
IEEE Network • November/December 20118 0890-8044/11/$25.00 © 2011 IEEE

he Internet has been very successful in providing data
communication connectivity between end-systems. As
the Internet has matured, additional functional
demands have required that routers implement packet

processing operation beyond simple packet forwarding. Exam-
ples of this type of data-path functionality are firewalling, net-
work address translation, intrusion detection, content caching,
etc. Recent research efforts to redesign the network architec-
ture of the future Internet aim to further extend this data-
path functionality to include protocol processing operations
that are dynamically deployable [1].

The availability of different features in the data path of net-
works leads to numerous choices about which functionality to
instantiate when establishing a connection. While these choic-
es provide a powerful tool for implementing novel communi-
cation paradigms and protocols, they also present a major
challenge: How can the functions for a connection be com-
posed in such a way that requirements are met and the net-
work operates efficiently? In this context, it is necessary to
consider the requirements of the application that uses the
connection, the functionality that can be provided by data-
path functions in the network, and the administrative policies
that are put in place by network operators (or other entities).
Requirements may include functionality (e.g., certain type of
protocol operation) and performance (e.g., certain amount of
available bandwidth). Since performance requirements have
been studied extensively in the context of Quality of Service
(QoS) research, we focus our work on managing data-path
functionality. An example of a composition problem in this
context is: “Send video from source A to receiver B in format
X and to receiver C in format Y while considering that net-

work N blocks certain formats and requires that all traffic be
inspected.”

The sheer scale of the Internet makes it clear that the man-
agement of functionality for this kind of network cannot be
handled “manually,” and instead, there is a need for automat-
ed management. Our work presents a step in this direction.

We present a novel system for automated composition and
policy enforcement of data-path functionality in next-genera-
tion networks. The key aspects of this system (and how they
differ from current approaches) are:
• Per-connection composition and policy enforcement: Our

system handles each connection independently and thus
permits fine-grain composition and policy enforcement
(instead of applying general composition patterns and poli-
cies to all traffic).

• Automated adaptation: The system is entirely automated
and thus can enforce policies by adapting connection
requests without the involvement of administrators (instead
of requiring manual configuration of firewalls or other net-
work systems).

• Runtime operation: The automated composition and
enforcement component permits the system to determine
constraints at runtime (rather than pre-computing all possi-
ble rules and statically enforcing them). Thus, the system
can quickly adapt to changes in available data-path func-
tionality and policies during network operation.
The key aspect of our system is the use of a formal repre-

sentation of the semantics of a data connection and the func-
tions that can operate on it, which we call “services.” Using
this formalism, policies from independent administrative
domains can be expressed. By translating these semantics and
policies into planning rules, our system can determine how to
set up a connection request such that all requirements are met
(if a solution exists). Each autonomous system in the network
can specify the properties of acceptable traffic and the services

TT

Shashank Shanbhag and Tilman Wolf, University of Massachusetts

Abstract
Modern networks not only forward traffic, but also perform a variety of processing
operations on packets (e.g., content inspection, transcoding, QoS scheduling).
Such data-path functionality needs to be composed suitably to ensure correct oper-
ations and adherence to policies put in place by different entities in the Internet.
Currently, there exists no explicit support for describing the semantics of packet
processing services, for composing these services, and for ensuring that policies
are considered. In our work, we propose a novel system for representing data-path
functionality and policies in such a way that per-connection configurations can be
composed automatically. We present the theoretical foundations of this approach
as well as a prototype implementation based on our network service architecture.
Our results show that this approach is an effective solution toward scalable and
autonomic handling of data-path functionality in the future Internet. Index Terms
next-generation Internet, network service, packet processing semantics, automated
planning, data-path policies.

Automated Composition of Data-Path
Functionality in the Future Internet

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-0626690.

SHANBHAG LAYOUT 11/14/11 11:39 AM Page 8

IEEE Network • November/December 2011 9

that need to be performed on traffic as their local policies.
Using a planning tool, our system can then determine the ser-
vices necessary to complete a valid connection request. Based
on a prototype implementation, we can demonstrate how our
system can compose data-path functionality and successfully
enforce and adapt to policies on such connection requests.

