
SPECIFICATION OF NETWORK SERVICES
AND MAPPING ALGORITHMS

Lukas Ruf

In&Out AG, Zurich, Switzerland

Tilman Wolf

University of Massachusetts, Amherst MA, USA

Karoly Farkas and Bernhard Pattner

ETH Zurich, Switzerland

ABSTRACT— In recent year, the functionality of networking
infrastructure has expanded to the point where routers not only
provide data connectivity but also a variety of processing services.
A major challenge in this context is to manage these processing
resources and to allocate them to data transfers in an efficient
manner. In our work1, we present a novel way of how end-
system applications can specify resource requirements. We explore
the performance of several heuristic approaches to solving the
intractable problem of mapping requirements to system resources.

I. INTRODUCTION AND MOTIVATION

The strategic vision for command, control, communica-
tions, computers, intelligence, surveillance, and reconnais-
sance (C4ISR) is to provide military forces with informa-
tion technology to succeed in their mission. As part of this
vision, the capability to collect, process, and disseminate
information is an important aspect to achieving information
superiority. The Defense Information Infrastructure combines
communication and processing capabilities in a battlespace
communication network.

In an advanced network infrastructure (e.g., tactical Inter-
net, civilian Internet), there is a general problem of how to
coordinate communication and processing tasks in a coherent
manner. Advanced programmable routers allow for processing
service to be deployed within the network and effectively
create a distributed computing platform. In this paper, we
focus on the issues of how to specify processing service tasks
in the context of a communication network and how to map
these tasks onto processing resources. In particular, we address
three problems: 1.) Service Specification: a methodology
for describing the required processing tasks, their logical
dependency, and the data transfer operations between them.
2.) Network and Node Specification: a methodology for
characterizing the capabilities and performance of processing
resources, their interconnects, and their resource availability.
3.) Mapping Algorithm: an algorithm for determining an
optimal or near-optimal allocation of services to processing
resources. The mapping problem is particularly difficult as the
general problem of distributing multiple processing resources
optimally onto a resource graph is NP-complete [9], [16]. Nev-
ertheless, it is an important problem that appears throughout
distributed computing and computer networking. We therefore
look at the general service mapping problem into context of

1This research was carried out while at ETH Zurich.

three specific domains (illustrated in Figure 1): 1.) Service-
Oriented Computing: In service-oriented computing, appli-
cations are distributed over numerous different computing
and web services of service providers. Interactions between
software components need to be specified and mapped to
a heterogeneous processing environment. The middleware
needs to determine a suitable mapping in order to hide the
complexity of the underlying system from the application.
2.) Service Provisioning on Routers: Router systems process
packets in order to forward network traffic. Depending on the
router system, this processing can range from simple address
lookups to complex payload scanning. Due to the performance
requirements of such systems, numerous processing resources
are available on router systems. In order to efficiently utilize
this system, processing requirements need to be specified and
mapped to the underlying hardware. 3.) Application Mapping
on Network Processors: A typical processing resource of a
router, called “network processor or NP,” is implemented as a
system-on-a-chip with numerous parallel embedded processor
cores. Application components need to distributed across these
cores in order to maximize the performance of this system.
These scenarios can each be seen as independent mapping
problems, or as a combined mapping problem with different
levels of granularity. Our main focus in this paper is on the
router level, but as shown, all levels are interconnected and in
principle pose the same problem.

 Router

Router

Router

Host/
server Host/

server

Host/

server

Router

Router

Service-Oriented Computing

network

mapping

Router

Service-oriented
application

Service Provisioning on Routers

mapping

Network service

Router

Switching
fabric

Port

Port Port

Port

Application Mapping on Network

Processors

mapping

Network service

Network processor

Proc. Proc. Proc.

Proc. Proc. Proc.

Fig. 1. Mapping Scenarios

The contributions of our paper are threefold. First, we
introduce a novel service programming language that allows

the specification of services. Second, we present a node
specification methodology that permits the description of
capabilities of processing systems. Third, we discuss a novel
mapping algorithm that achieves a good approximation to the
intractable mapping problem. This mapping algorithm is then
compared qualitatively to other existing mapping approaches.

We structure this paper as follows. In Sec. II, we present
related work. Sec. III introduces our service model to specify
component based network services. Sec. IV presents our node
model that allows the specification of processing infrastruc-
tures. Our mapping algorithm is introduced in Sec. V and
compared to existing algorithms in Sec. VI. The work is
summarized in Sec. VII.

