
Profiling and Mapping of Parallel Workloads on
Network Processors

Ning Weng
Department of Electrical and

Computer Engineering
University of Massachusetts

Amherst, MA 01003 USA

nweng@ecs.umass.edu

Tilman Wolf
Department of Electrical and

Computer Engineering
University of Massachusetts

Amherst, MA 01003 USA

wolf@ecs.umass.edu

ABSTRACT
Network processors are embedded system-on-a-chip multiproces-
sors that are optimized to perform simple packet processing tasks
at data rates of several Gigabits per second. To meet the perfor-
mance demands of increasing link speeds and more complex net-
work applications, network processors are implemented with sev-
eral dozens of processor cores and execute multiple packet process-
ing applications in parallel. The complexity of such systems makes
it increasingly difficult for application developers to map applica-
tions to the various system resources and achieve optimal perfor-
mance. We propose an automated profiling and mapping method-
ology for these highly parallel, embedded systems that starts out
with a simple uniprocessor implementation of the networking ap-
plication. An architecture independent representation of the run-
time behavior of the application is used to map and schedule dif-
ferent processing steps to the underlying hardware. An analytic
performance model is used in the process to estimate system per-
formance and to find an near-optimal solution through iteration.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance—Performance Analysis and
Design Aids; I.6.3 [Computing Methodologies]: Simulation
and Modeling—Applications; C.2.6 [Computer-Communication
Networks]: Internetworking—Routers

Keywords
Embedded systems, network processors, application profiling, mul-
tiprocessor scheduling

1. INTRODUCTION
The Internet has progressed from a simple store-an-forward net-

work to a more complex communication infrastructure. In order
to meet demands on security, flexibility, and performance, net-
work traffic not only needs to be forwarded, but also processed
on routers. To provide the necessary flexibility and throughput for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

increasingly complex network services, routers are equipped with
programmable “network processors” (NPs). These NPs are typi-
cally embedded systems-on-a-chip with dozens of parallel proces-
sor cores, several memories, and I/O components. Packet process-
ing tasks are performed on the network processor before the packets
are passed on through the router switching fabric and on to the next
network link. This process is illustrated in Figure 1.

To meet the processing demands of increasing link speed and
application complexity, network processors employ large number
of parallel processing engines. These processors are typically ar-
ranged in a physical or logical topology that range from a sim-
ple pipeline to hybrid pools of pipelines. The real-time nature
of processing network traffic requires that NP applications are
finely tuned to achieve the required throughput performance. With
increasingly complex hardware topologies that exhibit numerous
non-obvious interactions between components, it becomes difficult
for application developers to write, schedule, and optimize applica-
tions.

Current software development tools for network processors re-
quire a manual partitioning of applications as well as a manual as-
signment to processing engines. In our work, we propose a method-
ology to automatically profile network processor applications from
a uniprocessor implementation and derive an architecture indepen-
dent representation. This representation can then be mapped to the
processing resources on a network processor. It is important to note
that our methodology can be applied to a broad range of network
processor topologies and is not limited to any particular commer-
cial product.

The methodology that we employ is shown in Figure 2. The
central components of the work are the profiling and scheduling
steps. A configurable NP hardware description allows this process
to be used on any current or future NP systems. The key technical
challenges of this process that are addressed in this paper are the
profiling and application mapping. In particular, we focus on issues
of:

• Abstract Application Representation. A network process-
ing application needs to be represented in a way that it can be
easily mapped to multiple parallel or pipelined processing el-
ements. This requires a representation that exhibits the appli-
cation parallelism while also ensuring that data and control
dependencies are considered. We use an annotated directed
acyclic graph (ADAG) to represent the dynamic execution
profile of applications.

• Application Mapping. Once we have the application repre-
sented as an ADAG, the next step is to map the ADAG onto

Figure 1: Workload Mapping on Network Processors. Network processors are implemented as system-on-a-chip multiprocessors.
Applications need to be mapped to the architecture in an efficient way.

NP System
Description

Scheduling

Profiling
Network

processing
application

PacketBench
simulation

Instruction
clustering

Application
mapping

Performance
Model

Results

Generic NP
architecture

Topology
parameters

Network
processing
application

Network
processing
application

Workload

Run-time instruction trace

Application in ADAG form

application(s) mapped
to topology

NP
instance

Width, depth, etc.

