
client and back-end server.

In practice, these changes either have been slowly added to
all routers (e.g., RED) or they were implemented on servers
that are connected to the routers (e.g., intrusion detection).
These specialized solutions are working reasonably well in
practice, but also cause the Internet architecture to diverge
more and more from its original design as more and services
require processing inside the network (see Figure 1).

Over the coming years, it can be expected that the Internet
design will need to be adapted further. The expansion of
network connectivity to mobile and ad-hoc sensor networks
with end-systems with very low processing power (e.g., RFID
tags) will bring about considerable changes. In order to test
and deploy new ideas in the Internet, it is necessary to develop
suitable supporting infrastructure. A key component of this
infrastructure is the programmable router. Introducing pro-
grammability into the data path of routers provides flexibility
to adapt to new protocols and services is by means of simple
changes in software.



End system:
- IP security
- TCP termination

Server:
- Content-based
switching

- Firewall
- SSL termination
- IP security

Access router:
- Access concentration
(cable, DSL, wireless)

- Network address translation
- Policy-based QoS
- Monitoring and billing
- Firewall

Edge router:
- Packet classification
- QoS (DiffServ)
- monitoring and billing

Core router:
- Multiprotocol label switching
- QoS aware routing
- Monitoring

Fig. 1. Network Services Requiring Processing Inside the Network.

II. PROGRAMMABLE ROUTERS

A key infrastructure component for a more flexible and
dynamic network are programmable routers, which are char-
acterized by having general-purpose processing capabilities in
their data path. These processing units can be programmed
to perform various protocol operations as well as complex
payload processing. Unlike with traditional routers, deploy-
ment of new protocols can be achieved by reprogramming
the system rather than exchanging expensive hardware. This
programmability of the data plane extends the traditional store-
and-forward paradigm of routers to store-process-and-forward.
The processing step is where interesting new services and pro-
tocols can be implemented in the network. It also provides the
means for a unified architectural view of additional network
features that are already implemented (see Section I).

A. Software Issues

Making network systems programmable raises many secu-
rity and manageability questions. Often, software programma-
bility of the data path is equaled with “active networking” [7],
[8], which allows the programming of processing steps by the
end-system application. It is important to note that there are a
variety of other mechanisms for controlling programmability
that do not require such open assumptions. A more likely
scenario for initial deployment is that programmable routers
can be updated by system administrators or router vendors
to install well-tested new services. An example for such an
approach are open pluggable edge services (OPES) [9]. Such
a model might later migrate to a more open programming
platform as proposed by the active networking community,
but this is not a necessary requirement.

B. Hardware Issues

The flexibility of a programmable router comes of course
at a price. Software processing is inherently slower than
customized logic that is optimized for protocol processing. To
address this problem, high-performance embedded processing
systems, called “network processors” (NPs) have been devel-
oped. Network processors have been implemented as highly

 

Router

Switching
Fabric

PortPort

Port

Port

Port

Network Processor

N
et

w
or

k 
In

te
rf

ac
e Processing 

Engine
Processing 

Engine

Processing 
Engine

Processing 
Engine

I/O

packets

Interconnect

Fig. 2. Programmable Router System.

parallel multiprocessor systems-on-a-chip that are optimized
for high-bandwidth I/O tasks (see Figure 2).

The key idea to achieving the necessary processing per-
formance is to exploit the parallelism that is inherent to
network systems and far exceeds that of traditional workstation
processor systems. There are three layers at which parallelism
can be exploited in a network multiprocessor:

• Flow Level. Packets from different flows do typically not
interact with each other. Therefore they can be processed
completely independently.

• Packet Level. In many protocols, there is no dependency
among packets within a flow. For example, simple IP pro-
tocol forwarding does not keep or modify state between
packets. Therefore packets can be processed in parallel,
even if they belong to the same flow. In some cases it
is necessary to ensure that the original packet order is
restored after processing.

• Instruction Level. When processing a packet, there are
several ways that parallelism can be exploited. These
approaches are the same as found in traditional processor
architecture. In particular, pipelining and instruction-level
parallelism can be used.

Parallelism in the processing workload can be translated to
parallelism in a processing system. This enables the design of
processing engines with a large number of independent proces-
sors with less need for tight interactions and synchronization
between them.

Commercial examples of network processors are the Intel
IXP2400 [10], the AMCC np7510 [11], the EZchip NP-1 [12],
and the Agere Fast Pattern Processor and Routing Switch
Processor [13]. The number of embedded RISC processor
cores ranges from as little as eight in the IXP2400 to an
amazing 188 in the Cisco Silicon Packet Processor (SPP).
Designing high-performance network processors as well as
programming and managing them during run-time raises a
number of interesting scientific and engineering challenges.