Automated Composition of Data-Path
Functionality
In this section, we will briefly discuss the background on data-
path services and network policies before presenting the for-
malism that enables us to automate composition and policy
enforcement.

Services in Network Data Path
A network service is any type of processing function that is
performed in the data path of the network such as packet for-
warding, network address translation, multicast, QoS routing,
privacy, etc. These services are applied to a subset of (or all)
packets in the network. We focus on decomposing the pro-
cessing functionality offered by all layers of the architecture
into basic components. We expect that this set of services is
standardized (e.g., through IETF) and the number of services
is in the order of tens. The end-system applications can then
customize their connections using a customized sequence of
services that provides the necessary flexibility.

Policies
Policies (in the broadest sense) can be found throughout the
existing Internet: routing policies, which are used to deter-
mine how to forward traffic and the routes to advertise to
neighboring networks (e.g., using border gateway protocol
(BGP)); security policies (e.g., using firewalls or intrusion
detection systems (IDS)); service-level agreements (SLAs),
which are used to define quantitative metrics for network per-
formance, etc. These policies can target any layer in the pro-
tocol stack (e.g., SLA on available bandwidth on link or
maximum bit error rate).

We focus on policies relating to the data path functionality
of the network, i.e., policies that affect how the network han-
dles packets as they are being forwarded. For example, “are
packets forwarded or dropped?” or “should a packet process-
ing service be carried out on traffic belonging to a certain
connection?” Note that policies relating to the control plane
(e.g., routing policies) are a separate issue and not addressed.
Numerous systems in the Internet enforce local data path
policies (e.g., firewalls, IDS, etc.). This can cause significant
problems when setting up connections. A firewall may block
traffic that is directed toward a particular end-system. This
implicit handling of policies in the current Internet does not
provide any mechanism for communicating entities to negoti-
ate or adapt. Thus, connections may succeed if they happen to
meet all policy requirements, but fail in all other cases.
Instead, an automated approach to adapting connection
requests to meet policies is necessary. The design of such an
automated system is the topic of our article.

Representation of Data-Path Services and
Policies
Next-generation networks are expected to deploy a large num-
ber of custom processing functionality in the data path. This
also results in an increase in the number of policies control-
ling network operation. Manual configuration of per connec-

tion policies no longer scales. Therefore, there is a need to
automate this process. To achieve this, a formal representa-
tion of policies and services is necessary.

Flows and States
The automation of service composition and data-path policy
enforcement depends on the notion of network traffic state.
Data-path policies are applied to network traffic, and services
process traffic depending on the whether the traffic belonging
to a connection satisfies the state and flow requirements of
the policy and/or service.

In the current Internet, flows help distinguish between pack-
ets belonging to different connections. A flow is a host-to-host
communication path identified uniquely by the five-tuple: source
and destination addresses, port numbers and the transport pro-
tocol. This allows us to distinguish between packets from differ-
ent flows and apply different policies depending on the priority
of flow (e.g., dedicated bandwidth, low latency and controlled
jitter for real-time traffic, best effort service for nonreal-time
traffic, etc.). Although the five-tuple can be used to provide con-
trol plane policing mechanisms, it is inadequate for data-path
policing, especially in next-generation Internet architectures
where the emphasis is on services in the data path. A common
example is the failure when a compression policy is enforced on
encrypted traffic based only on the five-tuple. Therefore, next-
generation services will depend heavily on the semantics of the
data being transferred in addition to the five-tuple. Since data-
path policies are centered on services themselves, policy defini-
tions must also include semantics of the data.

Application of data-path services to data traffic also changes
the semantics (state) of the data, rendering the network traffic
incompatible with the services that may be applied later in the
path. Therefore, keeping track of changes in semantics enables
the rearrangement of services so that the connection is suc-
cessful. The network traffic can be modeled as progressing
through a series of states as various services process the data
along the path. Therefore, the state of the connection at any
point along the path is defined by the semantics and the five-
tuple of the traffic flowing in the connection.

Notation
We use the notation in Table 1 to formalize representation of
data-path policies and formulate the problem statement. The
traffic in the connection traversing a network can have its state
changed by either data-path services or local domain policies.

