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One of the key characteristics of the next-generation Internet architecture is its
ability to adapt to novel protocols and communication paradigms. This adapt-
ability can be achieved through custom processing functionality inside the net-
work. In this chapter, we discuss the design of a network service architecture
that can provide custom in-network processing.

1.1 Background

Support for innovation is an essential aspect of the next-generation Internet
architecture. With the growing diversity of systems connected to the Inter-
net (e.g., cell phones, sensors, etc.) and the adoption of new communication
paradigms (e.g., content distribution, peer-to-peer, etc.), it is essential that not
only existing data communication protocols are supported but that emerging
protocols can be deployed, too.

1.1.1 Internet Architecture

The existing Internet architecture is based on the layered protocol stack, where
application and transport layer protocols processing occurs on end-systems and
physical, link, and network layer processing occurs inside the network. This
design has been very successful in limiting the complexity of operations that
need to be performed by network routers. In turn, modern routers can support
link speeds to tens of Gigabits per second and aggregate bandwidths of Terabits
per second.

However, the existing Internet architecture also poses limitations on deploying
functionality that does not adhere to the layered protocol stack model. In partic-
ular, functionality that crosses protocol layers cannot be accommodated without
violating the principles of the Internet architecture. But in practice, many such
extensions to existing protocols are necessary. Examples include network address
translation (where transport layer port numbers are modified by a network layer
device), intrusion detection (where packets are dropped in a network layer device
based on data in the packet payload), etc.
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To avoid this tension in the next-generation Internet, it is necessary to include
deployment of new functionality as an essential aspect of the network architec-
ture.

1.1.2 Next-Generation Internet

The main requirement for a next-generation Internet is to provide data communi-
cation among existing and emerging networked devices. In this context, existing
protocols as well as new communication paradigms need to be supported. Since it
is unknown what kind of devices and communication abstractions may be devel-
oped in the future, it is essential that a next-generation network architecture
provide some level of extensibility.

When considering extensibility, it is important to focus on the data plane of
networks (i.e., the data path in routers). The control plane implements control
operations that are necessary to manage network state, set up connections, and
handle errors. But the data plane is where traffic is handled in the network. To
deploy new protocol functionality into the network, it is necessary to modify the
way traffic is handled in the data plane.

Extensions in the data plane have been explored in related research and dif-
fer in generality and complexity. Some extensions simply allow selection from a
set of different functions. Others permit general-purpose programming of new
data path operations. What is common among all solutions is the need for cus-
tom processing features in the data path of the routers that implement these
extensions.

1.1.3 Data Path Programmability

The implementation of data communication protocols is achieved by performing
processing steps on network traffic as it traverses a network node. The specific
implementation of this processing on a particular system or device can vary
from ASIC-based hardware implementation to programmable logic and software
on general-purpose processors. In the existing Internet, ASIC-based implementa-
tions are common for high-performance routers. This approach is possible since
the protocol operations that need to be implemented do not change over time.
(RFC 1812, which defines the requirements for routers that implement IP ver-
sion 4, has been around since 1995.)

In next-generation networks, where new functionality needs to be deployed
after routers have already been deployed, it is necessary to include software-
programmable devices in the data path. By changing the software that performs
protocol processing, new protocol features can be deployed. Thus, programma-
bility is no longer limited to end-systems, but gets pushed into the data path of
networks.
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1.1.4 Technical Challenges

Programmability in the data path of routers does not only affect the way traffic
is processed, but also places new demands on the control infrastructure and
thus on the network architecture. The available programmability needs to be
managed and controlled during the operation of the network. There are a number
of technical challenges that arise in this context:

� Programmable router systems design: Programmable packet processing plat-
forms are necessary to implement custom packet processing. The design and
implementation of such systems require high-performance processing plat-
forms that support high-speed I/O and efficient protocol processors to sustain
high-bandwidth networking. Secure execution of code, system-level runtime
resource management, and suitable programming interfaces need to be devel-
oped.

