
Techniques for Policy Enforcement on Encrypted

Network Traffic

Y. Sinan Hanay and Tilman Wolf

Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA

{hanay,wolf}@ecs.umass.edu

Abstract—Most large-scale data communication net-

works are built from multiple autonomous subnetworks,

which are managed by different administrative entities.

In many practical environments, information about traffic

policies is considered proprietary and is not disclosed by

network operators. However, some operational scenarios

require routers within a network to check if traffic

matches a particular policy that is provided by another

entity. In our work, we present several algorithms of

how to represent policy databases and how to perform

policy checks without explicitly disclosing the total set

of policies. This privacy-preserving set operation extends

related work, which has assumed that parties trust each

other. Our analysis shows that the proposed policy checks

can be implemented efficiently in realistic systems.

I. INTRODUCTION

Network operators use policies to express what data

traffic is permitted to traverse a certain set of network

nodes. Such policies can permit or restrict traffic from

a particular source (e.g., by specifying an IP address

prefix), traffic related to a particular application (e.g.,

by specifying a destination port number), etc. With an

increasing number of malicious sources of traffic (e.g.,

botnets) and an increasing number of applications that

impact network performance (e.g., peer-to-peer down-

loads), the number of policies that need to be enforced

on a node can reach the order of thousands. Due to

changes in operational dynamics of the network, the set

of policies that is active at a given point in time may

change during runtime.

The set of active network policies for a network

contains much implicit information on its provider’s op-

erational practices. Thus, these policies are typically con-

sidered proprietary information. Most network providers

This material is based upon work under a subcontract #069153 is-

sued by BAE Systems National Security Solutions, Inc. and supported

by the Defense Advanced Research Projects Agency (DARPA) and

the Space and Naval Warfare System Center (SPAWARSYSCEN),

San Diego under Contract No. N66001-08-C-2013.

do not want to make their policy database available to the

public and their competitors. However, in practice there

are scenarios, where a party needs to verify that traffic

matches the policy of a competing party. As we show in

Section III, such scenarios can arise in conventional and

military networks. These scenarios are characterized by

two criteria:

• Set Operation on Policy Database: The operation

that needs to be performed is a set intersection.

That is, it needs to be checked if a particular packet

matches any of the policies in a policy database.

More generically, it needs to be checked if an item

(i.e., the packet) is in a set (i.e., the policy database).

• Mutual Mistrust: The parties involved do not trust

each other. Thus, the party that provides the policy

database does not want to provide this database in

cleartext. The party that performs the set opera-

tion does not trust the party providing the policy

database to perform the necessary computations.

Thus, there is mutual mistrust.

Previous solutions to related problems have not consid-

ered cases where parties mistrust each other and do not

want to reveal details about a successful policy match

(e.g., what policy matched for particular traffic).

In this paper, we present several mechanisms for these

policy operations that can be performed by parties that

do not trust each other. We show that the use of a third

party that serves as a trusted authority can overcome

mutual mistrust. The specific contributions of our work

are:

• The design of solutions that introduce a trusted third

party,

• Four specific policy checking mechanisms that pre-

serve privacy, and

• An analysis of the effectiveness and space and time

costs of each mechanism.

The remainder of the paper is organized as follows.

Section II discusses related work. Section III provides

a more formal problem statement as well as realistic

example scenarios where this problem appears in prac-

tice. Section IV provides an overview of our approach

to solving the problem and a brief background on the

techniques used. Section V presents the four policy

checking mechanisms that we consider as well as an

evaluation of their complexity. Section VI summarizes

and concludes this paper.

II. RELATED WORK

In computer networks, policies are typically expressed

as deny/permit rules for connections. These connections

are specified by a 5-tuple of network protocol fields

including IP source and destinations, source and des-

tination port, and transport layer protocol identified. As

packets traverse the network, routers can check which

rules they match by using packet classification algo-

rithms. A survey of these classification algorithms can

be found in [12].