II. RELATED WORK

There have been a number of efforts to develop abstractions
for specifying services on network routers. The Click modular
router project [12] defines two environments of code execution
(EE) on Linux: one is the in-kernel EE and the other is a
Linux user space EE. Processing services are provided by a
specification of interconnected Click elements. While Click
defines arbitrary service graphs by its specification language,
it does not have the expressiveness to specify resource limits.
Moreover, the language does not support the required flexibil-
ity of service extensions due to the architectural limitations of
the Click EEs.

NetScript [6] defines a framework for service composi-
tion in active networks that is programmed by a dataflow
composition language, a packet declaration language, and a
rule-based packet classification language. The first defines a
method to specify data path services as a composition of
interconnected service components. The second defines the
packet structure of network protocols, and the third defines
the packet classification rules that are installed in the NetScript
kernel. Service components (so-called “boxes”) in NetScript
provide a container for code or hardware-based service com-
ponents, or other boxes in a recursive manner. NetScript’s
composition language cannot define control relations between
control service components, does not provide capabilities to
extend previously deployed network services, and lacks the
expressiveness to specify resource and placement constraints
of components.

Models for processing resources on network routers can be
classified into pool-extended node models and port-extended

node models. In the first case, processing is provided by a
pool for shared processing elements that can be accessed by
all ports. In the latter case, each individual router port is
extended by a processing system (e.g., smart port card on
WUGS [3]). Recently developed network processor (NPs) are
typically placed on the ports of a port-extended model. NPs are
embedded systems-on-a-chip that are optimized for handling
high-speed network traffic. Typical configurations use tens to
hundreds of parallel processors, embedded memory, and high-
speed I/O. Commercial examples are the Intel IXP family of
processors, the IBM PowerNP, and the Cisco Silicon Packet
Processor.

In one of the first pieces of work that address the problem
of finding an optimal solution to placing services in networks,
Choi et al. propose to use a single metric for processing
and communication cost [5]. By transforming the network

graph into a “layered graph”, processing is represented by
inter-layer links, while communication links are constrained
to intra-layer connections. A mapping solution is found by
determining shortest path from the source node in the first
layer to the sink node in the last layer. This method works
with infinite capacities since the topology of the graph of pro-
cessing elements needs to be invariant. ANCS [11] applies the
layered graph method with network services modeled as Unix-
like pipes of service components. Since this network model
assumes homogeneous processing elements with infinite link,
memory, and processing capacities, the layered graph method
can be applied directly. XNP [4] addresses the problem of
service mapping onto networks with finite link capacities. It
solves this problem by the proposal of two different graph
creation procedures that include links only if they meet the
capacity requirements. While elegant, these solutions only
consider constraints on bandwidth capacity. Other constraints
(e.g., heterogeneity of processing element, memory types) that
appear in real systems cannot be considered. A more general
approach to providing a heuristic solutions to the mapping
problem with multiple constraints is “randomized mapping”
as proposed by Karp [10] and Motwani and Raghavan [13]. In
one of the author’s prior work, randomized mapping has been
applied to mapping processing tasks onto network processor
cores [17].

III. COMPONENT BASED NETWORK SERVICES

In this section, we introduce our service model and the
Service Programming Language (SPL) that is used to specify
a service. The key challenge is to make the service model
expressive enough to allow the description of a wide range
of services. At the same time, the Service Programming
Language needs to be simple enough for users to use and
for the service platform to process.

A. Service Model

1) Service Model Components: Our service model de-
scribes services as graphs of edges and vertices with edges
representing chains of service components, and vertices defin-
ing the interconnection between them. Network services are
defined by six fundamental concepts, such as name spaces,
service control buses, service components, service chains,
guards, and hooks, in the following way:

• Name spaces are abstract constructions of our service
model that are used to avoid name collisions between
services by defining a logical space. Within a name space,
elements are identified by literals per service.

• The service control bus (SCB) provides service-internal
signal propagation among the elements of one network
service. The semantics of the signals on the SCB are
service specific except for three signals labelled ACCEPT,
ABORT and CHAINEND that are used for control and
management operations of the service infrastructure [14].