Throughput, utilization etc.

Iteration for
randomized
optimization

Iteration for system
optimization

Figure 2: Methodology for Workload Mapping.

a NP topology. The goal is to optimize system performance
while considering all the application dependencies. To ap-
proximate a solution to this NP-complete mapping problem,
a randomization algorithm is used that achieves a good ap-
proximation. In order to evaluate the throughput perfor-
mance of a given solution, an analytic performance model
is used, which considers processing, inter-processor commu-
nication, memory contention, and pipeline synchronization
effects.

The key differences of network processors as compared to con-
ventional multiprocessing systems are the properties of the work-
load. In network processing, the workloads are simple (a few thou-
sand instructions per packet) and highly regular (identical protocol

processing for most packets). This allows us to use the proposed
approach, which profiles and analyzes the workload at a level of de-
tail that is not feasible for other parallel application (e.g., scientific
or server applications). The regularity of processing also allows us
to generate a task allocation schedule that can be adhered to in al-
most all cases. Packets that require special processing are deflected
to the “slow path” of the router, where a special control processor
handles the exception. In this paper we focus only on the fast path
of the router.

Despite the simplicity of network processing, high network link
rates present a significant performance challenge. Due to the em-
bedded nature of network processors, many interactions on the NP
can have an impact on the overall throughput performance (e.g.,
locking, access to shared data structures, access to shared co-pro-
cessors). That is why a carefully crafted processing schedule can
ensure that the system operates at the highest possible efficiency.

The remainder of the paper is organized as follows. Section 2
present related work. Section 3 presents our profiling approach.
The results from the profiling are used in the scheduling presented
in Section 4. Section 5 presents experimental results and Section 6
concludes this paper.

2. RELATED WORK
Several development environments and programming abstrac-

tions for network processors have been proposed. Most network
processor vendors provide software development kits for their ar-
chitecture that use modular programming abstractions. In the SDK
for the Intel IXP2400 network processor [7], an NP used widely
in academia and industry, a network processing application is built
by combining several modules that handle ingress processing, for-
warding, scheduling, and egress processing [5]. Similar modularity
is exhibited by Teja [19], another SDK for the Intel IXP network
processors. Other programming models for NPs include NP-Click
proposed by Shah et al. [18], which is an extension to the Click
modular router [9].

The major drawback of most of these approaches is that they
require the application developer to have an in-depth understand-
ing of the NP system architecture. This will become an increas-
ingly pressing problem as network processors—as well as other

embedded systems—move towards parallel architectures with large
numbers of parallel processing resources. Our approach to solv-
ing this problem is a “bottom-up” approach that differs from the
above work insofar that we use profiling information from a simple
uniprocessor implementation of an NP application. This profiling
information can be used to extract all available parallelism in the
application, to map the application to processing resources, and to
model the run-time performance through an analytic performance
model. The bottom-up approach to analyzing and mapping work-
loads promises to significantly reduce the complexity with which
the application developer has to deal.

Mapping and scheduling tasks on conventional multiprocessors
has been explored by Austin and Sohi [1] and is conceptually sim-
ilar to mapping tasks on an NP. However, there are significant dif-
ferences in the underlying system architectures. Due to the embed-
ded nature of NPs, there are practical limitations on how large the
instruction store per processor can be (typically only a few thou-
sand instructions with no memory hierarchy due to real-time con-
straints), how many interfaces are available for accessing off-chip
memory (typically only few due to pin limitations of the packaging
process), and what kind of inter-processor communication is pos-
sible (typically constraint by the system topology). Our approach
to mapping tasks to NPs takes these constraints into account and
utilizes several successful methods of multiprocessor mapping that
were developed previously. Karp [8] and Motwani and Raghavan
[12] showed that randomization in the context of mapping pro-
vides a good heuristic to solving the NP-complete mapping prob-
lem. More recently, Lakamraju et al. [10] have applied this idea
to synthesizing networks that satisfy multiple requirements. Their
result demonstrates that randomization is a powerful approach that
can generate good results even with short run time.

