
Enforcement of Data-Plane Policies in
Next-Generation Networks

Shashank Shanbhag and Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA
{sshanbha,wolf}@ecs.umass.edu

Abstract—Modern networks not only forward traffic, but also
perform a variety of processing operations on packets (e.g.,
content inspection, transcoding, QoS scheduling). Such data-
plane operations cannot be easily coordinated in the current
Internet architectures since there is no explicit policy support
for packet processing services. As more diverse systems and
protocols are deployed in the next-generation Internet, this prob-
lem becomes increasingly challenging. In our work, we propose
a novel policy enforcement system for data-path functions in
the next-generation Internet. Using a formalism to represent
policies and automated planning tools, connection request can
be adapted to meet the policy requirement of the domains they
traverse. We present the theoretical foundations of this approach
as well as a prototype implementation based on our network
service architecture. Our results show that this approach is an
effective solution to enforcing policies relating to the date plane
of networks.

Index Terms—next-generation Internet, network service,
packet processing, automated planning, data-plane policies.

I. INTRODUCTION

Policies (in the broadest sense) can be found throughout the
existing Internet: routing policies are used to determine how
to forward traffic and which routes to advertise to neighbor-
ing networks (e.g., using border gateway protocol), security
policies are used to determine what traffic is admissible in a
network (e.g., using firewalls or intrusion detection systems),
service-level agreements (SLAs) are used to define quantitative
metrics for network performance, etc. These policies can target
any layer in the protocol stack from as low as the link layer
(e.g., SLA on available bandwidth on link or maximum bit
error rate) to as high as the application layer (e.g., firewall
rule on permissible application layer protocols). They can
also focus on the control plane of the network (e.g., routing
policies) as well as on the data plane of the network (e.g., IDS
rules on permissible packet payloads).

The current Internet does not have any general support
for data plane policies. However, there are numerous sys-
tems in the Internet that enforce local data plane policies.
Examples include firewalls, intrusion detection systems, etc.
These “middle-boxes” can cause significant problems when
setting up connections. For example, a firewall may block
traffic that is directed toward a particular end-system. Since
this blocking happens silently without explicit notification, the
transmitting end-system cannot determine why a connection
request is unsuccessful. Similar problems appear with the
use of intrusion detection system to drop malicious traffic,

selective connection resets to throttle peer-to-peer traffic, etc.
This implicit handling of policies in the current Internet does
not provide any mechanism for communicating entities to
negotiate or adapt. Thus, connections may succeed if they
happen to meet all policy requirements, but fail in all other
cases. This all-or-nothing approach presents a considerable
problem in the Internet since it requires careful crafting of
policies to avoid potentially undesirable connection denials.

Next-generation Internet architectures proposes the use of
network virtualization to diversify systems and communication
protocols allowing multiple logical networks with different
protocol stacks to share a single network infrastructure [1].
Together with the broad deployment of novel communication
paradigms (e.g., content delivery, delay-tolerant networking,
sensor networks, etc.) and the availability of custom packet
processing functions in routers, the functionality of the data
plane is expected to be significantly more complex than in cur-
rent networks. Therefore, the number of policies determining
network operation is expected to increase as well leading to a
point where the current approach of manually adapting con-
nection requests to meet local policies of all traversed networks
simply no longer scales. Instead, an automated approach to
adapting connection requests to meet policies is necessary. The
design of such an automated system is the topic of our paper.
We focus on policies relating to data plane functionality of
the network (i.e., policies that affect how the network handles
packets as they are being forwarded). The policies we consider
affect how traffic is handled on routers (e.g., “are packets
forwarded or dropped?,” “is intrusion detection performed on
packet payloads?,” or “should a packet processing service be
carried out on traffic belonging to a certain connection?”).
Note that policies relating to the control plane (e.g., routing
policies) are a separate issue and not further addressed.

In this paper, we define a formal representation of data plane
functionality and policies. By translating this representation of
policies from different administrative domains into planning
rules, our system can determine how to set up a connection
request such that all policies are met (if a solution exists). The
system considers arbitrary networking functions, which we call
“services,” as part of the connection setup. Each autonomous
system in the network can specify the properties of acceptable
traffic and which services need to be performed on traffic as
their local policies. Using an automated planning tool, our
system can then determine which services are necessary to

complete a valid connection request. Based on a prototype
implementation, we can demonstrate how our system can
successfully enforce and adapt policies on such connection
requests.