• Service components provide the service functionality.
Two types are defined: data path service components

(DSCs) and control service components (CSCs). DSCs
provide the functionality residing in the data plane to
process regular network traffic. CSCs provide service in-
ternal control functions as well as control plane elements.

�
�
�
���

�
�
�
���

CCI in CCI out

�
�
�
�

�
�
�
�

data in data out

SCB outSCB in

function

(a) Data Path Service Component

�
�
�
���

�
�
�
���

CCI in CCI out

Ctrl_out Ctrl_in

�
�
�
�

�
�
�
�

data in data out

SCB outSCB in

function

(b) Control Service Component

Fig. 2. Service Components

In Fig. 2(a), the model of a DSC is visualized. A DSC
provides a function according to the plugin model [7]. It
extends the interfaces of the original plugins. In addition
to the data in- and output ports, our DSC defines in-
and output ports for the SCB and provides a component
control interface (CCI)2. Fig. 2(b) presents the model of
a CSC. CSCs are service components like DSCs. Hence,
they offer the same component interfaces but export
in addition multiplexed controlling interfaces (labelled
Ctrl in and Ctrl out in Fig. 2(b)). Controlling interfaces
are required to control other service components via their
CCIs. Our model foresees that a CSC may be able to
control multiple other service components. A logical mul-
tiplexing of the controlling interfaces is defined for CSCs
implementing the controlling functionality for multiple
service components.

• Service chains provide an aggregation of one or more
DSCs that are strongly linked. A chain of strongly linked
DSCs allows only for signal propagation along the SCB
between service components, and between service com-
ponents and the service infrastructure. No demultiplexing
of network traffic is available between the elements of a
service chain allowing for fast pipeline-style processing
of network traffic by subsequent service components. The
signal on the SCB labelled ABORT causes the service
infrastructure to abort the current service chain.

• Guards provide the demultiplexing functions that control
the acceptance of network traffic to enter service chains.
Their definition has been inspired by the concept of
Dijkstra’s guarded commands. In our service model,
guards are represented by DSCs that signal the acceptance
(ACCEPT) or rejection (ABORT) of network traffic by the
mechanisms of its SCB output port. Visually depicted, a
guard is the first service component of a service chain
that accepts a packet or rejects it.

• A pair of hooks confines a service chain. They initiate and
terminate a service chain. Multiple service chains may be
attached to hooks. Thus, hooks are key elements of the
respective name space. Within a name space, they are
identified by their label. They are created as part of the
service program on demand. If ingress hooks are created,
they must be bound to a network interface. Otherwise,
they must refer to previously created ones. Egress hooks
may be dangling, implying the discard of packets. The
purpose of dangling outbound links is the provisioning
of a hook for later service additions to extend provided
functionality.

2In Fig. 2(a), interfaces are labelled SCB in, SCB out, CCI in, CCI out,
data in, and data out respectively.

F1 ���
���
���

���
���
���

���
���
���

���
���
���

F3F2

G

Guard

Fc

service

hook1

hook2

name space

hook0

CCI in
CCI out

Ctr in
Ctrl out

�
�
�
�

�
�
�
�Data out hook3Data in

SCB outSCB in
SCB

Fig. 3. Control and Data Path Relations Among Service Components

In Fig. 3, a service graph is presented that consists of four
service components named F1, F2, F3 and Fc embedded be-
tween four hooks as well as of a guard labelled G that controls
the packet acceptance for its service chain. It illustrates the
data path and control relations between service components
with Fc controlling F2. In Fig. 3, this controlling functionality
is represented by the letter ′c′ indicating control. Moreover, it
visualizes the SCB covering service chains.

2) Dispatching Semantics: The graph representation of
services raises the question which path is followed by network
traffic as it is being processed. We define two different
dispatching semantics for this purpose: copy and first-match-
first-consume.

3) Resource Constraints: Service component instances
have specific resource characteristics. Resource characteris-
tics specify the amount and type of resources needed for
the component instantiation and their execution. Resource
characteristics define part of the parameter space the service
infrastructure must be able to cope with. As an example,
different instruction set architectures (ISAs) may be available
on an NP.

B. The Service Programming Language

The specification of network services on a platform for mul-
tiport router devices requires a concise service programming
interface (SPI). The SPI is required to cope with the flexi-
bility of the service model introduced above. Since network
services are modelled as a graph of interconnected service
chains, a method is required that provides the appropriate
specification. We define therefore our Service Programming
Language (SPL).