� Control of custom functions: The functionality that is implemented on routers
needs to be controlled, as different connections may require different functions.
This control may require traffic classification, custom routing, and network-
level resource management.

� Deployment of new functions: Custom functions that are developed need to
be deployed onto router systems. Code development environments need to
be provided. The deployment process can range from manual installation to
per-flow code distribution. Trust and security issues need to be resolved as
multiple parties participate in code creation, distribution, and execution.

Some of these problems have been addressed in prior and related research.

1.1.5 In-Network Processing Solutions

Several solutions to providing in-network processing infrastructure and control
have been proposed and developed. Most notably, active networks provide per-
connection and even per-packet configurability by carrying custom processing
code in each packet [1]. Several active network platforms were developed [2, 3]
differing in the level of programmability, the execution environment for active
code, and hardware platform on which they were built. Per-packet programma-
bility as proposed in active networks is very difficult to control. In practical net-
works, such openness is difficult to align with service providers’ need for robust
and predictable network behavior and performance. Also, while active networks
provide the most complete programming abstraction (i.e., general-purpose pro-
grammability), the burden of developing suitable code for particular connection
is pushed to the application developer.

A less general, but more manageable way of exposing processing capabilities
in the network is with programmable routers. While these systems also pro-
vide general-purpose programmability, their control interface differs consider-
ably: system administrators (i.e., the network service provider) may install any
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set of packet processing functions, but users are limited to selecting from this
set (rather than providing their own functionality) [4, 5].

In the context of next-generation network architecture, programmability in
the data (and control) plane appears in network virtualization [6]. To allow
the co-existence of multiple networks with different data path functionality, link
and router resources can be virtualized and partitioned among multiple virtual
networks. Protocol processing for each virtual slice is implemented on a pro-
grammable packet processing system.

The technology used in router systems to provide programmability can range
from a single-core general-purpose processor to embedded multi-core network
processors [7] and programmable logic devices [8, 9]. Studies of processing work-
loads on programmable network devices have shown that difference to conven-
tional workstation processing are significant and warrant specialized processing
architectures [10, 11]. The main concern with any such router system is the need
for scalability to support complex processing at high data rates [12].

One of the key challenges for existing solutions is how to provide suitable
abstractions for packet processing as part of the network architecture. On end-
systems, per-flow configurability of protocol stacks has been proposed as a key
element of next-generation networks [13, 14]. For in-network processing, our work
proposes the use of network services as a key element in the network architecture.

1.2 Network Services

To provide a balance between generality and manageability, it is important to
design the right level of abstractions to access programmability and customiza-
tion. We discuss how network services provide an abstraction that supports pow-
erful extensibility to the network core while permitting tractable approaches to
connection configuration, routing, and runtime resource management.

1.2.1 Concepts

The concept of a “network service” is used to represent fundamental process-
ing operations on network traffic. A network service can represent any type of
processing that operates on a traffic stream. Note that the term “service” has
been used broadly in the networking domain and often refers to computational
features provided on end-system (e.g., on a server). In our context, network ser-
vice refers to data path operations that are performed on routers in the network.
Examples of network services include very fundamental protocol operations as
they can be found in TCP (e.g., reliability, flow control) and security protocols
(e.g., privacy, integrity, authentication) as well as advanced functionality (e.g.,
payload transcoding for video distribution on cell phones).

When a connection is established, the sender and receiver can determine a
“sequence of services” that is instantiated for this particular communication.
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The dynamic composition of sequences of services provides a custom network
configuration for connections.

We envision that network services are well-known and agreed-upon functions
that are standardized across the Internet (or at least across some of the Internet
service providers). New network services could be introduced via a process sim-
ilar to how protocols are standardized by the Internet Engineering Task Force
(IETF). Thus, it is expected that the number of network services that a con-
nection can choose from is in the order of tens, possibly hundreds. The network
service architecture does not assume that each application introduces its own ser-
vice (as it was envisioned in active networks), and therefore a very large number
of deployed network services is unlikely. Even with a limited number of net-
work services, the number of possible combinations (i.e., the number of possible
sequences of services) is very large. For example, just 10 distinct network services
and an average of 4 services per connection lead to thousands of possible service
sequences. While not all combinations are feasible or desirable, this estimation
still shows that a high level of customization can be achieved while limiting the
specific data path processing functions to a manageable number.