Data-Path Services — End-systems can request processing in
the data path in two ways:
• As a sequence of services to be applied to the connection.
• In terms of the states of the connection at the source and

destination, through a connection request, c. The network
is responsible for deriving a sequence of services that
achieves this. Services are fully described using “precondi-
tions” (logical conditions that need to be satisfied in order
for the service to be executed) and “postconditions” (the
transformations in the state caused by the application of the
service). Consider a simple connection request that takes a
single service °A ∈ A to convert state Δsrc to Δdst. Then, the
relation between the service °A and the states can be repre-
sented by the following state transition equation:

Δdst = g(°A, Δsrc) (1)

Local Domain Policies — Let Pi,j, be the ith local policy in the
domain Dj that changes the state of the connection c from δ
to δ′ where δ, δ′ ∈ Δ. This can be represented by the state
transition equation:

SHANBHAG LAYOUT 11/14/11 11:39 AM Page 9

IEEE Network • November/December 201110

δ′ = f(Pi,j, δ) (2)

Therefore, a policy is a function of the state of the connec-
tion and a mapping from the state of the connection to the
action(s) that has to be taken on that connection. For data
path policies, the actions are the services that have to be
applied to the connection. Note that the policies may not
affect the state at all, i.e., δ = δ′. For simplicity, we assume
that there is a one-to-one mapping between policies and the
states they are applicable to and vice-versa.

From the state transition Eqs. 1 and 2, we see that both
polices and services can be specified in terms of states in
which they are applicable, allowing us to aggregate both data-
path policies and services.

Data-Path Services: Automated Service Composition
Problem
We state the service composition problem as follows: If A =
{A1, A2, … Aa} is the available set of network services, and c
is the communication request given represented by the tuple
c = 〈Isrc, Idst, Δsrc, Δdst, Δcurr〉, find an ordered sequence of ser-
vices, (Ax1 → Ax2 → … → Axk) such that Axi ∈ A for 1 ≤ i ≤ a.
The symbol → determines the sequence in which the services
have to be performed, i.e., x → y implies the service x should
be performed before service y. This problem is solved by
reducing it to a “planning problem,” where the services are
equivalent to actions, with each service having its own precon-
dition and an effect on the current state Δcurr. The entire com-
posed sequence of services that meet the connection
requirements is called a “plan.”

Applying Data-Path Policies: Service Recomposition
Problem
Using state information helps us merge policy rules and ser-
vice specifications into one database. This makes service
placement non-trivial because services have global scope
(applied to the entire connection) while certain policies have
local scope (enforced within a domain). Furthermore, state
agnostic enforcement can lead to disastrous results for the
connection itself. Therefore, the composed sequence of ser-

vice itself needs to be repaired to take into account the local
domain policies. This problem is illustrated in Fig. 1. The con-
nection fails because the local policy forces a service whose
precondition does not match the current state of the connec-
tion. The example illustrates the importance of taking into
account the state of the connection while implementing data-
path policies. This is called the “service recomposition prob-
lem” and is defined as follows:

Given πk and Δsrc, the entire sequence of states (Δ1, Δ2, D3,
…, Δk+1) can be derived using Eq. 1. Here, Δ1 = Δsrc and Δk+1
= Δdst. Let a data-path policy be enforced at some step x(1 ≤ x
≤ k) in the plan πk , resulting in an incompatible state Δx+1 at x
as input to the service Ax+1 , thus rendering the sequence
meaningless. This modified plan is repaired by either rearrang-
ing the services in πk or adding services to πk. This is called the
“plan repair problem” and is solved as follows: Let the plan-

ning problem be described by the following tuple,
〈Δsrc, Δdst, π〉 where Δsrc, Δdst are the initial state and
target state, respectively, and π is the service sequence
(plan) that achieves the target state from the initial
state in k steps (A1, A2, …, Ak). Then, following a
change in the plan π at any ß step x resulting in devia-
tion from the expected state at step x+1, the new
planning problem is described by the tuple, 〈Δx+1, Δdst,
π′〉. Then, the repaired plan is achieved by combining
π′ = (A′1, A′2, …, A′j) with π = (A1, A2, …, Ax).