The SPL definition provides a formal language to specify
network services. Our service model is described by six
key productions3 that allow the specification of the service
components described above.

These key productions followed by the production name
are: 1.) Service: SERVICE 2.) Service Component: SERV COMP

3.) Service Chains: SERV CHAIN 4.) Control Chains: CTRL -

CHAIN 5.) Guards: GUARD 6.) Hooks: HOOK IN, HOOK OUT . The
SCB interfaces are mandatory for every service component.
Hence, they do not need to be specified explicitly.

Lst. 1 presents the key productions4 of the SPL definition.
Note that the namespace is identified by the ID production.

3Note that we refer to the key = value pair by the term production [1], and
refer to the key by the term production name.

4Self-explanatory productions like, for example, BW, CYCLES or MEM are not
provided here.

ID = "#" VALID NAME .

TIMED = "timed="DELAY.

BW RES = "bwmin="BW "bwmax="BW ["pps="NUMBER] .

CPU RES = "cpumin="CPU "cpumax="CPU .

RAM RES = "type="ID "rammin="RAM "rammax="RAM.

PROC TYPE = ("ia32" |"ia64" |"np4" |"np4_pp" |"ixp2400" |
"ixp2400_pp" |) .

CTRL INFO = (STRING | "file=" VALID NAME) .

COMP SPEC = ("src" [ID] | "bin" (PROC TYPE | ID))

["|" CPU RES] [{ "|" RAM RES }] .

COMP IDENT = (["(" COMP SPEC ")"] VALID NAME ID | ID) .

SERV COMP = COMP IDENT [":" ID] "(" [CTRL INFO] ")" .

CTRL COMP = [TIMED] SERV COMP { "!" ID "@"NUMBER } .

CTRL CHAIN = "{" { CTRL COMP } "}" .

COMP STRING= "{" { SERV COMP } "}" .

GUARD = "[" ["|" BW RES] [SERV COMP] "]" .

HOOK IN = (ID | ">" ID ["copy"] "?" INTF) .

HOOK OUT = (ID | ">" ID ["copy"] ["?" INTF]) .

SERV CHAIN = HOOK IN

"@" [TIMED] [GUARD] COMP STRING "@"

HOOK OUT.

SERVICE = "{" ID ["!" CTRL CHAIN] { SERV CHAIN } "}" .

Listing 1. The Service Programming Language

The fundamental concept of the SPL is the linear specification
of arbitrary service graphs consisting of service and control
chains. Based on the concept of hooks to which service chains
are attached, graphs are created from the linear specification.
Service chains may be added to hooks and removed there-
from at run-time. The language supports fast scanning/parsing
mechanisms. It is context free and allows for easy translation
to and from other notations and graphical user interfaces.

C. Service Model Example

As an example for the use of SPL, we briefly describe a
service program and its corresponding visualization hereafter.

TABLE I

THREE PARALLEL SERVICE CHAINS

Visual. Chain 1 Chain 2 Chain 3

hook2

hook1

NIF2

NIF1

demux1 demux3
demux2

c
o

m
p

o
n

e
n

t

c
o

m
p

o
n

e
n

t

c
o

m
p

o
n

e
n

t
1 2 3

{ # t h r e e p a r a l l

> # hook1

? NIF1

@/∗ HOOK ∗ /

[/∗DEMUX1∗ /]

{ /∗COMP STR∗ /

(b i n i a 3 2)

component1

i n s t a n c e 1 I D

(/∗ CTRL IO ∗ /)

}
@/∗ HOOK ∗ /

> # hook2

? NIF2

/∗ e x t e n d ∗ /

hook1

@/∗ HOOK ∗ /

[/∗DEMUX2∗ /]

{ /∗COMP STR∗ /

(b i n i a 3 2)

component2

i n s t a n c e 2 I D

(/∗ CTRL IO ∗ /)

}
@/∗ HOOK ∗ /

hook2

/∗ e x t e n d ∗ /

hook1

@/∗ HOOK ∗ /

[/∗DEMUX3∗ /]

{ /∗COMP STR∗ /

(b i n i a 3 2)

component3

i n s t a n c e 3 I D

(/∗ CTRL IN ∗ /)