To further illustrate the concept of network services, consider the following
examples:

1. Legacy TCP: Conventional Transmission Control Protocol (TCP) function-
ality can be composed from a set of network services, including: reliability
(which implements segmentation, retransmission on packet loss, and reassem-
bly), flow control (which throttles sending rate based on available receive
buffer size), and congestion control (which throttles sending rate based on
observed packet losses). Network service abstractions support modifications
to legacy TCP in a straightforward manner. For example, when a connection
wants to use a rate-based congestion control algorithm, it simply instantiates
the rate-based congestion control network service (rather than the loss-based
congestion control service).

2. Forward Error Correction: A connection that traverses links with high bit-
error rates may instantiate a forward error correction (FEC) network service.
Similar to reliability and flow control, this functionality consists of a pair
of network services (the step that adds FEC and the step that checks and
removes FEC). This service could be requested explicitly by the end-systems
that initiate the connection or it could be added opportunistically by the
network infrastructure when encountering lossy links during routing.

3. Multicast and video transcoding: A more complex connection setup exam-
ple is video distribution (e.g., IPTV) to a set of heterogeneous clients. The
transmitting end-system can specify that a multicast network service be used
to reach a set of receiving end-systems. In addition, a video transcoding net-
work service can be used to change the video format and encoding. Such a
network service is useful when the receiving end-system (e.g., a cell phone)
cannot handle the data rate (e.g., due to low-bandwidth wireless links or due
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Figure 1.1 Network Service Architecture.

to limited processing capacity). In this scenario, network services are used to
perform processing from the network layer to the application layer.

Note that the end-systems that set up a connection using network services
do not specify where in the network a particular service is performed. It is up
to the network to determine the most suitable placement of the network service
processing. Leaving the decision on where and how to instantiate service to the
network allows the infrastructure to consider the load on the network, policies,
etc., when placing services. End-system applications are not (and should not have
to be) aware of the state of the infrastructure and thus could not make the best
placement and routing decisions. In some cases, constraints can be specified on
the placement of network services (e.g., security-related network services should
be instantiated within the trusted local network).

1.2.2 System Architecture

An outline of the network service architecture is shown in Figure 1.1. There are
three major aspects that we discuss in more detail: control plane, data plane,
and the interface used by end-systems.

The control plane of the network service architecture determines the funda-
mental structure and operation. Following the structure of the current Internet,
which consists of a set of federated networks (i.e., autonomous systems (AS)),
our architecture also groups the network into networks that can be managed
autonomously. When exchanging control information (e.g., connection setup,
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routing information) each AS can make its own local decisions while interacting
with other AS globally. In each AS, there is (at least) one node that manages
control plane interactions. This “service controller” performs routing and place-
ment computations, and instantiates services for connections that traverse the
AS.

In the data plane, “service nodes” implement network service processing on
traffic that traverses the network. During connection setup, service controllers
determine which nodes perform what service and how traffic is routed between
these nodes. Any configuration information that is necessary for performing a
network service (e.g., parameters, encryption keys) are provided by the service
controller.

The end-system API is used by applications that communicate via the network.
Using this interface, communication is set up (similar to how sockets are used
in current operating systems) and the desired sequence of services is specified.
When initiating a connection setup, the end-system communicates with its local
service controller. This service controller propagates the setup request through
the network and informs the end-system when all services (and the connections
between them) have been set up.

There are several assumptions that are made in this architecture. These are:

� The sequence of services specified by a connection is fixed for the duration of
the connection. If a different service sequence is necessary, a new connection
needs to be established.