We combine the randomized mapping approach with an analytic
performance model for network processors to evaluate the perfor-
mance of a given randomized solution. Franklin et al. have ex-
plored entire system-on-a-chip configurations for NPs through ana-
lytic performance modeling while considering area and power con-
straints [4]. Thiele et al. have proposed a performance model for
network processors that considers the effects of network traffic [20]
and Gries et al. have evaluated the performance/cost trade-offs for
different network processor topologies based on a network calcu-
lus approach [6]. In this work, we use a performance model devel-
oped in our prior work that considers different processor topologies
and considers several embedded system effects, like memory con-
tention and pipeline synchronization [22].

3. WORKLOAD PROFILING
The goal of profiling the network processor workload is to gen-

erate an architecture independent application representation that
can be used for network processor scheduling. We use a dynamic
instruction trace to generate an annotated directed acyclic graph
(ADAG), where nodes represent processing tasks and links repre-
sent control and data dependencies.

3.1 Instruction Trace
One key question is whether to use a static or a dynamic appli-

cation analysis as the basis for this work. With a static analysis,
detailed information about every potential processing path can be
derived. All processing blocks can be analyzed—even the ones that
are not or hardly used during run-time. A static analysis typically
results in a “call-graph,” which shows the static control dependen-
cies (i.e., which function can call which other function).

A dynamic instruction trace analysis of the application shows
exactly which instructions were executed and which instruction

blocks were not used at all. In addition, all actual load and store
addresses are available, which can be used for an accurate data de-
pendency analysis. In this work, we use the dynamic instruction
trace to reflect the run-time behavior of the application.

To obtain a trace of a realistic packet processing applications,
we us a tool called “PacketBench” that we have developed to ana-
lyze network processing applications [15]. The profiling starts with
the application written in uniprocessor C code, which is compiled
with a cross compilation tool chain for the GNU C compiler and
an ARM back-end. A PacketBench trace provides the registers and
memory locations for all instructions that are executed as well as
the control transfer information.

One subtle issue of this dynamic profiling approach is that each
packet could potentially use a different execution path in the ap-
plication. In some cases, certain blocks are executed a different
number of times depending on the size of the packet (e.g., packet
payload encryption). One solution is to assume that packets use the
most common execution path and if the execution deviates from
this case an exception is raised and processing is continued on the
control processor. This is currently done on some network pro-
cessors (e.g., IP option detection in an IP forwarding application).
Our approach is to analyze a large number of packets and find the
union of all execution paths. By scheduling the union on the net-
work processor system it is guaranteed that all packets can be pro-
cessed. The potential drawback is a lower system utilization as
not all application components will be used at all times. However,
our results show that network processing applications are very reg-
ular and simple. For most applications, over 90% of packets are
covered by the most common execution path. When considering a
union with 10–20% overhead over the common case, the execution
of nearly all packets is possible [14]. This indicates that our ap-
proach of dynamic profiling and mapping of ADAGs is suitable for
the network processor application domain.

3.2 ADAG Generation
Our bottom-up ADAG generation starts from a PacketBench

trace that provides the processing and I/O requirements of each
instruction block and the number of data dependencies between
instruction blocks. Considering each individual data and control
dependency, we obtain an initial DAG with thousands of nodes. To
make the DAG tractable and useful for scheduling, we reduce the
number of nodes by clustering multiple nodes to instruction clus-
ters (i.e., processing tasks). We use a clustering technique called
“ratio cut” introduced by Wei and Cheng [21]. Ratio cut has the
nice property of identifying “natural” clusters within a graph with-
out the need for a-priori knowledge of the final number of clusters.

The ratio cut, rij , for two clusters i and j is defined as the frac-
tion of the sum of the data dependencies, dij and dji, and the
product of the amount of processing performed in each cluster, pi

and pj :

rij =
dij + dji

pi × pj
. (1)

This clustering method achieves a natural clustering of nodes
through minimizing the inter-cluster dependencies, while maximiz-
ing cluster size of cohesive nodes.

The ratio cut algorithm is unfortunately NP-complete and thus
not tractable for ADAGs with the number of blocks that we need
to consider here. Therefore, we have developed a heuristic called
“maximum local ratio cut” (MLRC) that is a greedy algorithm
based on ratio cut and reduces the computational complexity while
still achieving good results. The idea of MLRC is to find the pair of
clusters that maximize rij (and thus show most cohesiveness) and
join them.

Figure 3: Annotated Directed Acyclic Graph (ADAG) for Flow
Classification Application.