}
@/∗ HOOK ∗ /

hook2

} /∗ End ∗ /

Tab. I presents a simple exemplary service program that
defines a network service with three parallel service chains.
The service program illustrates the linear specification of a
service graph with parallel service chains. The service iden-
tifier (#threeparallel) is followed by the creation of hook1.
No copy method is specified. Hence, its packet dispatching
semantics follow the first-match-first-consume method in the
top-down order of specified service chains. Hook1 is bound
to one network interface (NIF) that is symbolized by the
term NIF1. The service chain that consists of component1 is
attached to hook1, first. While the figure in Tab. I illustrates
the demultiplexing of flows to the particular service chains

by attaching abstract demux conditions to the links between
hook1 and the respective service chain, no real demultiplexing
is specified in the service program. However, demultiplexing
conditions are indicated in the service program by the respec-
tive comments. All service chains lead into hook2, which is
bound to the second NIF (NIF2). The second and third service
chains follow the same principle. Their specification differs
from the first service chain by that hooks are re-used, i.e.
the newly defined service chains are attached to the existing
hooks.

IV. MODELLING NETWORK NODES

Distributed computing platforms are complex systems, no
matter if they are designed for service-oriented computing,
network services on routers, or packet processing applications
on network processors. The heterogeneity of processing re-
sources and interconnects makes it difficult to manage and
control these systems even on a theoretical level. In practical
implementations, system- and vendor-specific device configu-
ration issues complicate things further.

The node specification that is required for a service mapping
algorithm needs to consider these system issues as well as be
applicable to a broad range of different system designs.

In this section, we introduce a hierarchical node model
to abstract from a variety of underlying hardware platforms.
Then, we introduce the corresponding node specification lan-
guage to allow for a concise system specification.

A. Node Model

Multiport router devices with programmable network in-
terfaces define the hardware architecture of network nodes
where the processing capacity scales with the number of
installed “blades”. These network processor blades provide
the communication, memory and processing resources to be
programmed at run-time with new and extended network
services. The network processors located on the blades exhibit
an architecture that consists of multiple specialized packet
processor (PPs) cores for high-speed network traffic handling
and one or more control processor (CP) cores for managing
the PPs.

To model the potentially large sets of processor cores, we
define a threefold organization of processing elements. Pro-
cessing elements are categorized by the way they share mem-
ory and communication resources. First, cores are grouped into
a processor if they share communication paths, memory re-
sources, or both. Second, processors that share such resources
are grouped into clusters. Third, clusters are organized into
tiers depending on their sharing of direct communication paths
with upper tiers. Thus, a cluster consists of peer processors
with cores that communicate directly with upper tiers. A tier
consists of multiple peer clusters that share the same parent
cluster.

Fig. 4 presents an illustration of our node model. It is built of
four elements: the three types of processing elements (clusters,
processors, and cores) and hardware interconnects. We refer to
hardware interconnects as ICo-Bus for inter-core bus, IP-Bus
for inter-processor bus and IC-Bus for inter-cluster bus5.

5We label the hardware interconnects by the term bus, since link-type
hardware interconnects may be represented by a bus interconnecting only
a pair of cores, processors, or clusters.

T
ie

r
N

−
1

T
ie

r
N

T
ie

r
N

+
1

Core

Processor

ClusterICo−Bus

IC−Bus

IP−Bus

NIF

T
ie

r

N
+

2

Fig. 4. Hierarchical Node Model

B. The Node Specification Language

Modelling of hierarchical network nodes demands for a
specification language that provides the expressiveness to
specify a network node at the required abstraction level. We
present here our Node Specification Language (NSL) derived
from the aforementioned node model.

The NSL consists of the following elements with their
corresponding key-productions [1] (separated from the element
by a colon): 1.) Node Graph: GRAPH 2.) Processors: PROCES-
SOR 3.) Network Communication: COMM 4.) Communication
Specifier: COMM SPEC 5.) Interfaces: INTF 6.) Clusters: CLUS-
TER 7.) Cores: CORE 8.) Communication Paths: COMM PATH

9.) RAM: MEMORY. Lst. 2 presents the syntax of our NSL
language6.

CPU FREQ = "freq="CPU .

CPU TYPE = "isa="ALPHA NUM .

MEMORY = { "type="ID "mem="RAM } .

COMM PATH = ("tierrecvdown" | "tiersendup"

| "tiersenddown" | "tierrecvup"

| "intfrecv" | "intfsend"

| "clusterrecv" | "clustersend"

| "procrecv" | "procsend"

| "corerecv" | "coresend" |
"neighbour") .