� The underlying infrastructure provides basic addressing, forwarding, etc.
There is ongoing research on how to improve these aspects of the next-
generation Internet, which is beyond the scope of our work. Progress in this
domain can be incorporated in the network service architecture we describe
here.

� Routes in the network are fixed once a connection is set up. This can be
achieved by tunneling or by using a network infrastructure that inherently
allows control of per-flow routes (e.g., PoMo [15], OpenFlow [16]).

Given the fundamental concept of network services and the overarching system
architecture, there are a number of important technical problems:

� End-system interface and service specification: The interface used by applica-
tions on the end-systems using the network service architecture needs to be
sufficiently expressive to allow the specification of an arbitrary sequence of
services without introducing too much complexity.

� Routing and service placement: During connection setup, the network needs
to determine where network service processing should take place and on what
route traffic traverses the network. With constraints on service availability,
processing capacity, and link bandwidth, this routing and placement problem
is considerable more complex than conventional shortest-path routing.
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� Runtime resource management on service nodes: The workload of service
nodes is highly dynamic because it is not known a priori what network ser-
vice processing is used by a connection. Thus, processing resources allocated to
particular network services may need to be adjusted dynamically over time.
This resource management is particularly challenging on high-performance
packet processing platforms that use multi-core processors.

We address solutions to these problems in the following sections. It is important
to note that even though the solutions are specific to our network service archi-
tecture, similar problems can be solved in other systems that employ in-network
processing.

1.3 End-System Interface and Service Specification

When using the network for communication, an end-system application needs to
specify which network services should be instantiated. We describe how a “service
pipeline” can be used to describe these services and how it can be composed and
verified. The service pipeline has been described in our prior work [17]. Our
recent work has extended the pipeline concept and integrated it into a socket
interface [18]. Automated composition and pipeline verification is described in
[19].

1.3.1 Service Pipeline

A connection setup in a network with services is conceptually similar to the
process in the current Internet. The main difference is that the set of parameters
provided to the operating system not only includes the destination and socket
type, but also needs to specify the network services. Since we use a sequence of
services, we can provide this information in form of a service pipeline.

The service pipeline is conceptually similar to the pipeline concept in UNIX,
where the output of one command can be used as the input of another command
by concatenating operations with a ‘|’ symbol. For network services, we use the
same concatenation operation (with different syntax) to indicate that the output
of one service becomes the input of another. For each service, parameters can
be specified. When streams split (e.g., multicast), parentheses can be used to
serialize the resulting tree.

Elements of a service specification are:

� Source/sink: Source and sink are represented by a sequence of IP address and
port number separated by a ‘:’ (e.g., 192.168.1.1:80). The source may leave
the IP address and/or port unspecified (i.e., *:*).

� Network service: The service is specified by its name. If configuration param-
eters are necessary, they are provided as a sequence in parentheses after the
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name (e.g., compression(LZ) specifies a compression service that uses the
Lempel-Ziv algorithm).

� Concatenation: The concatenation of source, network service(s), and sink is
indicated by a ‘>>’ symbol.

The service specifications for the three examples given in Section 1.2.1 are:

1. Legacy TCP: *:*>>reliability tx(local)>>flowcontrol tx(local)>>

congestioncontrol tx(local)>>congestioncontrol rx(remote)>>

flowcontrol rx(remote)>>reliability rx(remote)>>192.168.1.1:80

The three key features of TCP (reliability, flow control, and congestion con-
trol), which are provided as separate services, need to be instantiated indi-
vidually. Each consists of a receive and a transmit portion. The local and
remote parameters indicate constraints on the placement of these services.

2. Forward Error Correction: *:*>>[FEC tx>>FEC rc]>>192.168.1.1:80

Forward error correction is similar to the services in TCP. The brackets indi-
cate that it is an optional service.

