
ACTIVE PIPES:
SERVICE COMPOSITION FOR PROGRAMMABLE NETWORKS

Ralph Keller1, Jeyashankher Ramamirtham2, Tilman Wolf2, Bernhard Plattner1

1 [keller | plattner]@tik.ee.ethz.ch 2 [jai | wolf]@arl.wustl.edu
1 Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology

2 Department of Computer Science, Washington University in St. Louis
ABSTRACT

Active networks allow customized processing of data traffic
within the network which can be used by applications to improve
the quality of their sessions. To simplify the development of active
applications in a heterogeneous environment, we propose “active
pipes” as a programming abstraction to specify transmission and
processing requirements. We describe how an active pipe can be
mapped onto network resources by a shortest path algorithm, and
how optimal processing sites and a route through the network can
be determined. Additionally, we propose a scalable network soft-
ware architecture implementing the functionality required for
active pipes.1

I. INTRODUCTION

Active networks provide processing capabilities on routers that
allow customized handling of data traffic within the network [2],
[10], [13]. This allows applications to be distributed, parts of the
application executing on end systems, and portions of the applica-
tion running on intermediate network nodes that process the data
stream. Processing in the network can be used to deploy new ser-
vices like congestion control, transcoding, monitoring, and thus
improve end-to-end session quality. Such upcoming multiservice
information networks require sophisticated network control soft-
ware capable of allocating processing resources and bandwidth to
applications efficiently. This requires routing protocols capable of
distributing information about the availability and usage of system
resources and session configuration mechanisms that can quickly
map session requirements onto available resources. One objective
is to make the use of advanced services as simple as possible for
end users.

However, most active networking environments require the
application to explicitly specify the location by a network address
where code modules need to be deployed. Thus, an understanding
of the underlying network infrastructure and the system architec-
ture of the active network is necessary. This burdens the end user
and makes large-scale deployment of active network services
impractical. Deploying code should be a simple task, hiding the
internal details of the network from the application whenever pos-
sible. Also, optimal resource allocation should be delegated to the
network, freeing the application from this task. Thus, it is neces-
sary to have a general scheme of specifying application require-
ments that is expressive enough to describe typical application
scenarios while simple enough to be used effectively.

In this paper, we propose active pipes as a programming

abstraction that allows specification of processing requirements
by applications. As illustrated in Figure 1, an active pipe provides
an interface between the user and the active network and uses
existing reservation mechanisms for session setup. It significantly
simplifies the use of active networks regardless of the node imple-
mentation, providing a crucial component missing in current
active network frameworks.

The idea of specifying transmission and processing require-
ments is to model a connection as a sequence of functions that
have to be performed on the data stream. This concept is analo-
gous to pipes in UNIX where data can be sent through a sequence
of programs. In the active networking context, each function cor-
responds to a code module that has to be installed on a router
along the path of the connection. Additionally, the application can
define constraints where such processing should take place.

This paper addresses the following three issues:
• We introduce a method for specifying transmission and pro-

cessing requirements for connections over active networks.
• We demonstrate how the connection requirements can be

mapped onto network resources while minimizing network
costs.

• We propose a network software architecture that can imple-
ment the services required for resource mapping, routing, and
connection setup.

In Section II, we describe our programming paradigm for active
networks and explain how active pipes are defined. Section III
illustrates how we can map an active pipe onto network resources
and determine an optimal route and the location of processing
sites. In Section IV we address scalability issues and demonstrate,
how our scheme can be distributed. Section V presents a node
architecture to implement the required functionality. In Section
VI, we discuss related work and Section VII concludes this paper.

II. ACTIVE PIPE PARADIGM

An active pipe is used to describe transmission and processing
requirements as a sequence of functions that have to be performed
on the data stream. Each function corresponds to a code module
that needs to be instantiated on a node along the path. Since appli-
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cations can have stringent requirements on the location of pro-
cessing modules, the specified processing steps can have
constraints associated with them. For example an application
requires sufficient processing capabilities from an active node to
guarantee proper execution of the code module. In addition, the
location of processing modules can be restricted to meet other
specific requirements such as installation of the processing mod-
ule within a given address range.

Figure 2 depicts an active pipe for a scenario where a connec-
tion for sensitive data transmission should be established between
two end systems, located in different domains. The end system
domains are assumed to be secure but since traffic transits
untrusted nodes, encryption and decryption steps are needed in the
source and destination domains, respectively.

