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Abstract—We propose the design of a benchmarking and
instrumentation component for the GENI experimental
networking testbed. Our design uses a workload generation
system to create reproducible network conditions and an
instrumentation component to collect measurement data.
We discuss the research challenges related to this design.

I. INTRODUCTION

Research on the design and implementation of com-
puter networks requires experimental validation. As with
any complex engineered system, theoretical models and
simulation are useful in the early stages of the de-
sign process, but experimentation is necessary to obtain
results on actual system performance under realistic
conditions. Therefore, the networking community has
put much emphasis on experimentation on real, deployed
network and the measurement of network performance.

When performing experiments on actual, deployed
networking infrastructure, results are highly realistic.
However, it is very difficult to experiment with novel
network protocols unless they are compatible with those
already deployed. Therefore, it is necessary to develop
networking testbeds, which allow experimentation with
entirely new protocols and applications that are not
backward compatible. A key aspect of such testbeds is
the need scalability to hundreds or thousands of nodes.
Only larger systems can produce the operating conditions
encountered in typical networks. This scale as well as the
distributed nature of network applications and protocols
makes it particularly challenging to perform experiments
under reproducible conditions. Thus, benchmarking has
been difficult in the networking domain.

Our work proposes a benchmarking and instrumen-
tation system for the GENI (Global Environment for
Network Innovation) testbed [10], which is a large
experimental infrastructure. The ability to control many
components of the testbed makes it feasible to attempt

the design of a benchmarking system. The well-designed
control infrastructure of GENI provides users with un-
precedented ability to set up experiments. In this context,
we describe our benchmarking and instrumentation sys-
tem. Specifically, we discuss

• How to set up automated experiments and control
the topology of the network as well as traffic gener-
ation to provide basic capabilities for reproducible
experiments and

• How to design flexible instrumentation systems to
collect measurement data.

Our work discusses the general design issues of such
a system and raises some of the research problems
encountered in this space. Results from a specific im-
plementation are left to future work.

The remainder of the paper is organized as follows.
Section II discusses related work. Issues related to repro-
ducibility of experiments are discussed in Section III.
The overall system design is presented in Section IV.
Details on workload generation are presented in Sec-
tion V and on instrumentation in Section VI. Section VII
summarized and concludes this paper.

II. RELATED WORK

Recent efforts in the networking community have
aimed at designing a next-generation network architec-
ture. This architecture design is based on a clean-slate
approach to incorporate novel networking technologies
and paradigms [5]. Novel research results not only aim at
improving the networking infrastructure, but also novel
application use.

Testbeds for research on networking infrastructure
include Emulab [16], Planetlab [2], the Open Network
Laboratory (ONL) [4]. Emulab and ONL are based on
dedicated end-system and networking resources, whereas
Planetlab uses an Internet overlay for experimentation.
Recently, an initiative by the United States National



Science Foundation has launched an effort to develop
a Global Environment for Network Innovation (GENI)
[10]. This program aims at developing a large-scale
experimental infrastructure that can be used for network-
level and application-level experimentation.

Performance evaluation and measurement has a long
tradition in computer systems [8], [9]. Particularly im-
portant has been the development of benchmarks (e.g.,
Whetstone [3], Dhrystone [15], and SPEC CPU [12]). In
particular, the SPEC suite of benchmarks is developed
through community effort and thus widely accepted.
More recently, similar benchmarks have been developed
in specialized areas (e.g., embedded systems (MiBench)
[6], transactions-level processing (TPC) [14], and web
servers [11]). Our work aims at providing a basis for
developing similar benchmarks on the GENI testbed.
An early specification of the GENI Instrumentation and
Measurement System is specified in [1]. Our work fits
into the concepts laid out in this work.

III. REPRODUCIBLE RESEARCH

Reproducible research is an essential criterion for
science. The networking community has struggled with
achieving reproducibility mostly due to the complexity
of the distributed nature of networks and the lack of a
common experimental facility. GENI promises to over-
come these obstacles and allow such reproducibility. A
common benchmarking and instrumentation platform is
essential in this process.

The ultimate goal of our work is to achieve a level
of reproducibility and community acceptance that has
been achieved in other fields: the SPEC CPU bench-
marks in computer architecture [12], the TPC benchmark
for transaction processing [14], the MiBench suite for
embedded systems [6], etc. A networking researcher
should be able to propose new ideas for protocols or
systems and have the ability to easily obtain performance
results with standardized topologies and workloads. A
key criteria is that these standardized scenarios are
contributed and selected by the community and thus
become widely accepted. Our benchmarking system is
designed specifically to be extensible in the sense that
the GENI community can and should help develop the
benchmarking scenarios that will be used. The goal of
this design is to provide the infrastructure, but not to
prescribe the usage scenarios.