3.3 Example Workload
To illustrate the ADAG generation process as well as the map-

ping results below, we consider an example workload consisting of
four typical network processors applications:

• IPv4-radix. IPv4-radix is an application that performs
RFC1812-compliant packet forwarding [2] and uses a radix
tree structure to store entries of the routing table.

• IPv4-trie. IPv4-trie is similar to IPv4-radix and also per-
forms RFC1812-based packet forwarding. This implementa-
tion uses a trie structure with combined level and path com-
pression for the routing table lookup [13].

• Flow Classification. Flow classification separates traffic into
flows, which are defined by a 5-tuple consisting of the IP
source and destination addresses, source and destination port
numbers, and transport protocol identifier.

• IPSec Encryption. IPSec is an implementation of the IP Se-
curity Protocol, where the packet payload is encrypted using
the Rijndael algorithm [3], which is the new Advanced En-
cryption Standard (AES).

One example ADAG that is obtained from the MLRC clustering
of the Flow Classification is shown in Figure 3. The nodes contain a
3-tuple annotation with the number of instructions that are executed
in this node, the number of reads to memory and the number of
writes to memory. Data that is moved between processing tasks
is shown as edge weights. Rectangular nodes identify the starting
node, bold nodes indicate the terminating nodes.

 Interconnect

 Interconnect

I P
Es

 p
er

in
te

rc
on

ne
ct

Memory
Interface

Memory
Interface

Processing
Element

Processing
Element

Processing
Element

Processing
Element

...

...

... ...

...

Memory
Interface

Memory
Interface

...

M
 M

Is
pe

r s
ta

ge

W PEs per stage

 Interconnect

 Interconnect

Memory
Interface

Memory
Interface

Processing
Element

Processing
Element

Processing
Element

Processing
Element

...

...

... ...

...

Memory
Interface

Memory
Interface

...

... ...

D
 s

ta
ge

s

Figure 4: Generic Network Processor Architecture. The pa-
rameters which can be varied are shown in the figure.

4. WORKLOAD MAPPING AND
SCHEDULING

With applications represented by ADAGs we are ready to map
the workload to the network processor. To find a general solution
for the mapping problem, we do not focus on a single commercial
NP architecture, but a generic system that can be parameterized.

4.1 Parameterized Network Processor Archi-
tecture

Our general, parameterized network processor topology shown
in Figure 4 consists of three components: processing elements,
shared interconnects, and memory interfaces. The packets move
from top to bottom. The key parameters are: the width of the
pipeline stage (W), the depth of the pipeline stage (D), the number
of stages per communication interconnect (I) and the number of
memory channels shared by one row of processing elements (M).

These parameters enable us to represent a wide range of possible
NP architectures. A parallel multiprocessor topology can be mod-
eled by fixing the pipeline depth (D) and interconnect stages (I) to
1, while varying the pipeline width (W). A pipeline architecture
can be modeled by setting both pipeline width (W) and pipeline
interconnects (I) to 1, while varying the pipeline depth (D). The
number of available memory channels per stage can range from 1
to W .

4.2 Randomized Mapping
The goal of the mapping is to assign processing tasks (i.e.,

ADAG nodes) to processing elements and generate a schedule that

achieves the maximum system throughput. This assignment is not
easy because the mapping process needs to consider the depen-
dencies within an ADAG and ensure that a correct processing of
packets is possible. Further, Malloy et al. have shown that produc-
ing a optimal schedule for a system that includes both execution
and communication cost is NP-complete, even if there are only two
processing elements [11]. Therefore we need to develop a heuristic
to find an approximate solution.

Our heuristic solution to the mapping problem is based on “ran-
domized mapping.” The key idea is to randomly choose a valid
mapping and evaluate its performance. By repeating this process a
large number of times and picking the best solution that has been
found over all iterations, it is possible to achieve a good approx-
imation to the global optimum. The intuition behind this is that
any algorithm that does not consider all possible solutions with a
non-zero probability might get stuck in a local optimum. With the
randomized approach any possible solution is considered and cho-
sen with a small, but non-zero probability. This technique has been
proposed and successfully used in different application domains [8,
12, 10].