The active pipe includes the end systems and processing func-
tions that should be deployed in the network. Constraints are
defined in form of attributes that must satisfy specific values
given corresponding relations. In the network each node has a set
of attributes that describe the node’s static and dynamic proper-
ties. Static attributes include location attributes (network address,
domain, border router etc.). Dynamic attributes describe the cur-
rent work load (available processing cycles) and link load. To be
considered for deployment, a node needs to meet all of the given
constraints. In the example above, the encryption function must be
on a node within the address range 192.1.1/24 and sufficient pro-
cessing cycles need to be available. Thus, for each processing
step, constraints define a subset of nodes that are qualified to exe-
cute a given function.

The active pipe abstraction defines a logical end-to-end path
which includes processing sites that should be instantiated on
nodes satisfying the given constraints. Next, we propose an algo-
rithm that maps such a logical path onto the underlying physical
network.

III. MAPPING ACTIVE PIPE ONTO NETWORK RESOURCES

This section describes how we can map a high-level pipe
abstraction onto physical network resources. The result of this
scheme is the selection of suitable processing sites as well as a
path traversing processing sites in a given order. As specified by
the active pipe, each processing function can have various con-
straints that must be satisfied by the algorithm. Also, the installa-
tion of a processing module has an associated cost, which can
vary between processing sites, thus processing costs must be
taken into account as well.

We start with the simplest scenario where we assume that the
mapping algorithm has a complete view of the network, as is com-
mon for link state protocols such as OSPF [9]. First, we demon-
strate how we can solve the problem for a single processing site
and then extend our scheme to multiple processing steps that are
executed in a sequence. In Section IV we discuss how our scheme

can be extended to large networks.

A. Single Processing Site Mapping

In the simplest case as illustrated in Figure 3, one intermediate
computation needs to be performed on a node within the specified
address range that is capable of performing the required process-
ing.

Figure 4 depicts a sample network with various processing
sites. Each processing site has an associated cost (shown as the
number in the node) that needs to be taken into account when pro-
cessing on that site should occur.

To map the active pipe onto the network, we must select one
processing site and a path connecting the end systems through the
processing site, preferably in a way that minimizes both link and
processing costs.

First each potential processing site is compared with the pro-
cessing step constraints in the active pipe. If a node cannot be a
candidate for a given function (because it is outside the address
range or not enough cycles are available), it is excluded from the
set (e.g., the processing cost is set to infinity). For simplicity, we
assume that all sites qualify in this example.

Formally, the problem for the single processing site case can be
stated as follows. The network is represented by a directed graph,
G = (V, E), in which vertices correspond to routers, while edges
correspond to links. Each link e ∈ E has an associated transmis-
sion cost c(e), and each node v ∈ V a processing cost c(v). The
source is defined by s and the destination by d. Finally, let R ⊆ V
be the subset of nodes that represents sites where intermediate
processing may occur, that is nodes that satisfy the constraints for
the processing step. Our goal is to find a path from s to d that
includes at least one node r ∈ R while minimizing both link and
processing costs.

Shortest path problems with more than one cost metric are
known to be intractable since their computational complexity is
NP-complete [11]. To simplify the problem, we assume that pro-
cessing costs are scaled to match the link cost units. This is a con-
venience that allows us to transform the multiple metrics routing
problem into a shortest path problem with just link costs as
described in [6]. With the single metric assumption, the cost of the
path can be expressed by the sum of all link costs plus the pro-
cessing cost at the chosen processing site.

We can solve the problem with one processing site by trans-

Figure 2: Secure data transmission pipe
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forming it to a shortest path problem on a different graph. We
modify the graph G by making two copies which we identify as
layer 1 and layer 2 as illustrated in Figure 5. For each vertex v in
the initial graph, let v1 denote the vertex in layer 1 of the target
graph while v2 denotes the vertex copy in layer 2. To model the
processing function, we add edges between the two layers. For
every node r ∈ R, where processing may occur, we add edges (r1,
r2) in the target graph and let the link cost of (r1, r2) be the pro-
cessing cost on node r, c(r). The source node s1 in layer 1 is the
source for this new graph and the destination node d2 in layer 2 is
the destination node for the new graph. To solve the routing prob-
lem with one mandatory processing site, we find a least-cost path
in the target graph using a shortest path algorithm. Once we have
found a solution in the target graph, the path can be mapped back
to the original graph by projecting the two layers onto a single
layer. The processing is optimally performed where the path
crosses the two layers.