0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

th
ro

ug
hp

ut
 s

pe
ed

up
 r

el
at

iv
e 

to
 s

in
gl

e 
pr

oc
es

so
r

number of processors

speedup from
parallelism

suboptimal topologies

limited scalability

Fig. 3. Topology Impact on Performance.

III. NP SYSTEM CHALLENGES

A. NP Design

The system design of an embedded multi-processor net-
work processor has a large number of degrees of freedom.
In practice, commercial network processor designs have not
converged on roughly the same system architecture the way
workstation and server processors have. There are fundamental
differences in terms of system topology, memory design, and
the way coprocessors for hardware acceleration are used. The
first-level design choices that need to be considered are:

• System topology: How should processors be intercon-
nected? Should they be arranged in a fully parallel or
pipelined configuration?

• Memory configuration: How many interfaces for each
type of memory (SRAM and DRAM) should be used?
Should all processors have access to all memory?

• Special features: What functions should be accelerated in
hardware (e.g., route lookups, checksum computation)?
Should there be programmable logic for hardware accel-
eration? What are special instruction set extensions that
are beneficial for network processing?

These choices have significant impact on the performance
of the network processing system. To illustrate this point, we
have used an analytic performance model to determine the
performance of different NP systems [14]. Figure 3 shows the
performance of different system configurations as a function
of the number of processors used. It clearly shows that some
configurations perform much better with the same number of
processors than others. Another important observation is that
speedup is constraint by limited scalability. This is caused by
contention on the memory interfaces. Overcoming the bottle-
necks of memory systems in network processors has received
much attention recently and different design alternatives have
been explored [15].

B. Programming

With current software development tools and methodolo-
gies, it is challenging to program an application for an NP.

Most NP vendors provide software development kits for their
architecture that use modular programming abstractions. A
major focus is on software reuse across different NP platforms
[16]. However, the multiprocessor nature of an NP requires
that the application developer partition the application and
allocate it to processing resources. To achieve better load
balancing for higher throughput, this typically requires that
parts of the application are programmed in assembly and
fine-tuned for performance. The major drawback of most of
these approaches is that they require the application devel-
oper to have an in-depth understanding of the NP system
architecture. This will become an increasingly more pressing
problem as network processors—as well as other embedded
systems—move towards parallel architectures with dozens of
parallel processing resources. In such systems, the allocation
of processing tasks to resources needs to be done in an
automated fashion without requiring the developer to make
such decisions.

We address this problem with a “bottom-up” approach
that differs from existing work insofar that we use profiling
information from a simple uniprocessor implementation of
an NP application. This profiling information is used to
extract all available parallelism in the application, to map the
application to processing resources, and to model the run-
time performance through an analytic performance model [17].
This bottom-up approach of analyzing and mapping workloads
promises to significantly reduce the complexity the application
developer has to deal with.

C. Run-Time Management

Many current network processor systems only support one
static workload scenario at a time. Changes to the work-
load during run-time causes the performance to degrade as
processing deviates from the fine-tuned implementation (e.g.,
imbalance in the software pipeline). Thus, it is very difficult to
integrate and dynamically change multiple packet processing
functions on a single network processor. However, network
processing is inherently a dynamic process [18]. The main
motivation for implementing packet processing functions in a
network processor (rather than in a faster, more power-efficient
custom logic device) is the need to change the functionality
over time. Changing traffic patterns, new network services
and protocols, new algorithms for flow classification, and
changing defenses against denial of service attacks present
the dynamic background that a programmable router needs to
accommodate. This requires that the router (1) can implement
multiple packet processing applications at the same time, (2)
can quickly add and remove processing functions from its
workload, and (3) can ensure efficient operation under all cir-
cumstances. In particular, the management of various system
resources is important to avoid performance degradation from
resource bottlenecks.

We have explored the design considerations for network
processor operating system in this context [19]. The computa-
tional complexity of finding an optimal software configuration
for a given workload is considerable. Therefore, there is an



 

TCP connection

(a) Conventional TCP Connection

 A
A

TCP connection TCP connection TCP connection

(b) Accelerated TCP Connection

Fig. 4. Conventional and Accelerated TCP Connections using Programmable
Routers.

inherent tradeoff between optimizing one particular software
setup and the ability to adapt quickly to changes in network
traffic.

IV. APPLICATIONS

The ability to change the data path processing in a router
allows the implementation of a variety of novel network
functions. These “applications” of network processing aim
at providing novel functionality as well as improved per-
formance. They also provide a unified platform for already
existing network extensions discussed in Section I.

Another example for a novel application that targets per-
formance improvements in the network through the use of
network processing is “Transparent TCP Acceleration” [20].
Programmable routers in the network can opportunistically act
as TCP proxies by terminating TCP connections and opening
a new connection towards the destination. This is done trans-
parently (i.e., undetectable to the end-system) and effectively
converts one connection with a large round-trip time into
multiple connections with smaller round trip times. Since
the throughput of a TCP connection is inversely proportional
to the round-trip time, accelerated TCP connections achieve
higher throughput. Under congested conditions, accelerated
TCP increases the utilization of the bottleneck link since it can
retransmit lost packets locally and avoids oscillations, which
are often caused by multiple connections with long round-trip
times backing of in sync.