We break the mapping algorithm into two stages: mapping and
filtering. In the mapping stage, we randomly allocate an ADAG
node (i.e., a processing task) to a processing element in the NP
topology. If the mapping violates the dependency constraints, we
repeat the mapping until a valid mapping has been found or a cer-
tain number of attempts has been reached. This is repeated until
all nodes of an ADAG have been placed into the topology. The
ADAG mapping is repeated until the NP topology is “full” (i.e., no
ADAG can be added successfully). The mapping is then moved to
the filtering stage where the performance of the mapping is deter-
mined and compared to prior maps. If the new mapping is the best
solution in terms of the optimization metric it is recorded for com-
parison to future solutions. Otherwise it is discarded. At the end of
the mapping process, the best overall mapping is reported.

4.3 Performance Model
In order to evaluate the performance of a given mapping and

scheduling, an analytic performance model is used. The annota-
tions of the ADAG give information on how many instructions are
processed and how many memory accesses are performed by each
processor. For shared resources (e.g., memory) it is important to
consider the queuing effect from multiple parallel requests that can
only be served in sequence. We have developed a model in prior
work [22] with which the processing time of each stage of the NP
pipeline can thus be determined.

The use of an analytic model for the evaluation of the random-
ized schedule is crucial. Randomized mapping performs best when
a large number of solutions are tried and only a fast evaluation pro-
cess allows this to happen. The use of more accurate by orders of
magnitude slower simulation would not be suitable.

The resulting, near-optimal schedule can then be implemented
on the network processors. Packets that are processed by the system
are passed to the start node of the appropriate ADAG and processed
in parallel or pipeline fashion (depending on the allocation and the
architecture).

5. RESULTS
We present several results that show the performance of the task

allocation mechanism discussed in Section 4 using the workload
profiles from Section 3. First, we compare the mapping results with
the theoretical upper bound to illustrate the effectiveness of our ap-
proach. We also present results showing the impact of instruction
store limitations on system performance. Finally, we evaluate dif-

ferent NP architectures for their suitability for different applica-
tions.

5.1 Comparison to Ideal Schedule
The ideal schedule for an NP architecture consisting of W par-

allel processors (i.e., pipeline depth of 1) depends on the number
of instructions, instrA, and memory accesses, rA and wA, that
ADAG A requires. The average memory access delay (queuing
and transmission) is given by memdelay and determined through a
Machine Repairman Model [17] [16]. Thus, the ideal throughput
is:

throughputideal =
clk

instrA
W

+ memdelay × (rA + wA)
. (2)

Table 1 show the ideal throughput as compared to actual schedul-
ing results for the four workload application (W = 8 and D = 1).
The actual throughput that is achieved by our mapping algorithm
is around 1% less. Since only complete ADAG nodes can be allo-
cated to processing elements, the applications cannot be distributed
entirely evenly over all processing elements and some process-
ing stalls are introduced. Nevertheless, a near-optimal schedule is
achieved by randomized mapping.

5.2 Limitations on Instruction Store
One main limitation on current commercial network processors

is the amount of instruction store that is available to each processing
element (typically only a few thousand instructions). While the
static instruction store does not directly translate into the dynamic
instructions shown in Table 1, there is still a limit on how many
ADAGs can be mapped to current NPs.

Figure 5 shows the throughput performance of two applications
for different number of parallel ADAGs (x-axis) for different archi-
tectures. The key observation is that for a small number of ADAGs
(i.e., limited instruction store) the pipelined architectures perform
better. For larger numbers of ADAGs (i.e., larger instruction store)
the parallel architectures perform better. This is again due to the
need for even distribution of processing tasks to achieve optimal
performance. On a parallel architecture without pipelining it is not
possible to fully utilize all processing elements when the number of
ADAGs that can be scheduled is limited to a small number. If the
number of ADAGs exceeds W , good throughput can be achieved
because all processing elements can be utilized. Pipelined architec-
tures perform better for small numbers of scheduled ADAGs. With
an increasing number of ADAGs communication between process-
ing elements increases and limits the throughput.

5.3 Network Processor Topology Exploration
One of the key architectural aspects of a network processor is

the system topology that determines how processing engines are
interconnected and how parallelism is exploited. As shown above,
the choice of topology does have a considerable impact on the
overall performance. We can use the scheduling and performance
model methodology for design space exploration to understand ba-
sic tradeoffs between different topology.

Figure 6 shows the throughput performance of NP topologies
with configurations of D = 1 . . . 16 and W = 1 . . . 16. The mem-
ory channels are set to M = 2 per stage. As Figure 5 shows, the
performance increases with the number of ADAGs. To put a limit
on the NP architecture, the maximum number of ADAGs is limited
to 400 and the maximum number of processing instructions is set
to 10,000 per processing element.