B. Multiple Processing Sites Mapping

The layering model can be extended to include several compu-
tational steps. For each processing step, there are potentially mul-
tiple locations where processing may occur. For example a secure
data transmission application requires to deploy an encryption and
decryption step in the source and destination domains, respec-
tively.

We can solve this generalized problem with k processing sites
(k ≥ 1) in a way similar to the single site case. The target graph G
has k+1 layers, each layer representing a copy of the original
graph. We let vi denote the copy of node v in layer i. For each pro-
cessing node r ∈ Ri, we add an edge (ri, ri+1) in the target graph
and set the cost to ci(r) from the original graph. Figure 6 illustrates
an example graph transformation for k = 2 processing sites.
Again, by projecting the target graph to the original graph the
locations of the processing sites can be determined.

IV. HIERARCHICAL, DISTRIBUTED MAPPING

In the previous section we explained how we can determine
processing sites assuming a complete network view. However,
this assumption is not realistic for large networks consisting of
thousands of nodes. In this section we address scalability issues
and show how our scheme can be extended to very large net-

works.

A. Hierarchical Network Structure

To make our approach scalable to very large networks, we
aggregate information about sections of the network, similar in
nature to [1]. Nodes in the network are partitioned into groups of
interconnected nodes called peer groups. A peer group appears as
a single logical node at the next level of the hierarchy. Figure 7
shows a simplified example of a physical network partitioned into
three peer groups and a logical hierarchy level which has been
built on top.

Each peer group has an assigned peer group leader that acts as a
logical group node for the next hierarchy level and aggregates and
distributes topology and state information to maintain the hierar-
chy. Apart from its specific role in summarizing and distributing
peer group information, it acts like any other node.

B. Network Attribute Aggregation

We also need to summarize network attributes and propagate
them to higher levels. The goal of aggregation is to provide useful
information to higher levels for making appropriate decisions for
selecting processing sites. How individual attributes are summa-
rized depends on the type of the attribute and what information
should be propagated up the hierarchy. Figure 8 illustrates how

Figure 5: Layering model for single processing site
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Figure 6: Graph transformation for multiple sites
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Figure 7: Hierarchical network structure
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attributes of various nodes can be summarized. Network address
ranges are aggregated using a summary address with a shorter pre-
fix length. For processing site costs, there are several schemes
possible. In an optimistic case, we could advertise the least-cost
node, giving the session configuration system a hint where to find
cheap processing sites. To be more conservative, we could
announce the average cost of all processing sites. A node can also
have other attributes that describe whether it supports a given pro-
tocol (such as RSVP) or provides a specific service (such as
DNS). The RSVP attribute is only propagated up the hierarchy if
all nodes indeed support it, thus the aggregation corresponds to a
logical-AND of all RSVP attribute values. The DNS attribute is
only announced if at least one node provides such a service within
a peer group, that is, the summarization is a logical-OR of all
attribute values.

The aggregation methods described in this paper are only a sub-
set of possible summarization rules. Finding suitable aggregation
schemes is a topic for further investigation.

C. Hierarchical Session Setup

With the introduction of network hierarchies, the session estab-
lishment needs to be performed in a hierarchical way, that is
applying the algorithm described in Section III first on a higher
level (using aggregated information) and then executing the same
algorithm on individual peer groups at lower levels (which have
more accurate information). When a session establishment request
arrives at the router, that node is responsible for determining the
hierarchy level that is needed to process the setup by examining
the network addresses of the source, destination and intermediate
processing sites. If not all nodes belong to the peer group of the
current hierarchy level, the session setup request is delegated to
the peer group leader which acts as a logically higher peer group
node.

Figure 9 illustrates this process where the session establishment
has been delegated to a higher level peer group that includes logi-
cal group nodes A, B, and C. The peer group leader executes the
routing algorithm based on summarized information and selects a
path and processing sites that seem to be capable of providing the
requested computation. In the example, it selects the path (s, A, B,
C, d) with processing steps p1 and p2 within A and computation p3
in C. Since the final path needs to be a path on the physical topol-
ogy, the session configuration system uses a divide and conquer

approach. When a path transits a logical node, it delegates the
routing through that particular peer group to the lower hierarchy
level.