The remainder of the paper is organized as follows. Section
II discusses related work. Section III introduces the formal
representation of policies that allows us to use automated tools
for planning and proposes an automated policy enforcement
system. Prototype implementation and evaluation results are
presented in Section IV. Section V summarizes this paper.

II. RELATED WORK

Policies in the context of next-generation network architec-
tures have focussed on routing (i.e., the control plane) rather
than packet forwarding functionality (i.e., the data plane) [2].
However, there are several network designs that consider per-
connection customization of network functionality [3]. For
such networks, it is essential to provide automated policy
enforcement mechanisms focusing on the data-plane function-
ality.

Much research has been done in the area of policy-based
network management [4]. Earlier work focuses on condition-
action rules to support a static configuration based solution,
which required human intervention for system and policy re-
configuration. Lymberopoulos et al. [5] propose an automated
policy deployment and adaptation framework that permits
dynamic configuration of policy parameters and objects in
response to changes within the managed environment. The
QoS network management framework developed by the IETF
Policy Working Group using the X.500 directory schema
encodes policies as If-Then conditions. Yoshihara et al. [6]
propose a policy parameter adaptation framework that uses
a management script expressed in the IETF Policy Working
Group’s representation targeting differentiated services. Badr
et al. [7] propose an autonomic policy (internal and external)
based control service that allows runtime system diagnosis,
repair and reconfigurations that helps correct the system in
events of conflicts or failures with minimum human inter-
vention. The control service uses an extension to the Beliefs,
Desires and Intension (EBDI) [8] model to generate new repair
strategies.

These policy-based network management frameworks em-
phasize adaptive policy deployment and parameter reconfig-
uration focusing on the control plane but do not take into
account services applied to the connection. In contrast, our
system does not modify existing polices but adapts to existing
ones by rearranging the sequence of services or adding new
ones, thus respecting local and global policies.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. Notation

Let P be the set of all possible policies in all autonomous
systems. A is the set of all data-plane processing functions
(services) in the network. We assume that all the services are
standardized and each domain has the ability to implement
each of those services. The concept of data-plane services as

network functions was addressed in our previous work [9].
Let ∆ be the set of all possible states for a connection with
|∆| = n. Any connection c can then be uniquely identified by
the tuple, ⟨Isrc, Idst,∆src,∆dst,∆curr⟩ where Isrc and Idst
are the source and destination specifiers respectively. In terms
of the current Internet, these will consist of the source and
destination IP addresses and port numbers. Similarly, ∆src

and ∆dst are the states of the connection c at the source
and destination respectively. ∆curr is the current state of the
connection at any point during its traversal in the network,
∆curr ∈ ∆. ∆curr keeps track of the state changes in the
connection as the data is processed by data-plane services
along the path.

The state of a connection can be changed by: Local Domain
Policies that are state specific or by Data-plane services
applied according to global connection requirements. Local
domain policies can be represented by the state transition
equation: δ′ = f(Pi, δ) where Pi is the ith policy that changes
the state of the connection c from δ to δ′ where δ, δ′ ∈ ∆.
Therefore, a policy is a function of the state of the connection
and is essentially a mapping from the state of the connection
to the action(s) that has to be taken on that connection in that
state. For data plane policies, the actions are the services that
have to be applied to the connection. Note that the policies
may not affect the state at all, i.e., δ = δ′. For simplicity, we
assume that there is a one-to-one mapping between policies
and the states they are applicable to and vice-versa. The cases
where multiple policies match a given state or a single policy
matching multiple states are not considered.

Similarly, a data-plane service when applied to a connection
changes its state according to the transition equation: ∆dst =
g(Å,∆src). Å ∈ A converts state from ∆src to ∆dst. An
end-system can request data-plane services to be applied to its
connection by a connection request defined by the tuple c =
⟨Isrc, Idst,∆src,∆dst,∆curr⟩. The network is responsible for
deriving the sequence of services that achieve this change.
In our previous work [9], we solve this “service composition
problem” by reducing it to a planning problem as follows: If
A = {A1, A2, ..Aa} is the available set of network services,
and c is the communication request given represented by the
tuple ⟨Isrc, Idst,∆src,∆dst,∆curr⟩, find an ordered sequence
of services, (Ax1 → Ax2 → ... → Axk

) such that Axi ∈
A for 1 ≤ i ≤ a and c |= (Ax1 → Ax2 → ... → Axk

).
The symbol → determines the sequence in which the services
have to be performed. This problem is solved by reducing it
to a “planning problem,” where the services are equivalent
to actions with each service having its own precondition and
an effect on the current state ∆curr. The entire composed
sequence of services that meet the connection requirements is
called a “plan” denoted by π.