Our benchmarking and instrumentation system aims
at solving a fundamental requirement for GENI, which
is to allow for scientific research through reproducible
experimentation and data collection. We envision that
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Fig. 1. System Architecture of Benchmarking and Instrumentation
System.

benchmarking and measurement can be used widely in
a number of scenarios:

• During testing of GENI platform prototypes to
compare design alternatives;

• During experimentation with network systems
where networking researchers explore system per-
formance;

• During experimentation with applications running
on the GENI infrastructure where users need to val-
idate the correct operation of the network, identify
performance bottlenecks, etc.;

• During operation of GENI by administrators.
Over the life of GENI, we expect that many dif-

ferent types of hardware platforms will be used as
network nodes. In our visions, the workload generation
and programmable measurement concepts will also be
applicable to these emerging platforms. Thus, new GENI
nodes could implement the design discussed in this
paper on their specific system architecture (e.g., network
processor, FPGA).

IV. SYSTEM DESIGN

The system architecture for our proposed Bench-
marking and Instrumentation System (BIS) is shown in
Figure 1. The figure also illustrates how it fits into the
overall GENI architecture. We envision that a user can
specify the benchmark and measurement metrics when
setting up an experiment with the GENI Clearinghouse.
The clearinghouse is equipped with our topology config-
uration, workload generation, and data path measurement



components, which are installed accordingly on the
GENI substrate when the experiment is set up. Then, the
user can control the experiment and obtain measurement
data via the programmable evaluation component.

Our main focus is on the design of the following
components, which are described in more detail in the
following sections:

• Experimentation Configuration Subsystem: The
goal of this benchmarking subsystem is to pro-
vide a GENI component that manages the con-
figuration of network topologies and generation of
traffic during experiments. This component ensures
that networking researchers can use topologies and
traffic workloads that are representative and that
measurement results are reproducible. Our design
aims at controlling experiment configurations and
generating synthetic traffic on network nodes. The
GENI community can extend the benchmarking sys-
tem by adding network configurations and workload
generation tools as networking research evolves.

• Instrumentation Subsystem: The goal of the instru-
mentation subsystem is to provide a general, pro-
grammable measurement system that can be used
across GENI systems. This system simplifies the
process of obtaining measurement data while GENI
experiments are in progress. These data can be used
by networking researcher to evaluate new architec-
tures, by GENI operators to monitor system perfor-
mance, and by GENI application users to monitor
progress of experiments. The programmable data
path measurement component allows the collection
of passive measurement data. Processing them lo-
cally avoids the collection of large trace files that
need to be harvested later. The processed measure-
ment data are collected in a centralized evaluation
system for correlation, logging, and presentation to
users.

Both subsystem areas are tightly coupled as they
mutually depend on each other. In combination, they
provide a platform for reproducible experiments.

V. AUTOMATED EXPERIMENT CONFIGURATION

Researchers can benefit tremendously from tools to
automatically configure experimental topologies and traf-
fic. Such tools can reduce researcher effort, minimize
researcher error at configuration time, and allow for
reproducibility and standardized comparisons across dif-
ferent experimental instances.

Clearly, different experiments desire different levels
of control over configuration. Some experiments run on

long-lived virtual networks with real user traffic, and
hence exert no additional control over experiment con-
figuration. Beyond these piggyback experiments, any ex-
periment that configures a new network minimally wants
to specify something about the topology (connectivity)
of the network elements. At the next level, a researcher
may want to control network link parameters, including
bandwidth and latency (fixed delay). Experiments that
attract real opt-in users may not need or want to specify
any artificial workload. However, experiments that use
generated traffic may also desire to specify something
about the workload carried by the topology.

We further posit that benchmarks, standards across
these types of configuration, will prove invaluable to
researchers by supporting community agreement and
investment in a set of “good” experimental configura-
tions that many experiments can utilize. Our Automated
Experiment Configuration (AEC) supports benchmark
topologies, with link characteristics, and generated traf-
fic. We expect to realize our benchmarks in libraries
that can be easily selected by a user for a particular
experiment.

A. Network Topology Configuration

What matters to users of topologies? Fundamentally,
a researcher using topologies wants to evaluate a pro-
posed solution to understand how well it works. As in
algorithmic analysis, both worst-case and expected-case
understanding can be valuable. A rigorous approach to
both types of analysis, however, requires describing the
space of topologies under consideration (“bounding” the
universe).

Our goal is to develop benchmark suites of topolo-
gies for studying algorithms and protocols in networks.
A “good” benchmark suite should have the following
characteristics:

• Coverage: The suite should sufficiently represent
different parts of the space of possible topologies,
allowing testing under different conditions.