COMM SPEC = BW DELAY ["link"] .

NIF = "{" BW { INTF } "}" .

CORE = "(" [MEMORY] CPU FREQ CPU TYPE

[{ COMM PATH }] ")" .

PROCESSOR = "(" [CLUSTER SPEC] { CORE } [NIF] ")" .

CHILDREN = "[" COMM SPEC "]" { CLUSTER } .

CLUSTER SPEC = "[" [MEMORY] [COMM SPEC] "]" .

CLUSTER = "(" [CLUSTER SPEC] { PROCESSOR }
[CHILDREN] ")" .

GRAPH = CLUSTER [CHILDREN] ";" .

Listing 2. The Node Specification Language

V. SERVICE MAPPING

The mapping of a network service onto a network node rep-
resents a particular instance of the graph embedding problem.
Modern router devices embed NPs at the network interface
level. This embedding complicates the mapping problem since,

6By analogy to the SPL syntax, self-explanatory productions are not
provided here.

already on-chip, a heterogeneous multicore architecture with
various memory types and a specific communication infras-
tructure is given. Thus, a service mapping algorithm needs to
match specified service constraints of processing capacity and
capability, memory capacity and types, communication capac-
ity, and network interfaces with finite resources capacities of
router devices.

A. Mapping Problem

By the help of the service programming and the node
specification language (see Sec. III and Sec. IV), network
services and realistic router devices can be described in a
concise way. For the mapping of network services to router de-
vices, pre-processed service programs and node specifications
are needed that have the relevant dependencies resolved. We
name the pre-processed service program as instance graph,
and the corresponding node specification as core graph. The
instance and core graph result from the scanning, parsing and
compilation steps of the input data processing, and have all
dependencies resolved similar to an abstract syntax tree [1].

We can define the mapping problem similarly as it is
defined by the layered graph method of XNP [4]. However,
that XNP configures linear services with bandwidth capacity
constraints in extensible networks (cf. Sec. II). Our mapping
problem extends that problem space by the much larger set of
constraints and the need to resolve the blocking-problem of
blind alleys.

B. The SLESP Mapping Algorithm

Since the graph embedding problem is known to be NP-
complete [9], [16] if more than one constraint must be consid-
ered for the mapping, the use of an exhaustive search method
that investigates every possible solution falls short for devices
with multiple processing elements. Heuristics are required to
find a solution for the mapping problem even though it may
be only near-to-optimal.

We propose SLESP (Single Layer Extended Shortest Path),
a novel algorithm that solves the mapping problem with all
constraints and copes with the problem of blind alleys using
back tracking mechanisms. Our algorithm takes an instance
graph, and finds the shortest or near-to-shortest path through
a core graph.

SLESP (Gc , ce , Gi , i e)

p l a c e (Gi [i e] , Gc [ce]) ;

Ce= c r e a t e c a n d i d a t e s e t (Gc , ce , Gi , i e , i e + +) ;

w h i l e n o t empty Ce and n o t s u c c e s s s t a t u s

c e b e s t =pop (Ce) ;

s u c c e s s s t a t u s =SLESP (Gc , c e b e s t , Gi , i e + +) ;

i f s u c c e s s s t a t u s

r e t u r n s u c c e s s ;

r e t u r n n o t s u c c e s s ;

Listing 3. Pseudo Code of SLESP

Lst. 3 presents the pseudo code of SLESP without the back
tracking methods. SLESP works as follows. With the service,
it starts at an ingress hook instance graph element (ie0 ∈ GI).
Since this hook is bound to a specific network interface, and
network interfaces are assigned to processor cores, the starting

processor core (ce0 ∈ GC) is determined 7. ie0 is placed on
this staring core ce0. A spanning tree of candidate cores for
the next instance graph element is calculated by Dijkstra’s
shortest path algorithm [8] that has been extended to cope
with all constraints. The spanning tree is rooted at ce0, and
defines an ordered set Ce of suitable processor cores to host
the next instance graph element. Our algorithm selects the
best candidate core (cebest ∈ Ce), places the next instance
graph element, and recurs to the same procedures. The shortest
path for a given instance graph is retrieved, thus, from the
concatenation of the different inter-core communication paths
for iek+1 and iek+2 plus the processing delays.