From the two transition equations we see that both policies
and services can be specified in terms of states in which they
are applicable. This allows us to merge both data-plane policy
rules and service specifications into one singular database.

Fig. 1. In the absence of policies, the network seamlessly takes care of the request between end-systems A-C by adding the service A1 in the data path.
Similarly, the B-D request results in the A4 → A5 composition. However, AS2 has the policy of only letting through traffic with the state “orange” while
AS1 has no local policies. If the network ignores the AS2 policy and composes the sequence, packets belonging to the connection will be dropped at A2

even though the connection request was satisfied.

B. Service Recomposition Problem Formulation

The importance of considering data-plane policies while
composing a sequence of services is illustrated in the two
Scenarios (a) and (b) in Figure 1. Data-plane services have
global scope and are applied to the entire connection, i.e.,
it does not matter where the services are placed along the
connection as long as the order of the services is correct.
On the contrary, certain policies have local scope and have
to be enforced locally. In such cases, state agnostic policy
enforcement can lead to disastrous results for the connection
as illustrated in Scenario (a). Scenario (b) illustrates the case
where data-plane policies along the path have been taken into
account while planning the sequence. The result is the addition
of two complementary services at A2(blue to orange) and
A3(orange to blue and green), A1(all data to blue) because A2

only processes ‘blue’ traffic according to policy, and A5(pink
to green) has been replaced by A3 and placed at a different
node in the network to accommodate AS2 policy.

We are interested in the case where an initial service
sequence has been composed to satisfy a connection re-
quest but the context in which it needs to be executed
has changed from the expected context because of data-
plane policies on the path. If πk be a plan with k ser-
vices (A1, A2, ..., Ak), composed for the connection request
c = ⟨Isrc, Idst,∆src,∆dst,∆curr⟩. If a data-plane policy is
enforced at some step x(1 ≤ x ≤ k) in the plan πk resulting
in an incompatible state ∆x+1 at x as input to the service
Ax+1. This is defined as the “service recomposition problem”
and can be solved by either planning from scratch (which is
redundant because changing the sequence of services before
x is unnecessary) or by reducing it to a “plan repair problem”
as follows: Let the planning problem be described by the
following tuple, ⟨∆src,∆dst, π⟩. where π = (A1, A2, ..., Ak).
Following enforcement of a data-plane policy at a step x in
the plan π resulting in the deviation from the expected state

Fig. 2. Automated Data-plane Policy Enforcement System.

at step x + 1, the new planning problem is described by the
tuple, ⟨∆x+1,∆dst, π

′⟩. Then, the repaired plan is achieved by
combining π′ = (A′

1, A
′
2, ..., A

′
j) with π = (A1, A2, ..., Ax).

C. Automated Data-plane Policy Enforcement System

The policy enforcement system (Figure 2) has three major
components: the knowledge base, the parser/translator and
the planner. The knowledge base consists of the standardized
service library with service specifications, the policy rules
database that stores all policies along with their mapping to
various autonomous systems in case of local policies, non-
standard services specifications that may be implemented lo-
cally in an AS and finally, the topology information of all ASs.
The parser/translator parses the service specifications and the
policy rules database and converts them to a planning language
the planner can operate on and merges them into a singular
database (planning domain). It also parses connection requests

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9

af
te

r
po

lic
y

en
fo

rc
em

en
t

before policy enforcement

Fig. 3. The number of services before and after policy enforcement. Services
are either added or removed after policy enforcement as the planner repairs
the service composition.

from end-systems to create a planning problem definition for
the planner to solve. Given the problem, the planner then tries
to find a valid plan that meets the connection requirements.
In cases where enforcement of policies results in a change in
the expected final state, the planner repairs the plan in order
to incorporate the data-plane policy. The plan with the service
mappings is then relayed to the autonomous systems.