As we discuss below, once policies can be expressed

as 5-tuple permit/deny rules, a policy check can be

implemented as a set operation. Privately determining

the set intersection of multiple parties has been studied

previously. Agrawal et al. provide a process that deter-

mines whether two parties share common elements in

several rounds [1]. Pinkas et al. present an approach

where a polynomial representation of the set is used [9].

Kissner and Song improve the efficiency of polynomial

evaluation by utilizing mathematical properties of these

polynomials [14].

A closely related problem is secure policy reconcil-

iation. In the secure reconciliation problem, multiple

parties try to agree on a set of policies that is consistent

with all parties’ policies. Meyer et al. extend the privacy

preserving set intersection methods described in [9] to

achieve secure policy reconciliation [17]. A performance

evaluation of these privacy preserving protocols under

different configurations is presented [18].

The methods providing set cardinality given in [9],

[14], [17] use properties of homomorphic encryption

schemes and parties succeed in preserving privacy of

their set intersection. Instead of having encryption of

each element of the set, a previously agreed value is

chosen for encryption, and at the end of the protocol,

the chooser counts the occurrences of encryptions of the

chosen value. This approach is not feasible for our case

since it requires several rounds of computation by the

involved parties. The main difference in our work from

previous solutions is that, in our setting parties have to

decide intersection in a single round. Our work aims at

carrying the necessary information in a single network

packet.

III. PROBLEM STATEMENT

The problem we consider in our work can be stated

as follows:

Given a database of policies, determine if a

packet matches any policy without revealing

the database content or which specific policy

matches the packet. This policy check should

be performed in a single round without per-

packet interactions between the policy provider

and the policy checker.

More generally, this problem can be rephrased as a set

operation problem: Given a set, determine if an element

is a member of that set while maintaining the privacy of

the set and the element. This problem is a special case

of the set intersection problem, where one set consists of

only one element. Before explaining where this problem

occurs in practice, we introduce notation to simplify

the discussion and a more formal statement of trust

relationships.

A. Notation

We use the following notation to formalize the prob-

lem statement. This notation is used throughout the rest

of the paper:

• Ω: Set of all possible policies; the number of

elements in Ω is n (i.e., |Ω| = n).

• P : A set of allowed policies P ⊆ Ω (i.e., the policy

database); the number of elements in P is m (i.e.,

|P | = m). We denote P = {p1 . . . pn}.
• Q: The representation of P that protects the infor-

mation contained in P . A policy pi is denoted as qi

in Q.

• ti: The traffic that matches policy pi in P .

• ui: The representation of ti that preserves the pri-

vacy of ti and that is used for policy checks against

Q.

In an environment, where parties trust each other (i.e.,

the information in the policy database P and traffic

ti do not need to be protected), we can perform the

following simple test to see if traffic is valid (i.e., may

be forwarded):

valid(ti) ⇐⇒ (pi ∈ P). (1)

However, when aiming to protect the information con-

tained in P , we perform the validity check using the

“protected representation” of traffic and policy database:

valid(ui) ⇐⇒ (qi ∈ Q). (2)

Determining what an effective “protected representation”

looks like is the topic of this paper.

For simplicity of discussion, we make the following

three assumptions:

• We assume a deny-by-default environment, where

policies indicate what traffic is permitted. Thus, we

do not have to deal with a combination permit and

deny policies. This assumption is realistic for some

deny-by-default networking environments [2], [19].

If necessary, this work can be extended to consider

a combination of permit and deny policies, each

represented in its own database.

• We assume that there is a one-to-one relationship

between ti and pi (i.e., ti ↔ pi). For practical

networking policies based on 5-tuples with ranges,

this relationship is more difficult to determine. In

such a case, each field of the 5-tuple can be handled

as a separate policy. For simplicity of discussion, we

assume that a simple one-to-one relationship holds.

• We assume each policy pi (and traffic ti) can be

represented by unique integer value.