• Scale: The suite should be capable of generating
topologies of many different sizes.

• User control: A user testing an algorithm or protocol
may have some intuition or evidence about what
topological characteristics are most relevant for
performance. The suite should allow a user some
control over which dimensions are fixed and which
are variable.

• Minimality: A minimal suite is preferred, one that
produces as few topologies as necessary and pro-
vides as few knobs as possible while providing



sufficient coverage and user control.
We have made research progress in this area by math-

ematically characterizing what it means for a benchmark
suite to be good, using the concept of coverage of the
target space provided by a topology. We have developed
a method to generate a good suite, as mathematically
defined, that also allows some user control based on
characteristics of interest. The key idea behind our
method is to use a skeleton that defines the structured
part of a graph, followed by randomness to fill out the
skeleton. A graph is in the space if it can be generated
in accordance with the skeleton and random details. We
have two motivations for this skeleton approach. The
first is that the form of our skeleton is intuitively natural
for networking research. We believe it accommodates
high-level topology characteristics that researchers and
network designers tend to find useful for consideration.
The second motivation comes from the regularity lemma
from graph theory, which says, roughly, that any graph
can be approximated by a graph with a small structured
part.

Random generation from a skeleton produces an ar-
bitrary number of topologies. To capture the notion of
representation we allow the user to specify one or more
graph functions that guide our system in reducing the
large number of generated topologies to a small number
for the benchmark set. We call these functions filters.

We use two types of coverage. The first, uniform
coverage, identifies a subset of topologies that are nearly
uniformly spaced in the parameter range. The second
type of coverage, extreme coverage, identifies topologies
that are extreme (minimum or maximum) for at least one
of the parameters. We believe researchers may find each
type of coverage useful in different settings.

Beyond connectivity, some experiments may want to
specify link characteristics, such as bandwidth capacity
and latency (fixed delay). We can augment our topology
generation with bandwidth and latency associations for
links. This is a simple extension of our generation
method so that link probabilities also include distribu-
tions for bandwidth and latency. We can extend our filters
to allow graph functions on the bandwidth and latency
of the links, not just on connectivity. We can provide
extensibility for any semantic associated with links.

Thus, we know it is technically feasible to generate
a benchmark suite of topologies. In next steps, we may
take that technical core and create the tools necessary to
give researchers access to well-grounded suites.

There are, of course, open questions in this area. These
include: how should specified topologies, especially with

bandwidth and delay characteristics, be mapped effi-
ciently onto the available resources? How will Aggre-
gates express their ability to support different types of
topology characteristics? Will users have visibility into
Aggregates, or will tools such as ours be responsible for
mediating between high level user desires and available
Aggregate resources?

B. Traffic Generation

In traffic generation, our design supports two types of
basic workload generation: generation from a parame-
terized traffic distribution and generation that replays a
trace. We may include all standard distributions for traffic
generation. On top of parameterized traffic distributions,
we may construct higher-level specifications of network
load that may be more natural for researchers to use,
e.g., peer-to-peer file sharing, interactive web surfing,
massive multi-player game. We can also make use of the
best known models for specific application workloads to
realize these sorts of specifications.

Our replay capability allows the capture of trace infor-
mation from a prior GENI experiment or from another
measurement system. We can adopt or develop a standard
format for trace representation to support replay. We may
support the chosen format in our data path measurement
tools so that we can capture traces in GENI experiments
and replay them later for reproducibility or to support a
controlled comparison.

Open questions in this area include: what level of
detail for “traffic” will GENI experiments find useful?
Will some experiments desire bit-level generation to
experiment with alternative packet formats or even cir-
cuits? How should alternate packet formats interact with
traffic generation? For example, could a user can supply
a packet header format or rule that is automatically
attached to packets generated at a specified source?
These are important considerations that will need to be
settled through a combination of prototyping experience
and community discussions.

VI. PROGRAMMABLE NETWORK INSTRUMENTATION

In conjunction with the ability to set up experiments
automatically, researchers want to be able to observe
what is happening in the network. Such instrumentation
capabilities are essential and integral components of any
large experimental facility. For GENI, we propose a
programmable measurement infrastructure that provides
easy access to network measurement data while at the
same time providing the flexibility to customize what
information is recorded and how it is preprocessed.
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Fig. 2. Data Path Measurement Component.

Programmability in the network instrumentation com-
ponent is a fundamental aspect of our design. Since
we cannot predict what measurement results GENI re-
searchers need to obtain for their experiment, we make
as few assumptions as possible. Instead of prescribing
a fixed set of measurement options, a programmable
instrumentation component, as described in this pro-
posal, allows researchers to define what data to record,
how to preprocess data, and how to report them. This
programmability can be provided through a simple script
interface to the measurement system.