VI. EVALUATION

To evaluate the performance of the proposed service map-
ping algorithm, we analyze its worst case time complexity. To
put these results into context, we analyze and compare a total
of three algorithms: (1) our proposed SLESP algorithm, (2) the
layered graph (LG) mapping algorithm that was developed by
Choi et al. in the context of XNP [4], and (3) the randomized
mapping (RM) algorithm that was developed by Weng et al. for
mapping tasks on network processors [17] (see Sec. II for a
more detailed discussion of the latter two algorithms).

A. SLESP Algorithm Complexity

The time complexity, COMP, of our SLESP mapping
algorithm is heavily dominated by the requirement to re-
calculate the shortest path using an algorithm that extends
Dijkstra’s shortest path calculation method. Dijkstra’s shortest
path algorithm [8] provides a time-complexity of COMPDS =
O(|V |log|V |+ |E|) (if implemented with priority queues) [2].

In our current implementation, the extended shortest path
algorithm is applied per instance graph element. In addition,
we compare the capacities of each vertex and each edge once
per recursion, which leads to a worst case complexity of
COMPDSext =O(|V |(log|V |+1)+2|E|) per service component
placement. Thus, for a given service program with N instance
graph elements that are to be mapped onto a processor core
graph with V vertices (cores) and E edges (hardware intercon-
nects), we derive the complexity for large N as follows:

COMPSLESP = COMPDSext + |V |(COMPDSext

+ |V |(COMPDSext + |V | . . .))

=
N

∑
i=0

|V |iCOMPDSext =
COMPDSext |V |N+1 −1

|V |−1

= O(COMPDSext |V |N)

= O(|V |N+1(log|V |+ 1)+ 2|V|N |E|)

The complexity is dominated by the |V |N term, which is
a result of our algorithm potentially searching the entire core
graph exhaustively due to the back tracking mechanisms. How-
ever, it still performs better than a straightforward exhaustive
search algorithm, where each edge is handled individually and
the complexity is O(|V |N ∗ 2N|V |).

7Note, in case multiple cores control one network interface, one is selected
at random.

B. Layered Graph Algorithm Complexity

In XNP [4], the layered graph (LG) method with capacity
tracking calculates a spanning tree through a layered core
graph and takes only bandwidth capacities into consideration.
The basis core graph plus N identical copies (for N service
components) define the layers of that graph. The LG with
N + 1 layers is built by the insertion of virtual inter-layer
processing links between pairs of adjacent layers at candidate
processing cores. With a set of Pi candidate processing cores
per service component, the authors define the complexity for
their algorithm as follows:

COMPLG = O((N + 1)∗ (|V |log|V |+ |E|+∑
i

Pi)+ (N|V | ∗ |E|))

The complexity depends on the number of services and the
structure of the graph. The worst case scenario is however
less complex than SLESP – at the cost of not considering all
possible mapping solutions.

C. Randomized Mapping Algorithm Complexity

The randomized mapping (RM) method randomly places
service elements on processor cores and evaluates the results.
This process is repeated and the best overall mapping is
retained. After a certain number of repetitions, the algorithm is
expected to converge. The complexity depends on the number
of rounds, R, the number of service elements, N, and the cost
of analyzing a placement, q, and can be stated as

COMPRM = O(R(N + q)).

While a possible mapping can be found quickly for very
small R, nothing can be said of the quality of the solution.
Higher quality solutions are more likely encountered as R is
increased.

D. Comparison

To summarize the analytic performance of the three algo-
rithms, Table II shows the results of the above discussion.
The run-time (RT) performance and quality of mapping (MQ)
results are indicated by ‘+’, ‘◦’, and ‘−’ representing a
decreasing order. We can conclude, that our SLESP algorithm
has the highest worst case time complexity, however it can
handle all the given constraints and implements back tracking
mechanisms. The LG algorithm of XNP is less complex but
it cannot handle all the constraints and it does not implement
back tracking. The RM algorithm has the lowest complexity
level but it does not guarantee an optimal solution and it can
be applied only in case of specific scenarios (see [17]).