Prototype Using Network Service
Architecture
Semantic Tree
One issue that occurs in the design of the automated
policy enforcement system is: Which characteristics
are important enough to be examined when describ-
ing the state a policy or a service is mapped to? After
an extensive study of the services, applications, and
communication paradigms in the current Internet, we
designed a semantic tree structure (Fig. 2) to repre-
sent state in terms of data and communication char-
acteristics. The tree structure includes class

Figure 1. State agnostic policy enforcement leads to a failure of the con-
nection. A plan repair is initiated by adding services or rearranging the
plan around the enforced policy such that the connection is successful.

State
Service with

precondition and
postcondition

Plan after repair

Original
plan

Failure
due to
policy

Table 1. Notation.

D Set of all autonomous systems (domains), |D| = d

P Set of all policies in all domains

A Set of all services in the network, |A| = a

Δ Set of all possible states of a connection, |Δ| = n

Isrc Source address (e.g., source IP/port number)

Idst Destination address (e.g., destination IP/port number)

Δsrc Connection state at the source

Δdst Connection state at the destination

Δcurr State of the connection at any point in the network

c
The connection c uniquely identified by the tuple, 〈Isrc,
Idst, Δsrc, Δdst, Δcurr〉.

πk
A sequence of k services, denoted by (A1, A2, …, Ak)
for the connection request denoted by c.

SHANBHAG LAYOUT 11/14/11 11:39 AM Page 10

IEEE Network • November/December 2011 11

hierarchies inherent in data and communication characteris-
tics and forms a comprehensive method of representing state.
Using this representation, a wide range of policies can be
defined and implemented. Therefore, the semantic tree struc-
ture is a general and comprehensive representation of state
with respect to network traffic.

Automated Service Composition and Data-Path
Policy Enforcement System
The automated system (Fig. 3a) has three major parts: the
knowledge base, the parser/translator, and the planner. The
knowledge base consists of the standardized service library
with service specifications (preconditions and postconditions),

the policy rules database that stores all policies along with
their mapping to various autonomous systems in case of local
policies. The knowledge base also contains specifications for
non-standard services that may be implemented locally in an
autonomous system and finally, the topology information of
all the autonomous systems. The parser/translator parses the
service specifications and the policy database into planning
rules. The parser/translator also parses connection requests
from end-systems to create a planning problem definition.
The planner then tries to find a valid plan that meets the con-
nection requirements and incorporates data-path policies.

The whole system proceeds in steps as follows (Fig. 3):
• All autonomous systems add their data-path policies, infor-

mation about the local services and the AS topology to the

Figure 2. Semantics for representing characteristics.

Uncompressed

Text

Video

Audio

Connection_oriented
integrity

Connectionless_
integrity

Image

Broadcast

Anycast

Unicast

Multicast

Authentication

Encryption

Confidential

NonStreaming

Streaming

Stateful

Stateless

Loss-rate

Delay

Jitter

Error-rate

Priority

local

Global

Packets

Flows

Compressed Type of
compression

Compression

Type

Delivery

Privacy

Transfer type

State

QoS

Addressing

Unit

Data

Communication

Characgteristics

Live

OnDemand

Interactive

max_lossrate

min_lossrate

max_delay

min_delay

max_jitter

min_jitter

level

ProcessID

min_error-rate

max_error-rate

http

https

file

rtsp

ftp

urn

tel

mailto

DeviceID

URI

URI_ProcessID

URIType

URI_DeviceID

Encrypted

Unencrypted

Connection

Packet

Payload

Scope

Type

SHANBHAG LAYOUT 11/14/11 11:39 AM Page 11

IEEE Network • November/December 201112

knowledge base. The parser/translator parses the policy
rules, service specifications and network topology informa-
tion and translates them into a language specific to the
planner being used.

•An end-system (Fig. 4) trying to initiate a connections sends
the request to the system in the form of the tuple.

•The parser/translator parses the request and creates a prob-
lem definition. The planner takes the domain and problem
definition as input and tries to find a plan that satisfies the
connection requirements.

•In cases where policies are enforced, the planner takes care
to replan and/or repair the service composition in order to

incorporate the data-path policy in
the final plan.

•The plan with the service mappings is
then relayed to the autonomous sys-
tems.