For the pipeline width, there is limited growth with increasing

Table 1: Ideal vs. Actual Performance for Different Applications.
Application Instructions Memory Ideal Actual Efficiency

accesses throughput throughput
in pkts/kcycl in pkts/kcycl in %

IPv4-radix 4228 292 0.342 0.340 99.42%
IPv4-trie 201 67 1.493 1.492 99.94%
Flow Class. 208 112 0.892 0.883 98.99%
IPsec 2662 454 0.220 0.218 99.09%

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 6 8 10 12 14 16 18 20

th
ro

ug
hp

ut
 in

 p
ac

ke
ts

 p
er

 k
cy

cl
es

number of parallel ADAGs

D= 1 W=16
D= 2 W= 8
D= 4 W= 4
D= 8 W= 2
D=16 W= 1

(a) IPv4-radix

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 4 8 16 32 64 128 256

th
ro

ug
hp

ut
 in

 p
ac

ke
ts

 p
er

 k
cy

cl
es

number of parallel ADAGs

D= 1 W=16
D= 2 W= 8
D= 4 W= 4
D= 8 W= 2
D=16 W= 1

(b) IPv4-trie

Figure 5: Number of ADAGs Depending on Topology. The
memory service time is S = 10.

numbers of processors. This is due to contention on the two mem-
ory channels per stage, where the off-chip memory access time
dominates the overall stage time. For all applications (Flow Clas-
sification and IPv4-radix not shown), the performance increases
as the pipeline depth increases and levels off at larger number of
pipeline stages. This is due to the limit on the number of ADAGs
and instructions per processing element. Otherwise the growth
would continue up to the point where communication becomes a
bottleneck.

These results lead to two conclusions regarding NP topologies:

 2
 4

 6
 8

 10
 12

 14
 16

pipeline width

 0 2 4 6 8 10 12 14 16

pipeline depth

 0

 5

 10

 15

 20

 25

throughput in packets per kcycles

(a) IPv4-trie

 2
 4

 6
 8

 10
 12

 14
 16

pipeline width

 0 2 4 6 8 10 12 14 16

pipeline depth

 0

 0.5

 1

 1.5

 2

 2.5

 3

throughput in packets per kcycles

(b) IPsec

Figure 6: Throughput Depending on Topology. The number of
memory interfaces per stage is M = 2 and the memory service
time is S = 10.

(1) memory accesses dominate as performance bottlenecks and (2)
pipelining requires large instruction stores to allow for a balanced
scheduling. The observation that performance improves with in-
creasing pipeline depth and that memory interfaces saturate with
increasing pipeline width are not surprising per se. Nevertheless,
they serve as sanity check for the correct behavior of our frame-
work and the effectiveness of randomized mapping.

The presented results show the versatility of our framework to
obtain an understanding of performance tradeoffs between different
application mappings and different network processor topologies.

6. CONCLUSION
In this work, we have introduced a methodology for profiling and

scheduling networking workloads on highly parallel network pro-
cessor architectures. The scheduling is based on randomized map-
ping, which is a good heuristic to solve the NP-complete scheduling
problem. The results show that this approach achieves near-optimal
schedules and works for a broad range of network processor archi-
tecture. The results can further be used in network processor design
to optimize NP system topologies.

The limitations of this work are in some of the assumptions made
in the performance model. The randomized mapping approach
requires a fast evaluation of different configurations, which nec-
essarily requires an analytic performance model rather than more
detailed simulations. To keep the analytic performance model
tractable, a number of simplifications had to be made (e.g., first
come first serve memory access). It is important to note, however,
that more detailed models can be used – which we plan to develop
in future work – and thus more accuracy be achieved. The funda-
mental methodology of dynamic profiling and ADAG mapping is
not effected.

We believe that the methodology that we have presented poses
a promising approach to managing the complexities of highly par-
allel network processors and embedded systems in general. The
profiling and scheduling can be done entirely automatically from
a uniprocessor implementation and dynamic instruction trace of an
application. It is conceivable that such a functionality will become
part of software development kits and operating systems of future
network processors and other parallel embedded systems.

Acknowledgements
The authors would like to thank Ramaswamy Ramaswamy for pro-
viding the run-time instruction traces that were used for the ADAG
generation.