TABLE II

COMPARISON OF ALGORITHMIC COMPLEXITY AND MAPPING QUALITY

OF THE THREE MAPPING ALGORITHMS

Algo. Complexity RT MQ

SLESP O(|V |N+1(log|V |+1)+2|V |N |E|) − +
LG O((N +1)∗ (|V |log|V |+ |E|+∑i Pi)+(N|V | ∗ |E|)) ◦ ◦
RM O(R(N +q)) + −

Despite this undesirable exponential complexity of SLESP,
the practical usage scenarios show that the algorithm is still a

useful approach [15]. In particular, since it can find solutions
that cannot be found by the algorithmically simpler layered
graph method.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have introduced a methodology for spec-
ifying services and service platforms as well as a novel
algorithm for mapping service nodes to devices. The Ser-
vice Programming Language (SPL) has been proposed as
a context-free service programming language of our service
model. The node model that we have presented allows the
description of a range of different computational platforms.
The model considers functionality and performance constraints
for processing, memory, and communication. The structure of
a service platform can be represented via clusters of processors
that are organized hierarchically. The mapping algorithm that
we have introduced is compared to two other algorithms that
have been published in prior work. Our complexity analysis
evaluates our mapping algorithm and shows that SLESP can
yield better mapping results.

In summary, we believe that a concise methodology for
specifying network services and processing systems is impor-
tant for designing middleware for service-oriented computing
platforms. Our proposed mapping algorithm is an important
step towards achieving a system that can hide hardware
complexities and automatically manage network processing
resources.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman, Compilers – Principle, Techniques

and Tools. Addison-Wesley, 1986.
[2] M. Barbehenn, “A note on the complexity of dijkstra’s algorithm for

graphs with weighted vertices,” IEEE Trans. Comput., vol. 47, no. 2,
1998.

[3] T. Chaney, A. Fingerhut, M. Flucke, and J. Turner, “Design of a
Gigabit ATM Switch,” in Proc. of INFOCOM’97, Apr. 1997.

[4] S. Choi and J. Turner, “Configuring Sessions in Programmable
Networks with Capacity Constraints,” in Proc. of IEEE ICC, May
2003.

[5] S. Choi, T. Wolf, and J. Turner, “Configuring Sessions in
Programmable Networks,” in Proc. of IEEE INFOCOM, Apr. 2001.

[6] S. da Silva, D. Florissi, and Y. Yemini, “Composing active services
with NetScript,” in Proc. DARPA Active Networks Worshop, Tucson,

AZ, Mar. 1998.
[7] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router Plugins:

A Software Architecture for Next Generation Routers,” in Proc. of the
ACM SIGCOMM’98 Conf. Vancouver, British Columbia, Canada:
ACM Press, New York, NY, USA, Sep. 1998.

[8] E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
Numerische Mathematik, vol. 1, 1959.

[9] M. Garey and D. Johnson, Computers and Intractability. A Guide to

the Theory of NP-Completeness. W.H Freeman and Co., 1979.
[10] R. M. Karp, “An introduction to randomized algorithms,” Discrete

Applied Mathematics, vol. 34, no. 1-3, pp. 165–201, Nov. 1991.
[11] R. Keller, J. Ramamirtham, T. Wolf, and B. Plattner, “Active Pipes:

Service Composition for Programmable Networks,” in Proc. of IEEE
MILCOM, Oct. 2001.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. Kaashoek, and
C. Modular, “The Click Modular Router,” ACM Transactions on

Computer Systems, vol. 18(3), Aug. 2000.
[13] R. Motwani and P. Raghavan, Randomized Algorithms. New York,

NY: Cambridge University Press, 1995.
[14] L. Ruf, R. Keller, and B. Plattner, “A Scalable High-performance

Router Platform Supporting Dynamic Service Extensibility On
Network and Host Processors,” in Proc. of 2004 ACS/IEEE Int. Conf.

on Pervasive Services (ICPS’2004), Beirut, Lebanon. IEEE, Jul. 2004.
[15] L. Ruf, T. Wolf, K. Farkas, and B. Plattner, “Mapping Network

Services On Heterogeneous Multiprocessor Devices,” ETH Zürich,
Switzerland, Technical Report 248, Mar. 2006.

[16] Z. Wang and J. Crowcroft, “Quality of Service Routing for Supporting
Multimedia Applications,” in JSAC, vol. 14. Institute of Electrical
and Electronics Engineers, Sept. 1996.

[17] N. Weng and T. Wolf, “Profiling and Mapping of Parallel Workloads
on Network Processors,” in Proc. of The 20th Annual ACM Symp. on
Applied Computing (SAC), Santa Fe, NM, Mar. 2005.