Prototype Implementation
The first step in implementing the pro-
posed automated system is to represent
state in terms of semantics of network
traffic (Fig. 2). A number of semantic
markup languages exist for describing
the properties and capabilities of web
services as well as communication level
descriptions of messages and protocols
necessary for the operation of these
web services. We use the W3C Web
Ontology Language (OWL)1 for this
purpose. The planner used is LPG [2]
(Local search for Planning Graphs), a
fully automated domain-independent
planner. LPG uses the PDDL (Plan-
ning Domain Definition Language) for
describing domains and problems. A
planning problem is described using a
domain description that includes the
actions (behavior of the system), and a
problem description (goals to be
reached). The parser and translator in
Fig. 4 parse and convert OWL defini-

tions of service and policy definitions to domain specification
for LPG to operate on.

Evaluation Results
Automated Service Composition
We built a prototype described earlier on a 64-bit Quad-Core
Intel Xeon 5300 with 2 GB memory with 2 × 4 MB shared
cache. Table 2 describes the services implemented along with

Figure 3. Policy enforcement system.

Knowledge base

Standard
services

database

Parser and translator
Policy and

service rules
(domain)

Policy rules
database

AS
local services

Network
topology and

service
mapping

Automated data-plane policy
enforcement system

Planning problem
definition
(problem)

Planner

Plan with service
mappings

according to
policy

1 http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2

Figure 4. Network service architecture.

Network

Service
node

Service
node

Service
node

Service
node

Service
node

Service
node

Service
node

Service
controller

Service sequence:

Application Application
Control
plane

Data
plane

Automated data-
plane policy
enforcement

system

End-
system

End-
system

SHANBHAG LAYOUT 11/14/11 11:39 AM Page 12

IEEE Network • November/December 2011 13

their preconditions and actions. Table 3 shows the results of
the automated composition implementation of example sce-
narios discussed in the previous subsection. The decision is
purely based on the semantics of the data and communication
and the service action. Observe that the automatically com-
posed sequence of services achieves the desired output —
encryption of a H.264 video file — even though only the input
and output data semantics are provided by the end-system.

Automated Data-Path Policy Enforcement
For evaluating the effectiveness of the automated policy enforce-
ment framework, simulations were run on a network of 96 nodes
organized into 12 Autonomous Systems (AS) with each AS con-
taining eight nodes. Traffic state was defined by six dimensions
chosen from the semantic tree. The service nodes are capable of
performing a maximum of two services. Each AS enforces a max-
imum of two policies every connection and each policy was gen-
erated in a random manner. The polices mostly required the
addition of a service to the composed sequence to alter the plan.

Figure 5 shows the time taken by the system to generate and
repair the plans. All connections had a maximum of two poli-
cies enforced on them. As the number of connections increases,
the planner takes more time to repair the plan. For 2000 simul-
taneous connections, the system takes about seven seconds to
repair the plan. The simulation was a centralized implementa-
tion where the planner has to deal with policies, services and
topology information of the entire network. A more decentral-
ized approach may result in a decrease in repair times.

Figure 6 compares the lengths of the service sequence before
and after policy enforcement. As mentioned earlier, each AS
enforced a maximum of two policies every connection. This
resulted in the sequence being repaired if the addition of services
according to policy resulted in a wrong sequence. Observe that
most of the time the planner tends to add new services (while
also rearranging the sequence) to the sequence to meet the con-
nection requirements while enforcing policy at the same time.

Related Work
Data-path packet processing in the network is not a new con-
cept. There are many existing examples that have been imple-
mented in the current Internet, such as NAT [3], VPN [4],

etc. The idea of putting advanced packet processing on the
data path of the networks has also been proposed as an inher-
ent feature of the next-generation Internet (e.g., SILO project
[5, 6], and the service-centric network architecture [7]).

Composition of protocols and services has been studied in the
context of the existing Internet as well as next-generation Inter-
net. Configurable protocol stacks [8] and protocol heaps [9] have
been proposed as a solution to statically compose novel protocol
combinations. More dynamic approaches have been proposed in
[7] and [6], where composition can be performed on a per-flow

Table 2. Preconditions and actions for the example services.

Service Precondition Action

Transcoder Type-Video (HDTV-
1080p)

Action (converts to
H.264.)

Encryption Type-Text Action (encrypts
payload.)

Table 3. Resulting service sequences for the three scenarios.