3. Multicast and video transcoding: *:*>>multicast(192.168.1.1:5000,
video transcode(1080p,H.264)>>192.168.2.17:5000)

The multicast service specifies multiple receivers. Along the path to each
receiver different services can be instantiated (e.g., video transcoding).

Service pipelines provide a general and extensible method for specifying net-
work services.

1.3.2 Service Composition

Clearly, it is possible to specify service combinations that are semantically incor-
rect and cannot be implemented correctly by the network. This problem leads
to two questions: (1) how can the system verify that a service specification is
semantically correct and (2) how can the system automatically compose correct
specifications (given some connection requirements)? The issue of composition
of services has been studied in related work for end-system protocol stacks [20]
as well as in our prior work on in-network service composition [19].

To verify if a service specification is valid, the semantic description of a service
needs to be extended. For a service to operate correctly, the input traffic needs to
meet certain characteristics (e.g., contain necessary headers, contain payload that
is encoded in a certain way). These characteristics can be expressed as precondi-
tions for that service. The processing that is performed by a service may change
the semantics of the input. Some characteristics may change (e.g., set of headers,
type of payload), but others may remain unchanged (e.g., delay-sensitive nature
of traffic). The combination of input characteristics and modifications performed
by the service determines output characteristics. By propagating these charac-
teristics through the service sequence and by verifying that all preconditions are
met for all services, the correctness of a service sequence can be verified. The
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semantics of a service can be expressed using a variety of languages (e.g., web
ontology language (OWL)). The verification operation can be performed by the
service controller before setting up a connection.

A more difficult scenario is the automated composition of a service sequence.
An application may specify the input characteristics and desired output charac-
teristics of traffic. Based on the formal description of service semantics, a service
controller can use AI planning to find a sequence of services that “connects”
the input requirements to the output requirements [19]. This feature is particu-
lar important when multiple parties contribute to the service sequence (e.g., an
ISP may add monitoring or intrusion detection services to a service sequence).
In such a case, the originating end-system cannot predict all possible services
and create a complete service sequence. Instead, additional services are included
during connection setup.

Once a correct and complete service sequence is available, the services need to
be instantiated within the network.

1.4 Routing and Service Placement

There are a number of different approaches to determining a suitable routing and
placement for a given sequence of services. In our prior work, we have explored
how to solve this problem given complete information on a centralized node
[21] as well as in a distributed setting [22]. We have also compared the relative
performance of these approaches [23]. We review some of these results in this
section.

1.4.1 Problem Statement

The service placement problem is stated as follows (from [23]): The net-
work is represented by a weighted graph, G = (V,E), where nodes V cor-
respond to routers and end systems and edges E correspond to links.
A node vi is labeled with the set of services that it can perform, ui =
{Sk|service Sk is available on vi}, the processing cost ci,k (e.g., processing delay)
of each service, and the node’s total available processing capacity pi. An edge
ei,j that connects node vi and vj is labeled with a weight di,j that repre-
sents the link delay (e.g., communication cost) and a capacity li,j that rep-
resents the available link bandwidth. A connection request is represented as
R = (vs, vt, b, (Sk1 , . . . , Skm

)), where vs is the source node, vt is the destination
node, b is the requested connection bandwidth (assumed to be constant bit rate),
and (Sk1 , . . . , Skm

) is an ordered list of services that are required for this connec-
tion. For simplicity, we assume that the processing requirements for a connection
are directly proportional to the requested bandwidth b. For service Sk, a com-
plexity metric zi,k defines the amount of computation that is required on node
vi for processing each byte transmitted.
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Given a network G and a request R, we need to find a path for the connec-
tion such that the source and the destination are connected and all required
services can be processed along the path. The path is defined as P = (EP ,MP )
with a sequence of edges, EP , and services mapped to processing nodes, MP :
P = ((ei1,i2 , . . . , ein−1,in