B. Trust Relationship and Confidentiality

The premise of our work is that the involved parties do

not trust each other. We consider two parties in our work:

the entity that provides the policy database P (“policy

provider”) and the entity that performs the check if ti
matches a policy in P (“policy checker”). Specifically,

the parties make the following assumptions related to

trust (or mistrust in our case):

• The policy provider does not want the policy

checker to be able to extract the set of policies

pi that are contained in the database P . Thus,

the policy checker should only have access to the

protected representation Q.

• The policy provider does not want the policy check

to be able to determine which policy pi matches any

particular network traffic. Thus, the policy checker

should only have access to a packet’s protected

representation ui.

• The policy checker does not trust the policy

provider to perform the computation of a policy

check in its stead. Thus, the policy checker cannot

simply hand traffic ti to the policy provider and ask

if it matches a policy in P .

• Both parties trust a third, independent party that acts

as intermediary to perform the privacy protecting

Fig. 1. Policy Check Scenario in Red/Black Network. Systems in

the red domain are trusted and main carry sensitive data in cleartext.

Systems in the black domain are not trusted and may carry data only

in encrypted form. How to enforce policies on encrypted traffic in

the black network is the problem addressed in this paper.

computations (e.g., translation from P to Q and

thus can ensure protection of P towards the policy

provider and a valid representation of Q towards the

policy checker.

We illustrate the practical relevance of such a trust

relationship through an example below.

Related to trust relationships is the question of what it

means to protect the policy database P . This protection

is considered as maintaining confidentiality of P with

respect to policy checker when using the protected

representation of traffic (i.e., ui instead of ti). Thus, an

adversary (e.g., the policy checker) should not able to

get meaningful information about P by eavesdropping on

network traffic (i.e., observing ui). We define meaningful

information as:

• Information regarding which policies pi a flow ui

matches.

• Information regarding whether two packets ui and

u′
i belong to the same flow.

The first notion is covered through the protected repre-

sentation of P as Q. However, the second notion requires

a more complex solution. If an adversary monitors traffic,

they should not be able to infer how frequently packets

from the same flow are sent by simply checking how

frequently ui is observed.

C. Example Scenario

The following example scenario illustrate where the

problem that we solve appears in practice. Our work has

been motivated by a problem that occurs in a military

networking environment. Related examples from outside

the networking domain are presented in [8].

A typical configuration of a red/black network is

illustrated in Figure 1. That figure also shows the policy

database in its representations P and Q, as well as traffic

that is represented as t and u. On the borders between

the red and the black network, the transformations in

the representations are performed. The systems that

perform this translation can be simple VPN gateways

[10] or military-grade High Assurance Internet Protocol

Encryptors (HAIPE) [6].

The trust relationship in this environment is as follows:

• The red domain does not trust the black domain:

The red domain does not want to make the policy

database P available to the black domain (which

would reveal information on what policies that are

applied in a classified network). Also, the red do-

main does not want the black domain to know what

traffic is sent (i.e., what policy pi matches traffic

ti) since this information would reveal information

about network usage between the red domains.

• The black domain does not trust the red domain:

The black domain does not want to carry arbitrary

traffic sent between the red domains. The black

domain may be willing to carry some types of traffic

between the red domains, but not all.

A practical scenario of such a relationship would be a

joint operation by military forces from two allied coun-

tries. The red domain represents forces from one country

that need to communicate using a second country’s

communication infrastructure (i.e., the black domain).

The second country may be willing to carry some type of

traffic (e.g., situational awareness information), but not

other types (e.g., non-tactical information).

The challenge of such a scenario is that a naı̈ve solu-

tion, where all information from the red domain is hidden

from the black domain (e.g., through encryption), is not

suitable. The black domain requires enough information

to be able to perform policy checks on traffic that is

tunneled between red domains. This means, we need to

perform what we call “limited policy preservation” (as

shown in Figure 1). This step translates ti to ui in such

a way that a check of ui against Q is possible within the

black domain. The design of methods for limited policy

preservation (while maintaining privacy) is discussed in

the following section.

IV. DESIGN AND TECHNIQUES

With an understanding of the problem we are trying

to solve and the trust relationships between parties, we

turn towards the general design of our policy check

mechanisms. We first introduce the need for a third party

that is trusted. Then, we specify the requirement for our

solution before we provide a brief background on the

techniques used in the solutions presented in Section V.