IV. PROTOTYPE IMPLEMENTATION AND RESULTS

Automated mechanisms rely heavily on the state of a
process. For the purpose of representing state, we use the
“semantic tree” representation proposed in our earlier work
[9]. The tree structure includes class hierarchies inherent in
data and communication characteristics and is a general and
comprehensive representation of network traffic state. Using
this representation, a wide range of policies and services can
be specified. To this end, we use the W3C Web Ontology
Language (OWL) to describe semantics and relay state to
the planner. The planner used is LPG [10]1. The simulation2

was run on a 64-bit Quad-Core Intel Xeon 5300 with 2GB
memory with 2x4MB shared cache. For 2000 simultaneous
connections, the system takes about seven seconds to repair the
plan averaging about 3.618ms per connection. This is primarily
due to a centralized implementation where the planner has to
deal with policies, services and topology information of the
entire network. A more decentralized approach may result in
a decrease in repair times.

Figure 3 compares the lengths of the service sequence
before and after policy enforcement. If the enforcement of
policies on the connection by the ASs results in a wrong

1LPG is a fully automated domain-independent planner based on local
search and planning graphs. It operates on domains and problems described
in PDDL (Planning Domain Definition Language) which is an action-centric
description language planning problems.

296 nodes were organized into 12 ASs with each AS containing eight nodes.
Traffic state was defined by six dimensions chosen from the semantic tree.
The service nodes are capable of performing a maximum of two services.
Each AS enforced a maximum of two policies every connection and each
policy was generated in a random manner. The policies mostly consisted of
forcibly adding a service to the composed sequence so as to alter the plan.

sequence, the sequence is repaired by the system by rear-
ranging the services in the sequence, adding new services or
removing existing ones to meet the connection requirements
while enforcing policy at the same time.

V. CONCLUSIONS

Our work explores the issue of enforcement of policies on
data-plane operations in the network. The increasing number
of packet processing functions along with the need to enforce
policies in the data-plane presents a unique set of problems that
may lead to the failure of the connection. Thus, it is important
to determine the process to adapt connection requests to meet
these policies. Our system uses a formal representation of
packet processing functions and policies relating to them in
order to automate the process of policy enforcement. Using
a planning tool, connection requests can be re-composed to
adjust the connection semantics to meet local policies. Our
prototype implementation shows that this approach can adjust
connection requests appropriately and thus can enforce data-
plane policies. We believe that this work presents an important
step towards a comprehensive architecture that allows explicit
representation, exchange, and enforcement of data plane poli-
cies in next-generation networks.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0626690.

REFERENCES

[1] J. S. Turner and D. E. Taylor, “Diversifying the Internet,” in Proc. of
IEEE Global Communications Conference (GLOBECOM), vol. 2, Saint
Louis, MO, Nov. 2005.

[2] D. Clark, K. Sollins, J. Wroclawski, D. Katabi, J. Kulik, X. Yang,
B. Braden, T. Faber, A. Falk, V. Pingali, M. Handley, and N. Chiappa,
“New Arch: future generation Internet architecture,” Defense Advanced
Research Project Agency, Tech. Rep., Dec. 2003.

[3] T. Wolf, “Service-centric end-to-end abstractions in next-generation
networks,” in Proc. of Fifteenth IEEE International Conference on
Computer Communications and Networks (ICCCN), Arlington, VA, Oct.
2006, pp. 79–86.

[4] J. Strassner, Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). Morgan
Kaufmann Publishers Inc., 2003.

[5] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive policy
based management framework for differentiated services networks,” in
POLICY ’02: Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks (POLICY’02), Washington, DC,
USA, 2002.

[6] K. Yoshihara, M. Isomura, and H. Horiuchi, “Distributed policy-based
management enabling policy adaptation on monitoring using active
network technology,” in 12th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, Nancy, France, 2001.

[7] N. Badr, A. Taleb-Bendiab, and D. Reilly, “Policy-based autonomic
control service.”

[8] N. Badr, “An investigation into autonomic middleware control service
to support distributed self-adaptive software.”

[9] S. Shanbhag, X. Huang, S. Proddatoori, and T. Wolf, “Automated service
composition in next-generation networks,” in Proc. of The International
Workshop on Next Generation Network Architecture (NGNA), Montreal,
Canada, 2009.

[10] A. Gerevini and I. Serina, “Lpg: A planner based on local search for
planning graphs with action costs,” in Proc. of the Sixth International
Conference on Artificial Intelligence Planning Systems (AIPS), Toulouse,
France, 2002.