), (Sk1 → vj1 , . . . , Skm
→ vjm

)), where vi1 = vs, vin
= vt,

{vj1 , . . . , vjm
} ⊂ {vi1 , . . . , vin

} and nodes {vj1 , . . . , vjm
} are traversed in sequence

along the path. The path P is valid if (1) all edges have sufficient link capac-
ity (i.e., ∀ex,y ∈ EP , lx,y ≥ (b · t), assuming link ex,y appears t times in EP ),
and (2) all service nodes have sufficient processing capacity (i.e., ∀Skx

→ vjx
∈

MP , pjx
≥∑y|Sky→vjx∈MP b · zjx,ky

).
To determine the quality of a path, we define the total cost C(P ) of accommo-

dating connection request R as the sum of communication cost and processing
cost: C(P ) =

(∑n−1
x=1 dix,ix+1

)
+
(∑

{(jx,kx)|Skx→vjx∈MP } cjx,kx

)
. In many cases,

it is desirable to find the optimal connection setup. This optimality can be viewed
(1) as finding the optimal (i.e., least-cost) allocation of a single connection request
or (2) as finding the optimal allocation of multiple connection requests. In the
latter case, the optimization metric can be the overall least cost for all connec-
tions or the best system utilization, etc. We focus on the former case of a single
connection request.

It was shown in [21] that finding a solution to a connection request in a
capacity-constrained network can be reduced to the traveling salesman prob-
lem, which is known to be NP-complete. Therefore, we limit our discussion to
the routing and placement problem without constraints. Using heuristics, the
solutions can be extended to consider capacity constraints.

1.4.2 Centralized Routing and Placement

The centralized routing and placement solution was first described in [21]. The
idea is to represent both communication and processing in a single graph and
to use conventional shortest-path routing to determine an optimal placement.
This solution requires that a single cost metric is used for both communication
and processing cost. To account for processing, the network graph is replicated
for each of the m processing steps in the connection request (as illustrated in
Figure 1.2(a)). Thus, a total of m + 1 network graphs (“layers”) exist. The top
graph, layer 0, represents communication that is performed before the first net-
work service is performed. The bottom graph, layer m, represents communica-
tion after all processing steps have been completed. To traverse from one layer to
another, vertical edges between layers are added. These edges can only connect
the same nodes in neighboring layers. The existence of a (directed) vertical edge
indicates that the necessary service processing step to reach the next layer is
available on that node. The cost of traversing that edge is the cost of processing
on that node.
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(b) Distributed Routing on Service
Controllers.

Figure 1.2 Routing and Placement in Network Service Architecture.

Routing is achieved by finding the least cost path in the layered graph between
the source node on layer 0 and the destination node on layer m. This path is
projected back into a single layer with vertical edges indicating placement for
network service processing.

The algorithm is guaranteed to find the optimal path for a network with-
out capacity constraints. The computational cost is that of running Dijk-
stra’s shortest path algorithm on the layered graph. Since the layered graph
is m + 1 times the size of the original network graph, the complexity is
O(|m||E| + |m||V | + |m||V | log(|m||V |)).

1.4.3 Distributed Routing and Placement

One of the drawbacks of the centralized layered graph solution is the need for
complete knowledge of all network links. In an Internet-scale deployment it is
unrealistic to assume that such information is available. Thus, we also present
a distributed approach, where information can be aggregated and nodes have a
limited “view” of the network. This algorithm has been described in [22].

The distributed routing and placement algorithm uses a dynamic programming
approach similar to distance vector routing [24]. Let ck1,...,km

v (t) denote the cost of
the shortest path from node v to node t where the requested services Sk1 , . . . , Skm

are performed along the way. For shortest path computation (i.e., no services),
we use the notation c−v (t). Thus, a node v can determine the least-cost path by
considering to process i (0 ≤ i ≤ m) services and forwarding the request to any
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neighboring node nv (nv ∈ {x ∈ V |ev,x ∈ E}):

ck1,...,km
v (t) = min

0≤i≤m

(
i∑

l=1

ckl
v (v) + min

nv

(
c−v (nv) + cki+1,...,km

nv
(t)
))

.