7. REFERENCES
[1] T. M. Austin and G. S. Sohi. Tetra: evaluation of serial

program performance on fine-grain parallel processors.
Technical Report 1163, Computer Science Department,
University of Wisconsin, Madison, WI, July 1993.

[2] F. Baker. Requirements for IP version 4 routers. RFC 1812,
Network Working Group, June 1995.

[3] J. Daemen and V. Rijmen. The block cipher Rijndael. In
Lecture Notes in Computer Science, volume 1820, pages
288–296. Springer-Verlag, 2000.

[4] M. A. Franklin and T. Wolf. Power considerations in network
processor design. In M. A. Franklin, P. Crowley,
H. Hadimioglu, and P. Z. Onufryk, editors, Network
Processor Design: Issues and Practices, Volume 2, chapter 3,
pages 29–50. Morgan Kaufmann Publishers, Nov. 2003.

[5] S. D. Goglin, D. Hooper, A. Kumar, and R. Yavatkar.
Advanced software framework, tools, and languages for the
IXP family. Intel Technology Journal, 7(4):64–76, Nov.
2004.

[6] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Exploring
trade-offs in performance and programmability of processing
element topologies for network processors. In Proc. of
Second Network Processor Workshop (NP-2) in conjunction
with Ninth International Symposium on High Performance
Computer Architecture (HPCA-9), pages 75–87, Anaheim,
CA, Feb. 2003.

[7] Intel Corp. Intel Second Generation Network Processor,
2002. http://www.intel.com/design/network/products/np-
family/ixp2400.htm.

[8] R. M. Karp. An introduction to randomized algorithms.
Discrete Applied Mathematics, 34(1-3):165–201, Nov. 1991.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions on
Computer Systems, 18(3):263–297, Aug. 2000.

[10] V. Lakamraju, I. Koren, and C. M. Krishna. Filtering random
networks to synthesize interconnection networks with
multiple objectives. IEEE Trans. Parallel Distributed
Systems, 13(11):1139–1149, Nov. 2002.

[11] B. A. Malloy, E. L. Lloyd, and M. L. Souffa. Scheduling
DAG’s for asynchronous multiprocessor execution. IEEE
Transactions on Parallel and Distributed Systems,
5(5):498–508, May 1994.

[12] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, New York, NY, 1995.

[13] S. Nilsson and G. Karlsson. IP-address lookup using
LC-tries. IEEE Journal on Selected Areas in
Communications, 17(6):1083–1092, June 1999.

[14] R. Ramaswamy, N. Weng, and T. Wolf. Analysis of network
processing workloads. Under submission.

[15] R. Ramaswamy and T. Wolf. PacketBench: A tool for
workload characterization of network processing. In Proc. of
IEEE 6th Annual Workshop on Workload Characterization
(WWC-6), pages 42–50, Austin, TX, Oct. 2003.

[16] G. L. Reijns and A. J. C. van Gemund. Analysis of a
shared-memory multiprocessor via a novel queuing model.
Journal of Systems Architecture, 45(14):1189–1193, 1999.

[17] A. L. Scherr. An analysis of time-shared computer systems.
Technical Report TR-18, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1965.

[18] N. Shah, W. Plishker, and K. Keutzer. NP-Click: A
programming model for the intel IXP1200. In Proc. of
Second Network Processor Workshop (NP-2) in conjunction
with Ninth International Symposium on High Performance
Computer Architecture (HPCA-9), pages 100–111, Anaheim,
CA, Feb. 2003.

[19] Teja Technologies. TejaNP Datasheet, 2003.
http://www.teja.com.

[20] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design
space exploration of network processor architectures. In
Proc. of First Network Processor Workshop (NP-1) in
conjunction with Eighth International Symposium on High
Performance Computer Architecture (HPCA-8), pages
30–41, Cambridge, MA, Feb. 2002.

[21] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for
hierarchical designs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 10(7):911–921,
July 1991.

[22] N. Weng and T. Wolf. Pipelining vs. multiprocessors -
choosing the right network processor system topology. In
Proc. of Advanced Networking and Communications
Hardware Workshop (ANCHOR 2004) in conjunction with
The 31st Annual International Symposium on Computer
Architecture (ISCA 2004), Munich, Germany, June 2004.