A. Trusted Third Party

Due to the mutual mistrust of parties, it is necessary

to introduce a third party, which is trusted by the

other parties. Such an approach is common in security

protocols (e.g., key distribution). In our system, the third

party performs the following function:

• Translation of Policy Database P to Q: In this step,

the policy provider’s policy database is translated

using the privacy preserving operations described

below. The reason that this step should be per-

formed by the third party (rather than by the policy

provider) is that the third party can check the

cleartext policies pi against policies specified by the

policy checker. In our example, the black domain

may agree to forward specific types of traffic from

the red domain but not others. The third party can

ensure that Q contains only those policies that the

black domain agrees to.

• Translation of Traffic ti to ui: In this step, traffic is

translated into the representation used by the policy

checker. In our example case, that is the operation

performed by the gateway illustrated in Figure 1.

The reason the third party should be involved in

this step is that the red domain may cheat and

incorrectly label traffic to ensure it gets forwarded

through the black domain even though it does not

match an agreed-upon policy. In practice, it is not

feasible to have a third party placed on each border

network systems. However, practical systems, like

HAIPE devices, require National Security Agency

(NSA) certification. During the certification process

it could be detected if a system incorrectly labels

traffic. Thus, the black network simply has to check

that its border systems are certified devices.

Using this approach to establishing a minimum level

of trust, we can achieve the goals laid out in the problem

statement.

B. Limited Policy Preservation

For a successful policy check, a network packet needs

to carry to necessary information to permit the evaluation

of Equation 2. Together with the need for protecting the

information about which traffic ti the packet belongs to,

we can identify two specific requirements:

• Robustness against Statistical Attacks: Different

packets that belong to the same type of traffic

ti should look different when represented as ui.

This requirement ensures that the policy checker (or

another attacker) cannot make statistical inferences.

In a practical system, there may be a limit on how

many different representations of ui for a single ti
are possible. Thus, this requirement may only hold

over a certain window of time.

• Compactness to Fit into Single Packet: Since our

problem focuses on the networking domain, we

need to consider practical limitations on how much

data can be packed into a packet header. Thus,

compactness is of the representation of ui is an

important design criteria.

To address the first requirement, we use probabilis-

tic encryption, where the encrypted representation of

pi changes with each packet. To address the second

requirement, we use RSA accumulators to reduce the

space requirement of ui. The backgrounds for each of

these techniques are described in the following two

subsections.

C. Background: Probabilistic Encryption

Most common encryption schemes are deterministic in

their nature. When encrypting the same data repeatedly,

the same encrypted output is generated. In the context

of our problem, that means that two packets from traffic

ti would have the same representation ui and be vulner-

able to statistical inference attacks. Another problem is

that the encryption may not be secure for all possible

messages. For example, the encryption of 0 and 1 using

unpadded RSA yield the cleartext of the message. Also,

under certain conditions some partial information can be

derived about the message [16].

In contrast, probabilistic encryption algorithms en-

crypt the same cleartext differently each times. This

approach to encryption was first proposed by Micali

and Goldwasser [11]. There are other probabilistic cryp-

tosystems have been proposed. We describe two of these

systems in more detail.

1) Micali-Goldwasser Cryptosystem: This probabilis-

tic encryption scheme proposed by Micali and Gold-

wasser [11] is the first of its kind. Data are encrypted

bitwise. The cryptosystem’s security is based on hard-

ness of determining whether a residue is quadratic or

not. The cyrptosystem uses the following processes:

• Key Generation: Determine two primes p and q, and

public key N is defined as N = p × q and private

key is p and q

• Message Encryption: Encryption is done bitwise.

Represent message m as a string of bits (m1, ...,

mn). For each bit mi, a random value y ∈ Z∗
N is

generated. Output ci = ymix2 mod N .