The routing algorithm described in Section III is recursively
applied to a more detailed subsection of the initial network. In the
example given, peer group A performs path and processing site
selection through A itself and chooses the path A.1, A.2, A.4 with
processing on A.2 and A.4. The routing algorithm also selects an
external path to peer group B that seems to be a good candidate to
reach B based on A’s topology and state information. Since A does
not have complete information about the neighboring peer group
B, this path may not be globally optimal. However, we believe this
trade-off is acceptable since optimal routing must generally be
sacrificed for scalability reasons.

Once the session setup system has determined a path through
peer group A, it initiates path determination through peer group B.
As chosen by A, peer group B will be reached from node A.4. Peer
group B runs a simple shortest-path algorithm (since no process-
ing is required in peer group B) to reach C and selects the path
B.1, B.2. Finally, the session establishment system initiates rout-
ing through C. Again, peer group C runs the routing algorithm
within its own peer group and chooses the path C.2, C.3, C.4 with
processing on C.3. Finally, we have found in a distributed manner
a complete path from the source to the destination that includes
the required processing sites.

Once a complete path has been determined, the session setup
system reserves the required resources along the path and installs
active code on routers using a signaling protocol such as Beagle
[4] and sets up a route using a mechanism such as Explicit Route
Objects in MPLS [8]. This step confirms that the resources
requested are in fact available. If they are not, then crankback
occurs, which causes a new path to be computed if possible; thus
the final outcome is either the establishment of a path satisfying
the request, or refusal of the session setup.

V. NODE ARCHITECTURE

In this section, we identify the required components needed for
an implementation and propose an architecture that obtains and
maintains network state information required for optimal resource
mapping.

The core component of our network architecture is the Active
Pipe Subsystem (APS), a distributed session configuration system
for flows that need processing on intermediate nodes. The APS

Figure 8: Aggregation of network attributes
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accepts session initiation requests formulated as an active pipe
from applications, maps session requirements onto network
resources, and reserves resources along the path. First, the APS
identifies the hierarchy level needed to process the request. If a
session needs to be configured using multiple peer groups, the
APS forwards the request to a higher instance as described in Sec-
tion IV. Otherwise, it runs the path routing algorithm for the peer
group it belongs to (and has complete topology information) and
reserves resources along the predetermined path. Internally, the
APS is composed of the components as shown in Figure 10:

• The session setup manager handles session establishment
requests, determines the hierarchy level, delegates the setup
to another peer group if needed or invokes routing and reser-
vation components.

• The path routing component determines a route and pro-
cessing sites by executing the algorithm described in Section
III. To build the layered network graph, it uses topology and
state information stored in the link state database. Informa-
tion about processing sites can be obtained by extending rout-
ing protocols, such as using OSPF opaque fields [7].

• The path setup component reserves resources along a prede-
termined path. Using signaling protocols such as [4], active
code is installed in the router’s networking subsystem.

VI. RELATED WORK

In the context of active networks, resource discovery and
resource reservation are crucial factors of network programmabil-
ity. Darwin [3] proposes an integrated resource management
scheme where resource requests are formulated as a virtual mesh.
A resource broker translates the virtual mesh onto network
resources by expressing it as a boolean optimization problem,
which is generally NP-hard, thus this approach is only appropriate
for small to medium sized networks.

Ninja Paths [5] allow the generation of a logical path, which is a
sequence of simple modules that can be composed to more com-
plex services using operators. Ninja paths focus on composing
existing services that are already installed in the network while
our approach stresses optimal processing site selection and instal-
lation of new services.

End-to-end media paths [12] is a Java-based approach for build-
ing multimedia applications from components. Rules define how
paths can be constructed and a pattern matching algorithm then
tries to map the path onto network resources.

VII. CONCLUSIONS

In this paper, we propose active pipes as a programming
abstraction that can be used by applications to specify processing
requirements for active networks. An active pipe is a sequence of
functions that are executed on the data stream within the network.
We describe an algorithm that maps an active pipe specification
onto network resources while satisfying all location constraints
given by the application. We also identify components that are
needed for an implementation and propose a network architecture
supporting active pipes.

We believe that providing a simple yet flexible programming
abstraction is important for making active applications easily pro-
grammable and widely usable. Active pipes represent a significant
step towards the solution of this crucial problem.
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