The argument i on the right side determines how many of the m services that
need to be performed should be processed on node v. Note that if i = 0, no
service is processed, i.e.,

∑i
l=1 ckl

v (v) = 0. If i = m, all the services are processed
on node v, i.e., c

ki+1,...,km
nv (t) = c−nv

(t). The argument nv determines to which
neighbor of v the remaining request should be sent.

To acquire the necessary cost information, nodes exchange a “service matrix”
with their neighbors (as illustrated in Figure 1.2(b)). This matrix contains costs
for all destinations and all possible service combinations. Since the number of
service combinations can be very large, a heuristic solution has been developed
that only uses cost information for each individual service. This approach is
discussed in detail in [22].

1.5 Runtime Resource Management

The network service architecture presents a highly dynamic environment for
the processing system on which services are implemented. Each connection may
request a different service sequence, which can lead to variable demand for
any particular service. This type of workload is very different from conven-
tional IP forwarding, where each packet requires practically the same processing
steps. While operating systems can provide a layer of abstraction between hard-
ware resources and dynamic processing workloads, they are too heavy-weight
for embedded packet processors that need to handle traffic at Gigabit per sec-
ond data rates. Instead, a runtime system that is specialized for dealing with
network service tasks can be developed. Of particular concern is to handle pro-
cessing workloads on multi-core packet processing systems. We discuss the task
allocation system developed in our prior work [25].

1.5.1 Workload and System Model

The workload of a router system that implements packet forwarding for the
current Internet or service processing for next-generation networks can be repre-
sented by a task graph. This task graph is a directed acyclic graph of processing
steps with directed edges indicating processing dependencies. Packet processing
occurs along one path through this graph for any given packet. Different pack-
ets may traverse different paths. An example of such a graph representation of
packet processing is the Click modular router abstraction [26].

As discussed above, changes in traffic may cause more or less utilization along
any particular path in the graph and thus more or less utilization for any partic-
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ular processing step. To determine the processing requirements at runtime, it is
necessary to do runtime profiling and track (at least) the following information:

� Processing requirements for each task.
� Frequency of task usage.

In our runtime system prototype, we represent the processing requirement as
a random variable Si, which reflects the processing time distribution of task
ti. For any given packet, the task service time is si. The frequency of usage is
represented by the task utilization u(ti), which denotes the fraction of traffic
traversing task ti.

Based on this profiling information, the runtime system determines how to
allocate resources to tasks.

1.5.2 Resource Management Problem

The formal problem statement for runtime management of multi-core service
processors is as follows (from [25]): Assume we are given the task graph of all
subtasks in all applications by T task nodes t1, . . . , tT and directed edges ei,j

that represent processing dependencies between tasks ti and tj . For each task,
ti, its utilization u(ti) and its service time Si are given. Also assume that we rep-
resent a packet processing system by N processors with M processing resources
on each (i.e., each processor can accommodate M tasks and the entire system
can accommodate N · M tasks). The goal is to determine a mapping m that
assigns each of the T tasks to one of N processors: m : {t1, . . . , tT } → [1, N ].
This mapping needs to consider the constraint of resource limitations: ∀j, 1 ≤
j ≤ N : |{ti|m(ti) = j}| ≤ M .

The quality of the resource allocation (i.e., mapping) can be measured by
different metrics (e.g., system utilization, power consumption, packet processing
delay, etc.). Our focus is to obtain a balanced load across processing components,
which provides the basis for achieving high system throughput.

1.5.3 Task Duplication

One of the challenges in runtime management is the significant differences in
processing requirements between different tasks. Some tasks are highly utilized
and complex and thus require much more processing resources than tasks that
are simple and rarely used. Also, high-end packet processing systems may have
more processor cores and threads than there are tasks.

To address this problem, we have developed a technique called “task dupli-
cation” that exploits the packet-level parallelism inherent to the networking
domain. Task duplication provides a straightforward way to distributing pro-
cessing tasks onto multiple processing resources. For the discussion, we assume
processing is stateless between packets. If stateful processing is performed, the



Customizable In-Network Services 15

runtime system can ensure that packets of the same flow are sent to the same
instance of the processing task.