Scenario 1. Sequence:Transcoder

Semantics Input Output

Type Video-(HDTV-1080p)
Video-(H.264
(176×208)

Delivery Broadcast Broadcast

State Stateless Stateless

QoS max_delay, min_delay max_delay,
min_delay

Unit payload payload

Scenario 2. Sequence:Encryption

Type Text Encrypted

Scope of Encryption Payload Payload

Delivery Unicast Unicast

State Stateless Stateless

Unit payload payload

Scenario 3. Sequence:Transcoding → Encryption

Type Video Encrypted

Type Video-(HDTV-1080p)
Video-(H.264
(176×208)

Scope of encryption Payload Payload

Delivery Unicast Unicast

State Stateless Stateless

Unit Payload Payload

Figure 5. CPU time (in ms) taken by the planner for generating
and repairing plans.

Number of connections
2000

1

0

Ti
m

e
(s

)

2

3

4

5

6

7

8

400 600 800 1000 1200 1400 1600 1800 2000

SHANBHAG LAYOUT 11/14/11 11:39 AM Page 13

IEEE Network • November/December 201114

basis. The latter uses composition rules and constraints to deter-
mine valid compositions. In contrast, work attempts to determine
valid compositions by input/output format characteristics of the
data and does not depend on exhaustive enumeration of con-
straints. In research related to automated service composition,
various methods have been proposed in the area of web applica-
tion composition. Most of these methods fall under the category
of AI Planning [10] and Theorem Proving [11].

Much research has been done in the area of policy-based
network management. Lymberopoulos et al. [12] propose an
automated policy deployment and adaptation framework that
permits dynamic configuration of policy parameters and
objects in response to changes within the managed environ-
ment. Yoshihara et al. [13] propose a policy parameter adap-
tation framework that uses a management script expressed in
the IETF Policy Working Group’s representation targeting
differentiated services. Badr et al. [14] propose an autonomic
policy based control service that allows runtime system diag-
nosis, repair and reconfigurations that helps correct the sys-
tem in events of conflicts with minimum human intervention.

These policy-based network management frameworks
emphasize adaptive policy deployment and parameter recon-
figuration focusing on the control plane, but do not take into
account services applied to the connection. Our system does
not modify existing polices but adapts to existing ones by rear-
ranging the sequence of services or adding new ones, thus
respecting local and global policies.

Summary and Conclusions
The emerging future Internet architecture will need to sup-
port a range of different data-path functionalities. To ensure
system scalability, these functions need to be composed auto-
matically in such a way that policies from different network
entities are respected. Our system uses a formal representa-
tion of the semantics of data connections, packet processing
functions that operate on them, and policies that state con-
straints and requirements. Using an automated planning tool,
connection requests can be re-composed to adjust the connec-
tion semantics to meet network policies. The results from our
prototype implementation show that this approach can adjust
connection requests appropriately and that data-path policies

can be enforced. However, this being a centralized design, the
system requires a complete view of the network and policies
and thus introduces a scalability problem for large networks.
A more decentralized approach can solve this problem. This
work presents an important step toward a fully autonomic
Internet of the future.

Acknowledgements
This material is based on work supported by the National Sci-
ence Foundation under Grant No. CNS-0626690.

References
[1] T. Wolf, “In-Network Services for Customization in Next-Generation Net-

works,” IEEE Network, vol. 24, no. 4, July 2010, pp. 6–12.
[2] A. Gerevini and I. Serina, “LPG: A Planner Based on Local Search for Plan-

ning Graphs with Action Costs,” Proc. 6th Int’l. Conf. Artificial Intelligence
Planning Systems (AIPS), Toulouse, France, Apr. 2002, pp. 13–22.

[3] K. B. Egevang and P. Francis, “The IP Network Address Translator (NAT),”
Network Working Group, RFC 1631, May 1994.

[4] B. Gleeson et al., “A Framework for IP based Virtual Private Networks,” Net-
work Working Group, RFC 2764, Feb. 2000.

[5] I. Baldine et al., “A Unified Software Architecture to Enable Cross-Layer
Design in the Future Internet,” Proc. 16th IEEE Int’l. Conf. Computer Com-
mun. and Networks (ICCCN), Honolulu, HI, Aug. 2007.