• Message Decryption: Decryption is done bitwise

(c1, ..., cn). For each i, using the prime factorization
(p, q), determines whether the value ci is a quadratic

residue; if so, mi = 0, otherwise mi = 1. Output
the message m = (m1, ..., mn).

The drawback of this scheme is that bitwise encryption

and decryption is not linearly parameterizable.

2) ElGamal Cryptosystem: ElGamal is a public key

algorithm [7], where security is based on hardness of

the decisional Diffie-Helman problem [4]. The same

cleartext is encrypted differently each time depending

on the random number, a parameter of the ElGamal

cryptosystem. The process is as follows:

• Key Generation: Generate a prime q and a generator

g ∈ Zq, construct a cyclic group G. Choose a

random x ∈ Zq and compute h = gx. The public

key is (G, q, g, h), and the private key is (G, q, g, x).
• Message Encryption: For cleartext message m ∈ G,

choose a random y ∈ Zq and output ciphertext pair

using public key (G, p, g, h) as (c1, c2) = (gy, hy×
m).

• Message Decryption: For ciphertext pair (c1, c2),
output message m = c2

cx

1

using private key

(G, p, g, x).

In this scheme, the number of different possible en-

cryptions for each message is equal to possible values

that random number y can take. Note that defining y as

a parameter requires modification of El-Gamal slightly.

User defines which value y can take, instead of taking

any element from the Zq as y.

D. Background: RSA Accumulators

RSA accumulators were first presented in [3] and are

used to compact large lists to a representative and small

accumulated value. Using this representative value, a

decision can be made on whether some element belongs

to the list. The process is as follows:

• Accumulator Construction: The trusted third party

computes the value of cryptographic accumulator

Acc(Q) as Acc(Q) = aq1q2...qn mod N , where

a is a random number. The trusted third party

also calculates witnesses for all allowed policies

wi = aq1q2...qi−1qi+1...qn mod N . The trusted third

party provides N and Acc(Q) to the policy checker.
• Per-Packet Operation: Each packet carries policy qi

with its witness wi.

• Policy Check: To check if ui is present in Q, the

policy checker computes if w
qi

i = Acc(Q) mod N .

RSA accumulator is secure under strong RSA assump-

tions as shown in [15].

V. MECHANISMS FOR POLICY CHECKS

We consider four different mechanisms for represent-

ing the policy database and performing policy checks

and discuss the tradeoffs between the solutions.

A. Mechanism I: Polynomial Evaluation

This is the approach that was followed in [14]. How-

ever a similar approach is presented in [9], [17] using

homomorphic encryption schemes. All parties generate

polynomial representations of their list in which the roots

are their private list elements (if an element appears mul-

tiple times in a private list, then this element is a repeated

root of that polynomial). Then every node encrypts

the polynomial coefficients of their sets, randomize it

and then all parties add their encrypted, randomized

coefficients to form a combined polynomial which is an

encrypted polynomial representation of all parties’ lists.

If a node wants to see whether some particular element is

in the intersection, it evaluates the combined polynomial

to see if this value is a root of the polynomial. If so,

they conclude that the element is in the intersection.

We can describe this mechanism more formally for

our scenario as follows: Given the policy database

P = {p1, p2, ..., pm} and a packet from traffic i, ti.

The protected representation of the policy database is

the randomized polynomial representation of P :

Q(x) = (x− p1)(x− p2)...(x− pm)rQ(x), (3)

where rQ(x) is a random polynomial. Assume ti matches

policies ρ1, ρ2, ...ρj . The gateway between the red do-

main and the black domain generates the polynomial

representation of ti as:

ui(x) = (x− ρ1)(x− ρ2) . . . (x− ρj)ri(x), (4)

where ri(x) is a random polynomial. (Note that from this

point on we allow traffic to match multiple policies.) To

check if the packet is matching a valid policy in Q, a

router extracts ui(x) from the packet, adds it to Q(x),
and check if the resulting polynomial has a root:

valid(ui) ⇐⇒ ∃x : Q(x) + ui(x) = 0. (5)

One problem is that we have only two (instead of

multiple) parties in the typical setting of this problem,

and the randomizing polynomials are more likely to have

common roots, which cause false positives. This problem

can be overcome by using higher degree polynomials and

a bigger ring at the cost of higher checking times.