As illustrated in Figure 1, there are two subcompo-
nents that make up the Programmable Network Instru-
mentation (PNI) system: Data Path Measurement (DPM)
and Programmable Evaluation (PE). The first handles the
per-packet processing that is necessary to obtain passive
measurement data on a network node. The latter handles
the processing of these data on the node, collection
of multi-node data in a centralized PE system, and
presentation of results to the user. We describe each
component in more detail below.

It is important to note that we focus on passive
network measurement in this design. Active network
measurement can be seen as an application-layer func-
tion and thus does not require as much infrastructure
support as passive measurement does.

A. Data Path Measurement

The Data Path Measurement component of our ar-
chitecture performs all operations that are necessary to
capture per-packet measurement data. The key charac-
teristic of DPM is that it performs online measurement.
Unlike many traditional passive measurement systems,
DPM does not collect large packet traces that need to be
processed later to harvest information. (Optional trace
collection for archiving purposes or for later playback
in traffic generation is a possible feature.) Instead, DPM
processes packets as they traverse the system and collects
the information that is relevant to a particular experi-
ment.

An example that highlights these differences is an
experiment where the packet size distribution of a par-
ticular protocol stack and network configuration needs
to be obtained. In a trace-based measurement system,
all packet headers are collected in a huge file. After
completion of the experiment, the file is parsed to extract
packet length fields and the resulting distribution is
reported. In online measurement, the DPM component
parses every packet as it traverses the node and collects
the distribution locally. Not only does this require no
off-node storage, but the results can also be reported live
while the experiment is in progress.

The ability to collect and process data online (and
based on instructions provided by the PE system) can be
provided by a system that is illustrated in Figure 2. The
key idea is to use a virtual machine that is programmable
with a simple, measurement-specific instruction set to
extract packet and flow-specific data. Conceptually, this
is a similar approach to how the pcap library [13]
provides filtering capabilities via a virtual machine. The
instruction sequence is provided by the programmable
evaluation component that is controlled by the user.

We have developed a prototype of such a DPM system
on an Intel IXP2400 network processor [7]. Details and
performance results are provided in a recently published
paper [17]. The prototype does not support flow-specific
measurement and virtual machine capabilities are limited
to filtering specific packets and selecting from a fixed set
of aggregation statistics. Nevertheless, our prior work
indicates that such a system is feasible for use in GENI.

Once measurement statistics have been collected, they
are extracted by the programmable evaluation compo-
nent as described below. Note that the DPM system
is illustrated for a single experiment. When using a
substrate with multiple active slices, then DPM (and PE)
is replicated to each slice.



B. Programmable Evaluation

The Programmable Evaluation component consists of
a centralized component that aggregates the measure-
ment data collected for the PE components on each
node that runs a DPM. The user controls what data are
retrieved from each DPM node and how it is stored and
presented to the user. The PE component also provides
an interface where the user can specify DPM operations
that are executed on the measurement virtual machine.

One important functionality of the PE system is to
monitor resource consumption by ongoing measurements
on the DPM. If a user requires too many different per-
packet or per-flow statistics or creates virtual machine
code that is too complex, then the DPM component is
not able to process all packets at line speed. To avoid
this problem, the PE system can limit the number and
complexity of measurement programs that are installed
by a user.

It can be expected that GENI will consist of
many different hardware platforms ranging from high-
performance wired router platforms to potentially mobile
wireless nodes. We believe that the proposed measure-
ment architecture is suitable for implementation on a
range of different hardware architectures. For high-end
routers, network processors or even field-programmable
gate arrays (FPGA) could be considered. For lower-
end systems general-purpose processing platforms may
suffice.

As indicated above, we have previously implemented
a system similar to DPM but with somewhat less func-
tionality. While this presents a good starting point for the
PNI subsystem, there are still several open questions:
How can we balance a general-purpose instruction set
in the measurement virtual machine with the need for
predictable high-throughput operation? What aggrega-
tion statistics will be typically used by researchers?
What flow classification mechanism will be typically
used by researchers? How much content inspection can
be provided given performance constraints? Should the
DPM system be shared between slices using the same
substrate?

VII. CONCLUSIONS

Reproducible network experimentation is a crucial
aspect of network testbeds. Our design of a benchmark-
ing and instrumentation component could contribute an
important capability to the GENI testbed. Our system
can make it easy for researchers to set up experiments
and obtain measurement results without having to un-
derstand the details of the underlying infrastructure.

Using broadly accepted benchmarking scenarios further
increases the attractiveness of GENI as an experimental
platform as it allows researchers to test their network
systems and applications against a broad set of standard
workloads.
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