[6] R. Dutta et al., “The SILO Architecture for Services Integration, Control, and
Optimization for the Future Internet,” Proc. IEEE Int’l. Conf. Commun. (ICC),
Glasgow, Scotland, Jun. 2007, pp. 1899–904.

[7] T. Wolf, “Service-Centric End-to-End Abstractions in Next-Generation Net-
works,” Proc. 15th IEEE Int’l. Conf. Computer Commun. and Networks
(ICCCN), Arlington, VA, Oct. 2006, pp. 79–86.

[8] N. T. Bhatti and R. D. Schlichting, “A System for Constructing Configurable
High-Level Protocols,” SIGCOMM ’95: Proc. Conf. Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, Cambridge,
MA, Aug. 1995, pp. 138–50.

[9] R. Braden, T. Faber, and M. Handley, “From Protocol Stack to Protocol
Heap: Role-Based Architecture,” SIGCOMM Comp. Commun. Rev., vol. 33,
no. 1, Jan. 2003, pp. 17–22.

[10] S. McIlraith and T. C. Son, “Adapting Golog for Composition of Semantic
Web Services,” Proc. 8th Int’l. Conf. Knowledge Representation and Reason-
ing (KR2002), Toulouse, France, Apr. 2002, pp. 482–93.

[11] J. Rao, P. Küngas, and M. Matskin, “Application of Linear Logic to Web
Service Composition,” Proc. 1st Int’l. Conf. Web Services, Las Vegas, NV,
June 2003, pp. 3–9.

[12] L. Lymberopoulos, E. Lupu, and M. Sloman, “An Adaptive Policy Based
Management Framework for Differentiated Services Networks,” Proc. 3rd
Int’l. Wksp. Policies for Distributed Systems and Networks (POLICY), Mon-
terey, CA, June 2002, pp. 147–58.

[13] K. Yoshihara, M. Isomura, and H. Horiuchi, “Distributed Policy-Based Man-
agement Enabling Policy Adaptation on Monitoring Using Active Network
Technology,” Proc. 12th IFIP/IEEE Int’l. Wksp. Distributed Systems: Opera-
tions and Management, Nancy, France, Oct. 2001.

[14] N. Badr, A. Taleb-Bendiab, and D. Reilly, “Policy-Based Autonomic Control
Service,” Proc. 5th IEEE Int’l. Wksp. Policies for Distributed Systems and Net-
works (POLICY), Yorktown Heights, NY, Jun. 2004, pp. 99–102.

Biographies
TILMAN WOLF [SM] (wolf@ecs.umass.edu) is an associate professor in the Depart-
ment of Electrical and Computer Engineering at the University of Massachusetts
Amherst. He received a Diplom in informatics from the University of Stuttgart, Ger-
many, in 1998. He also received a M.S. in computer science in 1998, a M.S. in
computer engineering in 2000, and a D.Sc. in computer science in 2002, all from
Washington University in St. Louis. He is engaged in research and teaching in the
areas of computer networks, computer architecture, and embedded systems. His
research interests include network processors, their application in next-generation
Internet architectures, and embedded system security. His research has attracted
substantial funding from both industry and the federal government, including an
NSF CAREER award. He is a senior member of the ACM. He has been active as
program committee member and organizing committee member of several profes-
sional conferences, including IEEE INFOCOM and ACM SIGCOMM. He has
served as TPC co-chair and general co-chair for ICCCN. He has been serving as
treasurer for the ACM SIGCOMM society since 2005. At the University of Mas-
sachusetts, he received the College of Engineering Outstanding Junior Faculty
Award and the College of Engineering Outstanding Teacher Award.

SHASHANK SHANBHAG (sshanbha@ecs.umass.edu) is a doctoral candidate at the
University of Massachusetts, Amherst. He received his B.S. degree from Visves-
varaya Technological University, India and his M.S. degree from the University
of Massachusetts, Amherst. His research interests span the areas of network
measurement, next-generation Internet architectures, cloud computing and virtu-
alization.

Figure 6. The number of services before and after policy enforce-
ment.

Before policy enforcement
10

2

0

A
ft

er
 p

ol
ic

y
en

fo
rc

em
en

t

4

6

8

10

12

2 3 4 5 6 7 8 9

SHANBHAG LAYOUT 11/14/11 11:39 AM Page 14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