B. Mechanism II: Encrypted Lists

To address the problems with polynomial representa-

tion, one can make policies as encrypted lists available to

the policy checker. This approach is similar to different

search techniques on encrypted databases [5], [13], [14].

Each policy in database P is encrypted, and the list of

the encrypted policies makes up Q. The same encryption

mechanism is used to translate ti to ui. Since the key

used in the encryption is not known to the policy checker,

the content of P and traffic ti remain protected. The main

drawback is the vulnerability to statistical attacks (e.g.,

by observing periodic small packets with the same ui

value, the attacker can infer that it may be a voice-over-

IP connection). To avoid this problem, multiple keys can

be used to obtain multiple encryptions (for each policy

and for each traffic). When translating from ti to ui the

encryption key is chosen randomly from the set of keys.

This approach increases the size of Q, but requires no

additional space to represent ui.

C. Mechanism III: ElGamal with Prime Numbers

An alternative to choosing from a set of encryption

keys is to use a randomized cryptosystem. As discussed

in Section III, ElGamal is one such system, where

policies are encrypted using one of k different encryp-

tions. Multiple matching policies for traffic require a

representation as a list, which may become inefficient, or

as an irreducible polynomial as discussed for Mechanism

I. Using the latter approach, for each possible cipher-

text pair (ci, cj) a prime number can be assigned. The

policy checker maintains the product of these k × |Q|
prime numbers. The policy check is done by checking

whether this product is relatively prime to the value

ui, the encrypted policy carried within the packet. The

disadvantage of this approach is that a big prime product

needs to be stored by the policy checker. On the other

hand, this mechanism is free of false positives.

D. Mechanism IV: ElGamal with RSA Accumulators

Instead of prime numbers, an RSA accumulator can

be used to store policies. Each ciphertext pair (ci, cj)
is enumerated by a straightforward linear transformation

such as: el = (q−1)×(i−1)+j, for 1 < l < k×Ω. The
accumulator used by the policy checker is generated by:

Acc(Q) = ae1e2...ek|P | mod N , where e1, e2, . . . e|kP | ∈
Q. The corresponding witness for each instance of

el is generated as: wl = ae1e2...el−1el+1...ek|P | mod N .

Verification is done by checking the equality of wel

l =
Acc(Q) mod (N). This solution is both robust against

statistical attacks and compact.

TABLE I

COMPARISONS OF PROPOSED MECHANISMS.

Space Time

Mechanism Policy DB (Q) Packet (ui) Policy check

I O(m) m log m O(m2)
II O(km) log m O(m)
III O(km log n) log m O(m/ log m)
IV O(1) log (2m) O(log m)

E. Space and Time Requirements

We compare the space and time requirements for the

different mechanism. For space, we consider the size of

the policy database in its protected representation Q as

well as the representation of ui. For time, we consider the

computational requirements to perform a policy check.

The results are shown in Table I and depend on the

number of valid policies, m, and the number of total

policies, n, and the number of different encryption keys,

k, in Mechanisms II and III.

We can observe that the polynomial method, Mecha-

nism I, is most expensive in space and time. Mechanism

IV using ElGamal with RSA accumulator shows the best

scaling properties when going to large m.

VI. CONCLUSION

In this paper, we presented several approaches to the

privacy preserving policy checking problem in environ-

ment of mutual mistrust. Using a practical example of

a military network, we show the trust relationships and

argue for the need of a trusted third party. Using proba-

bilistic encryption and RSA accumulators, we derive four

mechanisms for policy checks that meet each parties trust

requirements. Our solution using ElGamal encryption

and RSA accumulators shows the best overall perfor-

mance in terms of space requirements and computational

complexity.

REFERENCES

[1] R. Agrawal, A. Evfimievski, and R. Srikant. Information

sharing across private databases. In Proc. of the 2003 ACM

International Conference on Management of Data (SIGMOD),

pages 86–97, San Diego, CA, June 2003.