Looking forward, programmability on routers can provide
the means for network service providers to differentiate their
offerings from those of the competition. Programmable routers
can provide premium services that enhance the functionality
and performance of data transfers. It is also conceivable that
they can offer services that are traditionally limited to the end-
system (e.g., virus scanning not only for downloaded data, but
also for files stored on the end-system that could be streamed
through the access network).

V. CONCLUSION

The field of programmable routers is still in its early
stages. It can be expected that there will be much growth
in this area as network functionality needs to be extended
to address exiting and novel challenges. Programmability in
the data path is a key enabling technology for future network
architectures that can provide services that go beyond simple
packet forwarding.

REFERENCES

[1] D. D. Clark, “The design philosophy of the DARPA internet protocols,”
in Proc. of ACM SIGCOMM 88, Stanford, CA, Aug. 1988, pp. 106–114.

[2] S. Floyd and V. Jacobson, “Random early detection (RED) gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, Aug. 1993.

[3] K. B. Egevang and P. Francis, “The IP network address translator
(NAT),” Network Working Group, RFC 1631, May 1994.

[4] J. C. Mogul, “Simple and flexible datagram access controls for UNIX-
based gateways,” in USENIX Conference Proceedings, Baltimore, MD,
June 1989, pp. 203–221.

[5] The Open Source Network Intrusion Detection System, Snort, 2004,
http://www.snort.org.

[6] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D. Saha,
“Design, implementation and performance of a content-based switch,”
in Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000, pp.
1117–1126.

[7] D. Wetherall, U. Legedza, and J. Guttag, “Introducing new internet
services: Why and how,” IEEE Network, vol. 12, no. 3, pp. 12–19, May
1998.

[8] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network research,” IEEE Communi-
cations Magazine, vol. 35, no. 1, pp. 80–86, Jan. 1997.

[9] Open Pluggable Edge Services, IETF, 2003, http://www.ietf-opes.org/.
[10] Intel Second Generation Network Processor, Intel Corporation, 2002,

http://www.intel.com/design/network/products/npfamily/ixp2400.htm.
[11] np7510 10 Gbps Network Processor, AMCC, 2003,

http://www.amcc.com.
[12] NP-1 10-Gigabit 7-Layer Network Processor, EZchip Technologies Ltd.,

Yokneam, Israel, 2002, http://www.ezchip.com/html/pr np-1.html.
[13] PayloadPlusTM Fast Pattern Processor, Lucent Technologies Inc.,

Apr. 2000, http://www.agere.com/support/non-nda/docs/FPPProduct-
Brief.pdf.

[14] N. Weng and T. Wolf, “Pipelining vs. multiprocessors - choosing the
right network processor system topology,” in Proc. of Advanced Net-
working and Communications Hardware Workshop (ANCHOR 2004) in
conjunction with The 31st Annual International Symposium on Computer
Architecture (ISCA 2004), Munich, Germany, June 2004.

[15] J. Mudigonda, H. M. Vin, and R. Yavatkar, “Overcoming the memory
wall in packet processing: Hammers or ladders?” in Proc. of ACM/IEEE
Symposium on Architectures for Networking and Communication Sys-
tems (ANCS), Princeton, NJ, Oct. 2005.

[16] S. D. Goglin, D. Hooper, A. Kumar, and R. Yavatkar, “Advanced
software framework, tools, and languages for the IXP family,” Intel
Technology Journal, vol. 7, no. 4, pp. 64–76, Nov. 2003.

[17] N. Weng and T. Wolf, “Profiling and mapping of parallel workloads on
network processors,” in Proc. of The 20th Annual ACM Symposium on
Applied Computing (SAC), Santa Fe, NM, Mar. 2005, pp. 890–896.

[18] R. Kokku, T. Riché, A. Kunze, J. Mudigonda, J. Jason, and H. Vin,
“A case for run-time adaptation in packet processing systems,” in
Proc. of the 2nd Workshop on Hot Topics in Networks (HOTNETS-II),
Cambridge, MA, Nov. 2003.

[19] T. Wolf, N. Weng, and C.-H. Tai, “Design considerations for network
processor operating systems,” in Proc. of ACM/IEEE Symposium on
Architectures for Networking and Communication Systems (ANCS),
Princeton, NJ, Oct. 2005, pp. 71–80.

[20] T. Wolf, S. You, and R. Ramaswamy, “Transparent TCP acceleration
through network processing,” in Proc. of IEEE Global Communications
Conference (GLOBECOM), St. Louis, MO, Nov. 2005.