Task duplication creates additional instances of tasks with high work require-
ments. The amount of work, wi a task performs is the product of the process-
ing requirements for a single packet and the frequency with which the task is
invoked: wi = u(ti) · E[Si]. This amount of work can be reduced if the number of
task instances is increased. If a task is duplicated such that there are di instances
and traffic is spread evenly among these instances, then the amount of utiliza-
tion for each instance decreases to u(ti)/di. Thus, the effective amount of work
per instance is w′

i = u(ti)
di

· E[Si]. Therefore, a more balanced workload can be
obtained by greedily duplicating the task with the highest amount of work until
all M · N resources are filled with tasks. This also allows the use of all resources
if there are fewer tasks than resources.

Note that the work equation also shows that the differences in the amount
of work per task are not only due to the inherent nature of the task (i.e., the
expected service time E[Si]), but also due to the dynamic nature of the network
(i.e., the current utilization of the task u(ti)). Thus, the imbalance between tasks
cannot be removed by achieving a better (i.e., more balanced) offline partitioning,
and there is always need to adapt to current conditions at runtime.

1.5.4 Task Mapping

Once the tasks and their duplicates are available, the mapping of tasks to proces-
sors needs to be determined. There are numerous different approaches to placing
tasks. When using tasks with vast differences in the amount of work that they
need to perform, then a mapping algorithm needs to take care in co-locating
complex tasks with simple tasks. If too many complex tasks are placed on a
single processor, then that system resource becomes a bottleneck and the overall
system performance suffers. Solving this type of packing problem is NP-complete
[27].

The benefit of having performed task duplication is that most tasks require
nearly equal amounts of work. Thus, the mapping algorithm can place any combi-
nation of these tasks onto a processor without the need for considering difference
in processing work. Instead, secondary metrics (e.g., locality of communication)
can be considered to make mapping decisions. We have shown that a depth-first
search to maximize communication locality is an effective mapping algorithm.
Our prototype runtime system that uses duplication and this mapping strategy
shows an improvement in throughput performance over a system with conven-
tional symmetric multiprocessing (SMP) scheduling provided by an operating
system [25]. More recent work considers not only processing resource alloca-
tion, but also memory management [28]. In particular, the partitioning of data
structures among multiple physical memories with different space and perfor-
mance characteristics is an important issue. Static partitioning used in tradi-
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tional packet processing systems is not sufficient for the same reasons that static
processing allocations cannot adapt to changing networking conditions.

Overall, runtime management of processing resources is an important aspect
of packet processing platforms in next-generation networks – especially as the
complexity and diversity of such services continues to increase.

1.6 Summary

The functionality provided by the networking infrastructure in the next-
generation Internet architecture encompasses not only forwarding, but also more
advanced protocol and payload processing. A key challenge is find suitable
abstractions that allow end-systems to utilize such functionality, while maintain-
ing manageability and controllability from the perspective of service providers.
We presented an overview of a network service architecture that uses network
services as fundamental processing steps. The sequence of services that is instan-
tiated for each connection can be customized to meet the end-system applica-
tion’s needs. We discussed how service specifications can be used to express these
custom processing needs and how they can be translated into a constrained map-
ping problem. Routing in networks that support services is a problem that needs
to consider communication and processing costs. We presented two solutions,
one centralized and one distributed, to address the routing problem. We also
presented how runtime management on packet processing systems can ensure an
effective utilization of system resources.

The use of network service abstractions to describe in-network processing ser-
vice can be used beyond the work presented here. For example, when developing
virtualized network infrastructure, network service specifications can be used to
describe data path requirements for virtual slices.

In summary, in-network processing services are an integral part of the next-
generation Internet infrastructure. The work we presented here can provide one
way of making such functionality possible.
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