[2] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and

S. Shenker. Off by default! In Proc. of Fourth Workshop on

Hot Topics in Networks (HotNets-IV), College Park, MD, Nov.

2005.

[3] J. Benaloh and M. de Mare. One-way accumulators: a de-

centralized alternative to digital signatures. In EUROCRYPT

’93: Workshop on the theory and application of cryptographic

techniques on Advances in cryptology, volume 765 of Lecture

Notes in Computer Science, pages 274–285, Lofthus, Norway,

1994.

[4] D. Boneh. The decision Diffie-Hellman problem. In Proc. of

the Third Algorithmic Number Theory Symposium, volume 1423

of Lecture Notes in Computer Science, pages 48–63, Portland,

OR, 1998. Springer-Verlag.

[5] R. Brinkman. Searching in encrypted data. PhD thesis,

University of Twente, Enschede, Netherlands, June 2007.

[6] Committee on National Security Systems, National Security

Agency, Ft. Meade, MD. National Policy Governing the Use of

High Assurance Internet Protocol Encryptor (HAIPE) Products,

Feb. 2007. Policy 19.

[7] T. El Gamal. A public key cryptosystem and a signature

scheme based on discrete logarithms. In Proc. of of CRYPTO

84 on Advances in Cryptology, volume 196 of Lecture Notes

in Computer Science, pages 10–18, Santa Barbara, CA, 1985.

Springer-Verlag.

[8] R. Fagin, M. Naor, and P. Winkler. Comparing information

without leaking it. Communications of the ACM, 39(5):77–85,

May 1996.

[9] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private

matching and set intersection. In Proc. of the International

Conference on the Theory and Applications of Cryptographic

Techniques (EUROCRYPT), volume 3027 of Lecture Notes in

Computer Science, pages 1–19, Interlaken, Switzerland, Apr.

2004. Springer Verlag.

[10] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and M. A. A

framework for IP based virtual private networks. RFC 2764,

Network Working Group, Feb. 2000.

[11] S. Goldwasser and S. Micali. Probabilistic encryption. Journal

of Computer and System Sciences, 28(2):270–299, Apr. 1984.

[12] P. Gupta and N. McKeown. Algorithms for packet classification.

IEEE Network, 15(2):24–32, Mar. 2001.

[13] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL

over encrypted data in the database-service-provider model. In

Proc. of the 2002 ACM International Conference on Manage-

ment of Data (SIGMOD), pages 216–227, Madison, Wisconsin,

June 2002.

[14] L. Kissner and D. Song. Private and threshold set-intersection.

In Proc. of the 25th Annual International Cryptology Con-

ference (CRYPTO), volume 3621 of Lecture Notes in Com-

puter Science, pages 241–257, Santa Barbara, CA, Aug. 2005.

Springer Verlag.

[15] J. Li, N. Li, and R. Xue. Universal accumulators with efficient

nonmembership proofs. In Proc. of the 5th international

conference on Applied Cryptography and Network Security

(ACNS), volume 4521 of Lecture Notes in Computer Science,

pages 253–269, Zhuhai, China, June 2007.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.

Handbook of Applied Cryptography. CRC Press, Oct. 1996.

[17] U. Meyer, S. Wetzel, and S. Ioannidis. Distributed privacy-

preserving policy reconciliation. In Proc. of IEEE International

Conference on Communications (ICC), pages 1342–1349, Glas-

gow, Scotland, June 2007.

[18] J. Voris, S. Ioannidis, S. Wetzel, and U. Meyer. Performance

evaluation of privacy-preserving policy reconciliation protocols.

In Proc. of the Eighth IEEE International Workshop on Policies

for Distributed Systems and Networks (POLICY), pages 221–

228, Bologna, Italy, June 2007.

[19] T. Wolf. A credential-based data path architecture for assurable

global networking. In Proc. of the 2007 IEEE Conference on

Military Communications (MILCOM), Orlando, FL, Oct. 2007.

